xref: /openbmc/linux/kernel/kexec_file.c (revision 747f7a29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /*
44  * Currently this is the only default function that is exported as some
45  * architectures need it to do additional handlings.
46  * In the future, other default functions may be exported too if required.
47  */
48 int kexec_image_probe_default(struct kimage *image, void *buf,
49 			      unsigned long buf_len)
50 {
51 	const struct kexec_file_ops * const *fops;
52 	int ret = -ENOEXEC;
53 
54 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
55 		ret = (*fops)->probe(buf, buf_len);
56 		if (!ret) {
57 			image->fops = *fops;
58 			return ret;
59 		}
60 	}
61 
62 	return ret;
63 }
64 
65 void *kexec_image_load_default(struct kimage *image)
66 {
67 	if (!image->fops || !image->fops->load)
68 		return ERR_PTR(-ENOEXEC);
69 
70 	return image->fops->load(image, image->kernel_buf,
71 				 image->kernel_buf_len, image->initrd_buf,
72 				 image->initrd_buf_len, image->cmdline_buf,
73 				 image->cmdline_buf_len);
74 }
75 
76 int kexec_image_post_load_cleanup_default(struct kimage *image)
77 {
78 	if (!image->fops || !image->fops->cleanup)
79 		return 0;
80 
81 	return image->fops->cleanup(image->image_loader_data);
82 }
83 
84 /*
85  * Free up memory used by kernel, initrd, and command line. This is temporary
86  * memory allocation which is not needed any more after these buffers have
87  * been loaded into separate segments and have been copied elsewhere.
88  */
89 void kimage_file_post_load_cleanup(struct kimage *image)
90 {
91 	struct purgatory_info *pi = &image->purgatory_info;
92 
93 	vfree(image->kernel_buf);
94 	image->kernel_buf = NULL;
95 
96 	vfree(image->initrd_buf);
97 	image->initrd_buf = NULL;
98 
99 	kfree(image->cmdline_buf);
100 	image->cmdline_buf = NULL;
101 
102 	vfree(pi->purgatory_buf);
103 	pi->purgatory_buf = NULL;
104 
105 	vfree(pi->sechdrs);
106 	pi->sechdrs = NULL;
107 
108 #ifdef CONFIG_IMA_KEXEC
109 	vfree(image->ima_buffer);
110 	image->ima_buffer = NULL;
111 #endif /* CONFIG_IMA_KEXEC */
112 
113 	/* See if architecture has anything to cleanup post load */
114 	arch_kimage_file_post_load_cleanup(image);
115 
116 	/*
117 	 * Above call should have called into bootloader to free up
118 	 * any data stored in kimage->image_loader_data. It should
119 	 * be ok now to free it up.
120 	 */
121 	kfree(image->image_loader_data);
122 	image->image_loader_data = NULL;
123 }
124 
125 #ifdef CONFIG_KEXEC_SIG
126 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
127 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
128 {
129 	int ret;
130 
131 	ret = verify_pefile_signature(kernel, kernel_len,
132 				      VERIFY_USE_SECONDARY_KEYRING,
133 				      VERIFYING_KEXEC_PE_SIGNATURE);
134 	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
135 		ret = verify_pefile_signature(kernel, kernel_len,
136 					      VERIFY_USE_PLATFORM_KEYRING,
137 					      VERIFYING_KEXEC_PE_SIGNATURE);
138 	}
139 	return ret;
140 }
141 #endif
142 
143 static int kexec_image_verify_sig(struct kimage *image, void *buf,
144 				  unsigned long buf_len)
145 {
146 	if (!image->fops || !image->fops->verify_sig) {
147 		pr_debug("kernel loader does not support signature verification.\n");
148 		return -EKEYREJECTED;
149 	}
150 
151 	return image->fops->verify_sig(buf, buf_len);
152 }
153 
154 static int
155 kimage_validate_signature(struct kimage *image)
156 {
157 	int ret;
158 
159 	ret = kexec_image_verify_sig(image, image->kernel_buf,
160 				     image->kernel_buf_len);
161 	if (ret) {
162 
163 		if (sig_enforce) {
164 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
165 			return ret;
166 		}
167 
168 		/*
169 		 * If IMA is guaranteed to appraise a signature on the kexec
170 		 * image, permit it even if the kernel is otherwise locked
171 		 * down.
