xref: /openbmc/linux/kernel/kexec_file.c (revision 82806c25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45 
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 			      unsigned long buf_len)
53 {
54 	const struct kexec_file_ops * const *fops;
55 	int ret = -ENOEXEC;
56 
57 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 		ret = (*fops)->probe(buf, buf_len);
59 		if (!ret) {
60 			image->fops = *fops;
61 			return ret;
62 		}
63 	}
64 
65 	return ret;
66 }
67 
68 void *kexec_image_load_default(struct kimage *image)
69 {
70 	if (!image->fops || !image->fops->load)
71 		return ERR_PTR(-ENOEXEC);
72 
73 	return image->fops->load(image, image->kernel_buf,
74 				 image->kernel_buf_len, image->initrd_buf,
75 				 image->initrd_buf_len, image->cmdline_buf,
76 				 image->cmdline_buf_len);
77 }
78 
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 	struct purgatory_info *pi = &image->purgatory_info;
95 
96 	vfree(image->kernel_buf);
97 	image->kernel_buf = NULL;
98 
99 	vfree(image->initrd_buf);
100 	image->initrd_buf = NULL;
101 
102 	kfree(image->cmdline_buf);
103 	image->cmdline_buf = NULL;
104 
105 	vfree(pi->purgatory_buf);
106 	pi->purgatory_buf = NULL;
107 
108 	vfree(pi->sechdrs);
109 	pi->sechdrs = NULL;
110 
111 #ifdef CONFIG_IMA_KEXEC
112 	vfree(image->ima_buffer);
113 	image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115 
116 	/* See if architecture has anything to cleanup post load */
117 	arch_kimage_file_post_load_cleanup(image);
118 
119 	/*
120 	 * Above call should have called into bootloader to free up
121 	 * any data stored in kimage->image_loader_data. It should
122 	 * be ok now to free it up.
123 	 */
124 	kfree(image->image_loader_data);
125 	image->image_loader_data = NULL;
126 }
127 
128 #ifdef CONFIG_KEXEC_SIG
129 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
130 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
131 {
132 	int ret;
133 
134 	ret = verify_pefile_signature(kernel, kernel_len,
135 				      VERIFY_USE_SECONDARY_KEYRING,
136 				      VERIFYING_KEXEC_PE_SIGNATURE);
137 	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
138 		ret = verify_pefile_signature(kernel, kernel_len,
139 					      VERIFY_USE_PLATFORM_KEYRING,
140 					      VERIFYING_KEXEC_PE_SIGNATURE);
141 	}
142 	return ret;
143 }
144 #endif
145 
146 static int kexec_image_verify_sig(struct kimage *image, void *buf,
147 				  unsigned long buf_len)
148 {
149 	if (!image->fops || !image->fops->verify_sig) {
150 		pr_debug("kernel loader does not support signature verification.\n");
151 		return -EKEYREJECTED;
152 	}
153 
154 	return image->fops->verify_sig(buf, buf_len);
155 }
156 
157 static int
158 kimage_validate_signature(struct kimage *image)
159 {
160 	int ret;
161 
162 	ret = kexec_image_verify_sig(image, image->kernel_buf,
163 				     image->kernel_buf_len);
164 	if (ret) {
165 
166 		if (sig_enforce) {
167 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
168 			return ret;
169 		}
170 
171 		/*
172 		 * If IMA is guaranteed to appraise a signature on the kexec
173 		 * image, permit it even if the kernel is otherwise locked
174 		 * down.
175 		 */
176 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
177 		    security_locked_down(LOCKDOWN_KEXEC))
178 			return -EPERM;
179 
180 		pr_debug("kernel signature verification failed (%d).\n", ret);
181 	}
182 
183 	return 0;
184 }
185 #endif
186 
187 /*
188  * In file mode list of segments is prepared by kernel. Copy relevant
189  * data from user space, do error checking, prepare segment list
190  */
191 static int
192 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
193 			     const char __user *cmdline_ptr,
194 			     unsigned long cmdline_len, unsigned flags)
195 {
196 	ssize_t ret;
197 	void *ldata;
198 
199 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
200 				       KEXEC_FILE_SIZE_MAX, NULL,
201 				       READING_KEXEC_IMAGE);
202 	if (ret < 0)
203 		return ret;
204 	image->kernel_buf_len = ret;
205 
206 	/* Call arch image probe handlers */
207 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
208 					    image->kernel_buf_len);
209 	if (ret)
210 		goto out;
211 
212 #ifdef CONFIG_KEXEC_SIG
213 	ret = kimage_validate_signature(image);
214 
215 	if (ret)
216 		goto out;
217 #endif
218 	/* It is possible that there no initramfs is being loaded */
219 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
220 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
221 					       KEXEC_FILE_SIZE_MAX, NULL,
222 					       READING_KEXEC_INITRAMFS);
223 		if (ret < 0)
224 			goto out;
225 		image->initrd_buf_len = ret;
226 		ret = 0;
227 	}
228 
229 	if (cmdline_len) {
230 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
231 		if (IS_ERR(image->cmdline_buf)) {
232 			ret = PTR_ERR(image->cmdline_buf);
233 			image->cmdline_buf = NULL;
234 			goto out;
235 		}
236 
237 		image->cmdline_buf_len = cmdline_len;
238 
239 		/* command line should be a string with last byte null */
240 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
241 			ret = -EINVAL;
242 			goto out;
243 		}
244 
245 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
246 				  image->cmdline_buf_len - 1);
247 	}
248 
249 	/* IMA needs to pass the measurement list to the next kernel. */
250 	ima_add_kexec_buffer(image);
251 
252 	/* Call arch image load handlers */
253 	ldata = arch_kexec_kernel_image_load(image);
254 
255 	if (IS_ERR(ldata)) {
256 		ret = PTR_ERR(ldata);
257 		goto out;
258 	}
259 
260 	image->image_loader_data = ldata;
261 out:
262 	/* In case of error, free up all allocated memory in this function */
263 	if (ret)
264 		kimage_file_post_load_cleanup(image);
265 	return ret;
266 }
267 
268 static int
269 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
270 		       int initrd_fd, const char __user *cmdline_ptr,
271 		       unsigned long cmdline_len, unsigned long flags)
272 {
273 	int ret;
274 	struct kimage *image;
275 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
276 
277 	image = do_kimage_alloc_init();
278 	if (!image)
279 		return -ENOMEM;
280 
281 	image->file_mode = 1;
282 
283 	if (kexec_on_panic) {
284 		/* Enable special crash kernel control page alloc policy. */
285 		image->control_page = crashk_res.start;
286 		image->type = KEXEC_TYPE_CRASH;
287 	}
288 
289 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
290 					   cmdline_ptr, cmdline_len, flags);
291 	if (ret)
292 		goto out_free_image;
293 
294 	ret = sanity_check_segment_list(image);
295 	if (ret)
296 		goto out_free_post_load_bufs;
297 
298 	ret = -ENOMEM;
299 	image->control_code_page = kimage_alloc_control_pages(image,
300 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
301 	if (!image->control_code_page) {
302 		pr_err("Could not allocate control_code_buffer\n");
303 		goto out_free_post_load_bufs;
304 	}
305 
306 	if (!kexec_on_panic) {
307 		image->swap_page = kimage_alloc_control_pages(image, 0);
308 		if (!image->swap_page) {
309 			pr_err("Could not allocate swap buffer\n");
310 			goto out_free_control_pages;
311 		}
312 	}
313 
314 	*rimage = image;
315 	return 0;
316 out_free_control_pages:
317 	kimage_free_page_list(&image->control_pages);
318 out_free_post_load_bufs:
319 	kimage_file_post_load_cleanup(image);
320 out_free_image:
321 	kfree(image);
322 	return ret;
323 }
324 
325 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
326 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
327 		unsigned long, flags)
328 {
329 	int ret = 0, i;
330 	struct kimage **dest_image, *image;
331 
332 	/* We only trust the superuser with rebooting the system. */
333 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
334 		return -EPERM;
335 
336 	/* Make sure we have a legal set of flags */
337 	if (flags != (flags & KEXEC_FILE_FLAGS))
338 		return -EINVAL;
339 
340 	image = NULL;
341 
342 	if (!mutex_trylock(&kexec_mutex))
343 		return -EBUSY;
344 
345 	dest_image = &kexec_image;
346 	if (flags & KEXEC_FILE_ON_CRASH) {
347 		dest_image = &kexec_crash_image;
348 		if (kexec_crash_image)
349 			arch_kexec_unprotect_crashkres();
350 	}
351 
352 	if (flags & KEXEC_FILE_UNLOAD)
353 		goto exchange;
354 
355 	/*
356 	 * In case of crash, new kernel gets loaded in reserved region. It is
357 	 * same memory where old crash kernel might be loaded. Free any
358 	 * current crash dump kernel before we corrupt it.
359 	 */
360 	if (flags & KEXEC_FILE_ON_CRASH)
361 		kimage_free(xchg(&kexec_crash_image, NULL));
362 
363 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
364 				     cmdline_len, flags);
365 	if (ret)
366 		goto out;
367 
368 	ret = machine_kexec_prepare(image);
369 	if (ret)
370 		goto out;
371 
372 	/*
373 	 * Some architecture(like S390) may touch the crash memory before
374 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
375 	 */
376 	ret = kimage_crash_copy_vmcoreinfo(image);
377 	if (ret)
378 		goto out;
379 
380 	ret = kexec_calculate_store_digests(image);
381 	if (ret)
382 		goto out;
383 
384 	for (i = 0; i < image->nr_segments; i++) {
385 		struct kexec_segment *ksegment;
386 
387 		ksegment = &image->segment[i];
388 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
389 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
390 			 ksegment->memsz);
391 
392 		ret = kimage_load_segment(image, &image->segment[i]);
393 		if (ret)
394 			goto out;
395 	}
396 
397 	kimage_terminate(image);
398 
399 	ret = machine_kexec_post_load(image);
400 	if (ret)
401 		goto out;
402 
403 	/*
404 	 * Free up any temporary buffers allocated which are not needed
405 	 * after image has been loaded
406 	 */
407 	kimage_file_post_load_cleanup(image);
408 exchange:
409 	image = xchg(dest_image, image);
410 out:
411 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
412 		arch_kexec_protect_crashkres();
413 
414 	mutex_unlock(&kexec_mutex);
415 	kimage_free(image);
416 	return ret;
417 }
418 
419 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
420 				    struct kexec_buf *kbuf)
421 {
422 	struct kimage *image = kbuf->image;
423 	unsigned long temp_start, temp_end;
424 
425 	temp_end = min(end, kbuf->buf_max);
426 	temp_start = temp_end - kbuf->memsz;
427 
428 	do {
429 		/* align down start */
430 		temp_start = temp_start & (~(kbuf->buf_align - 1));
431 
432 		if (temp_start < start || temp_start < kbuf->buf_min)
433 			return 0;
434 
435 		temp_end = temp_start + kbuf->memsz - 1;
436 
437 		/*
438 		 * Make sure this does not conflict with any of existing
439 		 * segments
440 		 */
441 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
442 			temp_start = temp_start - PAGE_SIZE;
443 			continue;
444 		}
445 
446 		/* We found a suitable memory range */
447 		break;
448 	} while (1);
449 
450 	/* If we are here, we found a suitable memory range */
451 	kbuf->mem = temp_start;
452 
453 	/* Success, stop navigating through remaining System RAM ranges */
454 	return 1;
455 }
456 
457 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
458 				     struct kexec_buf *kbuf)
459 {
460 	struct kimage *image = kbuf->image;
461 	unsigned long temp_start, temp_end;
462 
463 	temp_start = max(start, kbuf->buf_min);
464 
465 	do {
466 		temp_start = ALIGN(temp_start, kbuf->buf_align);
467 		temp_end = temp_start + kbuf->memsz - 1;
468 
469 		if (temp_end > end || temp_end > kbuf->buf_max)
470 			return 0;
471 		/*
472 		 * Make sure this does not conflict with any of existing
473 		 * segments
474 		 */
475 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
476 			temp_start = temp_start + PAGE_SIZE;
477 			continue;
478 		}
479 
480 		/* We found a suitable memory range */
481 		break;
482 	} while (1);
483 
484 	/* If we are here, we found a suitable memory range */
485 	kbuf->mem = temp_start;
486 
487 	/* Success, stop navigating through remaining System RAM ranges */
488 	return 1;
489 }
490 
491 static int locate_mem_hole_callback(struct resource *res, void *arg)
492 {
493 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
494 	u64 start = res->start, end = res->end;
495 	unsigned long sz = end - start + 1;
496 
497 	/* Returning 0 will take to next memory range */
498 
499 	/* Don't use memory that will be detected and handled by a driver. */
500 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
501 		return 0;
502 
503 	if (sz < kbuf->memsz)
504 		return 0;
505 
506 	if (end < kbuf->buf_min || start > kbuf->buf_max)
507 		return 0;
508 
509 	/*
510 	 * Allocate memory top down with-in ram range. Otherwise bottom up
511 	 * allocation.
512 	 */
513 	if (kbuf->top_down)
514 		return locate_mem_hole_top_down(start, end, kbuf);
515 	return locate_mem_hole_bottom_up(start, end, kbuf);
516 }
517 
518 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
519 static int kexec_walk_memblock(struct kexec_buf *kbuf,
520 			       int (*func)(struct resource *, void *))
521 {
522 	int ret = 0;
523 	u64 i;
524 	phys_addr_t mstart, mend;
525 	struct resource res = { };
526 
527 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
528 		return func(&crashk_res, kbuf);
529 
530 	/*
531 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
532 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
533 	 * locate_mem_hole_callback().
534 	 */
535 	if (kbuf->top_down) {
536 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
537 						&mstart, &mend, NULL) {
538 			/*
539 			 * In memblock, end points to the first byte after the
540 			 * range while in kexec, end points to the last byte
541 			 * in the range.
542 			 */
543 			res.start = mstart;
544 			res.end = mend - 1;
545 			ret = func(&res, kbuf);
546 			if (ret)
547 				break;
548 		}
549 	} else {
550 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
551 					&mstart, &mend, NULL) {
552 			/*
553 			 * In memblock, end points to the first byte after the
554 			 * range while in kexec, end points to the last byte
555 			 * in the range.
556 			 */
557 			res.start = mstart;
558 			res.end = mend - 1;
559 			ret = func(&res, kbuf);
560 			if (ret)
561 				break;
562 		}
563 	}
564 
565 	return ret;
566 }
567 #else
568 static int kexec_walk_memblock(struct kexec_buf *kbuf,
569 			       int (*func)(struct resource *, void *))
570 {
571 	return 0;
572 }
573 #endif
574 
575 /**
576  * kexec_walk_resources - call func(data) on free memory regions
577  * @kbuf:	Context info for the search. Also passed to @func.
578  * @func:	Function to call for each memory region.
579  *
580  * Return: The memory walk will stop when func returns a non-zero value
581  * and that value will be returned. If all free regions are visited without
582  * func returning non-zero, then zero will be returned.
583  */
584 static int kexec_walk_resources(struct kexec_buf *kbuf,
585 				int (*func)(struct resource *, void *))
586 {
587 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
588 		return walk_iomem_res_desc(crashk_res.desc,
589 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
590 					   crashk_res.start, crashk_res.end,
591 					   kbuf, func);
592 	else
593 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
594 }
595 
596 /**
597  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
598  * @kbuf:	Parameters for the memory search.
599  *
600  * On success, kbuf->mem will have the start address of the memory region found.
601  *
602  * Return: 0 on success, negative errno on error.
603  */
604 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
605 {
606 	int ret;
607 
608 	/* Arch knows where to place */
609 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
610 		return 0;
611 
612 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
613 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
614 	else
615 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
616 
617 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
618 }
619 
620 /**
621  * kexec_add_buffer - place a buffer in a kexec segment
622  * @kbuf:	Buffer contents and memory parameters.
623  *
624  * This function assumes that kexec_mutex is held.
625  * On successful return, @kbuf->mem will have the physical address of
626  * the buffer in memory.
627  *
628  * Return: 0 on success, negative errno on error.
629  */
630 int kexec_add_buffer(struct kexec_buf *kbuf)
631 {
632 	struct kexec_segment *ksegment;
633 	int ret;
634 
635 	/* Currently adding segment this way is allowed only in file mode */
636 	if (!kbuf->image->file_mode)
637 		return -EINVAL;
638 
639 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
640 		return -EINVAL;
641 
642 	/*
643 	 * Make sure we are not trying to add buffer after allocating
644 	 * control pages. All segments need to be placed first before
645 	 * any control pages are allocated. As control page allocation
646 	 * logic goes through list of segments to make sure there are
647 	 * no destination overlaps.
648 	 */
649 	if (!list_empty(&kbuf->image->control_pages)) {
650 		WARN_ON(1);
651 		return -EINVAL;
652 	}
653 
654 	/* Ensure minimum alignment needed for segments. */
655 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
656 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
657 
658 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
659 	ret = arch_kexec_locate_mem_hole(kbuf);
660 	if (ret)
661 		return ret;
662 
663 	/* Found a suitable memory range */
664 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
665 	ksegment->kbuf = kbuf->buffer;
666 	ksegment->bufsz = kbuf->bufsz;
667 	ksegment->mem = kbuf->mem;
668 	ksegment->memsz = kbuf->memsz;
669 	kbuf->image->nr_segments++;
670 	return 0;
671 }
672 
673 /* Calculate and store the digest of segments */
674 static int kexec_calculate_store_digests(struct kimage *image)
675 {
676 	struct crypto_shash *tfm;
677 	struct shash_desc *desc;
678 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
679 	size_t desc_size, nullsz;
680 	char *digest;
681 	void *zero_buf;
682 	struct kexec_sha_region *sha_regions;
683 	struct purgatory_info *pi = &image->purgatory_info;
684 
685 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
686 		return 0;
687 
688 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
689 	zero_buf_sz = PAGE_SIZE;
690 
691 	tfm = crypto_alloc_shash("sha256", 0, 0);
692 	if (IS_ERR(tfm)) {
693 		ret = PTR_ERR(tfm);
694 		goto out;
695 	}
696 
697 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
698 	desc = kzalloc(desc_size, GFP_KERNEL);
699 	if (!desc) {
700 		ret = -ENOMEM;
701 		goto out_free_tfm;
702 	}
703 
704 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
705 	sha_regions = vzalloc(sha_region_sz);
706 	if (!sha_regions) {
707 		ret = -ENOMEM;
708 		goto out_free_desc;
709 	}
710 
711 	desc->tfm   = tfm;
712 
713 	ret = crypto_shash_init(desc);
714 	if (ret < 0)
715 		goto out_free_sha_regions;
716 
717 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
718 	if (!digest) {
719 		ret = -ENOMEM;
720 		goto out_free_sha_regions;
721 	}
722 
723 	for (j = i = 0; i < image->nr_segments; i++) {
724 		struct kexec_segment *ksegment;
725 
726 		ksegment = &image->segment[i];
727 		/*
728 		 * Skip purgatory as it will be modified once we put digest
729 		 * info in purgatory.
730 		 */
731 		if (ksegment->kbuf == pi->purgatory_buf)
732 			continue;
733 
734 		ret = crypto_shash_update(desc, ksegment->kbuf,
735 					  ksegment->bufsz);
736 		if (ret)
737 			break;
738 
739 		/*
740 		 * Assume rest of the buffer is filled with zero and
741 		 * update digest accordingly.
742 		 */
743 		nullsz = ksegment->memsz - ksegment->bufsz;
744 		while (nullsz) {
745 			unsigned long bytes = nullsz;
746 
747 			if (bytes > zero_buf_sz)
748 				bytes = zero_buf_sz;
749 			ret = crypto_shash_update(desc, zero_buf, bytes);
750 			if (ret)
751 				break;
752 			nullsz -= bytes;
753 		}
754 
755 		if (ret)
756 			break;
757 
758 		sha_regions[j].start = ksegment->mem;
759 		sha_regions[j].len = ksegment->memsz;
760 		j++;
761 	}
762 
763 	if (!ret) {
764 		ret = crypto_shash_final(desc, digest);
765 		if (ret)
766 			goto out_free_digest;
767 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
768 						     sha_regions, sha_region_sz, 0);
769 		if (ret)
770 			goto out_free_digest;
771 
772 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
773 						     digest, SHA256_DIGEST_SIZE, 0);
774 		if (ret)
775 			goto out_free_digest;
776 	}
777 
778 out_free_digest:
779 	kfree(digest);
780 out_free_sha_regions:
781 	vfree(sha_regions);
782 out_free_desc:
783 	kfree(desc);
784 out_free_tfm:
785 	kfree(tfm);
786 out:
787 	return ret;
788 }
789 
790 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
791 /*
792  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
793  * @pi:		Purgatory to be loaded.
794  * @kbuf:	Buffer to setup.
795  *
796  * Allocates the memory needed for the buffer. Caller is responsible to free
797  * the memory after use.
798  *
799  * Return: 0 on success, negative errno on error.
800  */
801 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
802 				      struct kexec_buf *kbuf)
803 {
804 	const Elf_Shdr *sechdrs;
805 	unsigned long bss_align;
806 	unsigned long bss_sz;
807 	unsigned long align;
808 	int i, ret;
809 
810 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
811 	kbuf->buf_align = bss_align = 1;
812 	kbuf->bufsz = bss_sz = 0;
813 
814 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
815 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
816 			continue;
817 
818 		align = sechdrs[i].sh_addralign;
819 		if (sechdrs[i].sh_type != SHT_NOBITS) {
820 			if (kbuf->buf_align < align)
821 				kbuf->buf_align = align;
822 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
823 			kbuf->bufsz += sechdrs[i].sh_size;
824 		} else {
825 			if (bss_align < align)
826 				bss_align = align;
827 			bss_sz = ALIGN(bss_sz, align);
828 			bss_sz += sechdrs[i].sh_size;
829 		}
830 	}
831 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
832 	kbuf->memsz = kbuf->bufsz + bss_sz;
833 	if (kbuf->buf_align < bss_align)
834 		kbuf->buf_align = bss_align;
835 
836 	kbuf->buffer = vzalloc(kbuf->bufsz);
837 	if (!kbuf->buffer)
838 		return -ENOMEM;
839 	pi->purgatory_buf = kbuf->buffer;
840 
841 	ret = kexec_add_buffer(kbuf);
842 	if (ret)
843 		goto out;
844 
845 	return 0;
846 out:
847 	vfree(pi->purgatory_buf);
848 	pi->purgatory_buf = NULL;
849 	return ret;
850 }
851 
852 /*
853  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
854  * @pi:		Purgatory to be loaded.
855  * @kbuf:	Buffer prepared to store purgatory.
856  *
857  * Allocates the memory needed for the buffer. Caller is responsible to free
858  * the memory after use.
859  *
860  * Return: 0 on success, negative errno on error.
861  */
862 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
863 					 struct kexec_buf *kbuf)
864 {
865 	unsigned long bss_addr;
866 	unsigned long offset;
867 	Elf_Shdr *sechdrs;
868 	int i;
869 
870 	/*
871 	 * The section headers in kexec_purgatory are read-only. In order to
872 	 * have them modifiable make a temporary copy.
873 	 */
874 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
875 	if (!sechdrs)
876 		return -ENOMEM;
877 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
878 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
879 	pi->sechdrs = sechdrs;
880 
881 	offset = 0;
882 	bss_addr = kbuf->mem + kbuf->bufsz;
883 	kbuf->image->start = pi->ehdr->e_entry;
884 
885 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
886 		unsigned long align;
887 		void *src, *dst;
888 
889 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
890 			continue;
891 
892 		align = sechdrs[i].sh_addralign;
893 		if (sechdrs[i].sh_type == SHT_NOBITS) {
894 			bss_addr = ALIGN(bss_addr, align);
895 			sechdrs[i].sh_addr = bss_addr;
896 			bss_addr += sechdrs[i].sh_size;
897 			continue;
898 		}
899 
900 		offset = ALIGN(offset, align);
901 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
902 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
903 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
904 					 + sechdrs[i].sh_size)) {
905 			kbuf->image->start -= sechdrs[i].sh_addr;
906 			kbuf->image->start += kbuf->mem + offset;
907 		}
908 
909 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
910 		dst = pi->purgatory_buf + offset;
911 		memcpy(dst, src, sechdrs[i].sh_size);
912 
913 		sechdrs[i].sh_addr = kbuf->mem + offset;
914 		sechdrs[i].sh_offset = offset;
915 		offset += sechdrs[i].sh_size;
916 	}
917 
918 	return 0;
919 }
920 
921 static int kexec_apply_relocations(struct kimage *image)
922 {
923 	int i, ret;
924 	struct purgatory_info *pi = &image->purgatory_info;
925 	const Elf_Shdr *sechdrs;
926 
927 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
928 
929 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
930 		const Elf_Shdr *relsec;
931 		const Elf_Shdr *symtab;
932 		Elf_Shdr *section;
933 
934 		relsec = sechdrs + i;
935 
936 		if (relsec->sh_type != SHT_RELA &&
937 		    relsec->sh_type != SHT_REL)
938 			continue;
939 
940 		/*
941 		 * For section of type SHT_RELA/SHT_REL,
942 		 * ->sh_link contains section header index of associated
943 		 * symbol table. And ->sh_info contains section header
944 		 * index of section to which relocations apply.
945 		 */
946 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
947 		    relsec->sh_link >= pi->ehdr->e_shnum)
948 			return -ENOEXEC;
949 
950 		section = pi->sechdrs + relsec->sh_info;
951 		symtab = sechdrs + relsec->sh_link;
952 
953 		if (!(section->sh_flags & SHF_ALLOC))
954 			continue;
955 
956 		/*
957 		 * symtab->sh_link contain section header index of associated
958 		 * string table.
959 		 */
960 		if (symtab->sh_link >= pi->ehdr->e_shnum)
961 			/* Invalid section number? */
962 			continue;
963 
964 		/*
965 		 * Respective architecture needs to provide support for applying
966 		 * relocations of type SHT_RELA/SHT_REL.
967 		 */
968 		if (relsec->sh_type == SHT_RELA)
969 			ret = arch_kexec_apply_relocations_add(pi, section,
970 							       relsec, symtab);
971 		else if (relsec->sh_type == SHT_REL)
972 			ret = arch_kexec_apply_relocations(pi, section,
973 							   relsec, symtab);
974 		if (ret)
975 			return ret;
976 	}
977 
978 	return 0;
979 }
980 
981 /*
982  * kexec_load_purgatory - Load and relocate the purgatory object.
983  * @image:	Image to add the purgatory to.
984  * @kbuf:	Memory parameters to use.
985  *
986  * Allocates the memory needed for image->purgatory_info.sechdrs and
987  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
988  * to free the memory after use.
989  *
990  * Return: 0 on success, negative errno on error.
991  */
992 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
993 {
994 	struct purgatory_info *pi = &image->purgatory_info;
995 	int ret;
996 
997 	if (kexec_purgatory_size <= 0)
998 		return -EINVAL;
999 
1000 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1001 
1002 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1007 	if (ret)
1008 		goto out_free_kbuf;
1009 
1010 	ret = kexec_apply_relocations(image);
1011 	if (ret)
1012 		goto out;
1013 
1014 	return 0;
1015 out:
1016 	vfree(pi->sechdrs);
1017 	pi->sechdrs = NULL;
1018 out_free_kbuf:
1019 	vfree(pi->purgatory_buf);
1020 	pi->purgatory_buf = NULL;
1021 	return ret;
1022 }
1023 
1024 /*
1025  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026  * @pi:		Purgatory to search in.
1027  * @name:	Name of the symbol.
1028  *
1029  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030  */
1031 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032 						  const char *name)
1033 {
1034 	const Elf_Shdr *sechdrs;
1035 	const Elf_Ehdr *ehdr;
1036 	const Elf_Sym *syms;
1037 	const char *strtab;
1038 	int i, k;
1039 
1040 	if (!pi->ehdr)
1041 		return NULL;
1042 
1043 	ehdr = pi->ehdr;
1044 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1045 
1046 	for (i = 0; i < ehdr->e_shnum; i++) {
1047 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1048 			continue;
1049 
1050 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051 			/* Invalid strtab section number */
1052 			continue;
1053 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1055 
1056 		/* Go through symbols for a match */
1057 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059 				continue;
1060 
1061 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1062 				continue;
1063 
1064 			if (syms[k].st_shndx == SHN_UNDEF ||
1065 			    syms[k].st_shndx >= ehdr->e_shnum) {
1066 				pr_debug("Symbol: %s has bad section index %d.\n",
1067 						name, syms[k].st_shndx);
1068 				return NULL;
1069 			}
1070 
1071 			/* Found the symbol we are looking for */
1072 			return &syms[k];
1073 		}
1074 	}
1075 
1076 	return NULL;
1077 }
1078 
1079 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080 {
1081 	struct purgatory_info *pi = &image->purgatory_info;
1082 	const Elf_Sym *sym;
1083 	Elf_Shdr *sechdr;
1084 
1085 	sym = kexec_purgatory_find_symbol(pi, name);
1086 	if (!sym)
1087 		return ERR_PTR(-EINVAL);
1088 
1089 	sechdr = &pi->sechdrs[sym->st_shndx];
1090 
1091 	/*
1092 	 * Returns the address where symbol will finally be loaded after
1093 	 * kexec_load_segment()
1094 	 */
1095 	return (void *)(sechdr->sh_addr + sym->st_value);
1096 }
1097 
1098 /*
1099  * Get or set value of a symbol. If "get_value" is true, symbol value is
1100  * returned in buf otherwise symbol value is set based on value in buf.
1101  */
1102 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103 				   void *buf, unsigned int size, bool get_value)
1104 {
1105 	struct purgatory_info *pi = &image->purgatory_info;
1106 	const Elf_Sym *sym;
1107 	Elf_Shdr *sec;
1108 	char *sym_buf;
1109 
1110 	sym = kexec_purgatory_find_symbol(pi, name);
1111 	if (!sym)
1112 		return -EINVAL;
1113 
1114 	if (sym->st_size != size) {
1115 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116 		       name, (unsigned long)sym->st_size, size);
1117 		return -EINVAL;
1118 	}
1119 
1120 	sec = pi->sechdrs + sym->st_shndx;
1121 
1122 	if (sec->sh_type == SHT_NOBITS) {
1123 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124 		       get_value ? "get" : "set");
1125 		return -EINVAL;
1126 	}
1127 
1128 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1129 
1130 	if (get_value)
1131 		memcpy((void *)buf, sym_buf, size);
1132 	else
1133 		memcpy((void *)sym_buf, buf, size);
1134 
1135 	return 0;
1136 }
1137 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138 
1139 int crash_exclude_mem_range(struct crash_mem *mem,
1140 			    unsigned long long mstart, unsigned long long mend)
1141 {
1142 	int i, j;
1143 	unsigned long long start, end, p_start, p_end;
1144 	struct crash_mem_range temp_range = {0, 0};
1145 
1146 	for (i = 0; i < mem->nr_ranges; i++) {
1147 		start = mem->ranges[i].start;
1148 		end = mem->ranges[i].end;
1149 		p_start = mstart;
1150 		p_end = mend;
1151 
1152 		if (mstart > end || mend < start)
1153 			continue;
1154 
1155 		/* Truncate any area outside of range */
1156 		if (mstart < start)
1157 			p_start = start;
1158 		if (mend > end)
1159 			p_end = end;
1160 
1161 		/* Found completely overlapping range */
1162 		if (p_start == start && p_end == end) {
1163 			mem->ranges[i].start = 0;
1164 			mem->ranges[i].end = 0;
1165 			if (i < mem->nr_ranges - 1) {
1166 				/* Shift rest of the ranges to left */
1167 				for (j = i; j < mem->nr_ranges - 1; j++) {
1168 					mem->ranges[j].start =
1169 						mem->ranges[j+1].start;
1170 					mem->ranges[j].end =
1171 							mem->ranges[j+1].end;
1172 				}
1173 
1174 				/*
1175 				 * Continue to check if there are another overlapping ranges
1176 				 * from the current position because of shifting the above
1177 				 * mem ranges.
1178 				 */
1179 				i--;
1180 				mem->nr_ranges--;
1181 				continue;
1182 			}
1183 			mem->nr_ranges--;
1184 			return 0;
1185 		}
1186 
1187 		if (p_start > start && p_end < end) {
1188 			/* Split original range */
1189 			mem->ranges[i].end = p_start - 1;
1190 			temp_range.start = p_end + 1;
1191 			temp_range.end = end;
1192 		} else if (p_start != start)
1193 			mem->ranges[i].end = p_start - 1;
1194 		else
1195 			mem->ranges[i].start = p_end + 1;
1196 		break;
1197 	}
1198 
1199 	/* If a split happened, add the split to array */
1200 	if (!temp_range.end)
1201 		return 0;
1202 
1203 	/* Split happened */
1204 	if (i == mem->max_nr_ranges - 1)
1205 		return -ENOMEM;
1206 
1207 	/* Location where new range should go */
1208 	j = i + 1;
1209 	if (j < mem->nr_ranges) {
1210 		/* Move over all ranges one slot towards the end */
1211 		for (i = mem->nr_ranges - 1; i >= j; i--)
1212 			mem->ranges[i + 1] = mem->ranges[i];
1213 	}
1214 
1215 	mem->ranges[j].start = temp_range.start;
1216 	mem->ranges[j].end = temp_range.end;
1217 	mem->nr_ranges++;
1218 	return 0;
1219 }
1220 
1221 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222 			  void **addr, unsigned long *sz)
1223 {
1224 	Elf64_Ehdr *ehdr;
1225 	Elf64_Phdr *phdr;
1226 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227 	unsigned char *buf;
1228 	unsigned int cpu, i;
1229 	unsigned long long notes_addr;
1230 	unsigned long mstart, mend;
1231 
1232 	/* extra phdr for vmcoreinfo ELF note */
1233 	nr_phdr = nr_cpus + 1;
1234 	nr_phdr += mem->nr_ranges;
1235 
1236 	/*
1237 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239 	 * I think this is required by tools like gdb. So same physical
1240 	 * memory will be mapped in two ELF headers. One will contain kernel
1241 	 * text virtual addresses and other will have __va(physical) addresses.
1242 	 */
1243 
1244 	nr_phdr++;
1245 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247 
1248 	buf = vzalloc(elf_sz);
1249 	if (!buf)
1250 		return -ENOMEM;
1251 
1252 	ehdr = (Elf64_Ehdr *)buf;
1253 	phdr = (Elf64_Phdr *)(ehdr + 1);
1254 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260 	ehdr->e_type = ET_CORE;
1261 	ehdr->e_machine = ELF_ARCH;
1262 	ehdr->e_version = EV_CURRENT;
1263 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266 
1267 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1268 	for_each_present_cpu(cpu) {
1269 		phdr->p_type = PT_NOTE;
1270 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271 		phdr->p_offset = phdr->p_paddr = notes_addr;
1272 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273 		(ehdr->e_phnum)++;
1274 		phdr++;
1275 	}
1276 
1277 	/* Prepare one PT_NOTE header for vmcoreinfo */
1278 	phdr->p_type = PT_NOTE;
1279 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281 	(ehdr->e_phnum)++;
1282 	phdr++;
1283 
1284 	/* Prepare PT_LOAD type program header for kernel text region */
1285 	if (need_kernel_map) {
1286 		phdr->p_type = PT_LOAD;
1287 		phdr->p_flags = PF_R|PF_W|PF_X;
1288 		phdr->p_vaddr = (unsigned long) _text;
1289 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1290 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291 		ehdr->e_phnum++;
1292 		phdr++;
1293 	}
1294 
1295 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1296 	for (i = 0; i < mem->nr_ranges; i++) {
1297 		mstart = mem->ranges[i].start;
1298 		mend = mem->ranges[i].end;
1299 
1300 		phdr->p_type = PT_LOAD;
1301 		phdr->p_flags = PF_R|PF_W|PF_X;
1302 		phdr->p_offset  = mstart;
1303 
1304 		phdr->p_paddr = mstart;
1305 		phdr->p_vaddr = (unsigned long) __va(mstart);
1306 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307 		phdr->p_align = 0;
1308 		ehdr->e_phnum++;
1309 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1310 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311 			ehdr->e_phnum, phdr->p_offset);
1312 		phdr++;
1313 	}
1314 
1315 	*addr = buf;
1316 	*sz = elf_sz;
1317 	return 0;
1318 }
1319