172 		 */
173 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
174 		    security_locked_down(LOCKDOWN_KEXEC))
175 			return -EPERM;
176 
177 		pr_debug("kernel signature verification failed (%d).\n", ret);
178 	}
179 
180 	return 0;
181 }
182 #endif
183 
184 /*
185  * In file mode list of segments is prepared by kernel. Copy relevant
186  * data from user space, do error checking, prepare segment list
187  */
188 static int
189 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
190 			     const char __user *cmdline_ptr,
191 			     unsigned long cmdline_len, unsigned flags)
192 {
193 	int ret;
194 	void *ldata;
195 
196 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
197 				       INT_MAX, NULL, READING_KEXEC_IMAGE);
198 	if (ret < 0)
199 		return ret;
200 	image->kernel_buf_len = ret;
201 
202 	/* Call arch image probe handlers */
203 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
204 					    image->kernel_buf_len);
205 	if (ret)
206 		goto out;
207 
208 #ifdef CONFIG_KEXEC_SIG
209 	ret = kimage_validate_signature(image);
210 
211 	if (ret)
212 		goto out;
213 #endif
214 	/* It is possible that there no initramfs is being loaded */
215 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
216 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
217 					       INT_MAX, NULL,
218 					       READING_KEXEC_INITRAMFS);
219 		if (ret < 0)
220 			goto out;
221 		image->initrd_buf_len = ret;
222 		ret = 0;
223 	}
224 
225 	if (cmdline_len) {
226 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
227 		if (IS_ERR(image->cmdline_buf)) {
228 			ret = PTR_ERR(image->cmdline_buf);
229 			image->cmdline_buf = NULL;
230 			goto out;
231 		}
232 
233 		image->cmdline_buf_len = cmdline_len;
234 
235 		/* command line should be a string with last byte null */
236 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
237 			ret = -EINVAL;
238 			goto out;
239 		}
240 
241 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
242 				  image->cmdline_buf_len - 1);
243 	}
244 
245 	/* IMA needs to pass the measurement list to the next kernel. */
246 	ima_add_kexec_buffer(image);
247 
248 	/* Call arch image load handlers */
249 	ldata = arch_kexec_kernel_image_load(image);
250 
251 	if (IS_ERR(ldata)) {
252 		ret = PTR_ERR(ldata);
253 		goto out;
254 	}
255 
256 	image->image_loader_data = ldata;
257 out:
258 	/* In case of error, free up all allocated memory in this function */
259 	if (ret)
260 		kimage_file_post_load_cleanup(image);
261 	return ret;
262 }
263 
264 static int
265 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
266 		       int initrd_fd, const char __user *cmdline_ptr,
267 		       unsigned long cmdline_len, unsigned long flags)
268 {
269 	int ret;
270 	struct kimage *image;
271 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
272 
273 	image = do_kimage_alloc_init();
274 	if (!image)
275 		return -ENOMEM;
276 
277 	image->file_mode = 1;
278 
279 	if (kexec_on_panic) {
280 		/* Enable special crash kernel control page alloc policy. */
281 		image->control_page = crashk_res.start;
282 		image->type = KEXEC_TYPE_CRASH;
283 	}
284 
285 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
286 					   cmdline_ptr, cmdline_len, flags);
287 	if (ret)
288 		goto out_free_image;
289 
290 	ret = sanity_check_segment_list(image);
291 	if (ret)
292 		goto out_free_post_load_bufs;
293 
294 	ret = -ENOMEM;
295 	image->control_code_page = kimage_alloc_control_pages(image,
296 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
297 	if (!image->control_code_page) {
298 		pr_err("Could not allocate control_code_buffer\n");
299 		goto out_free_post_load_bufs;
300 	}
301 
302 	if (!kexec_on_panic) {
303 		image->swap_page = kimage_alloc_control_pages(image, 0);
304 		if (!image->swap_page) {
305 			pr_err("Could not allocate swap buffer\n");
306 			goto out_free_control_pages;
307 		}
308 	}
309 
310 	*rimage = image;
311 	return 0;
312 out_free_control_pages:
313 	kimage_free_page_list(&image->control_pages);
314 out_free_post_load_bufs:
315 	kimage_file_post_load_cleanup(image);
316 out_free_image:
317 	kfree(image);
318 	return ret;
319 }
320 
321 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
322 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
323 		unsigned long, flags)
324 {
325 	int ret = 0, i;
326 	struct kimage **dest_image, *image;
327 
328 	/* We only trust the superuser with rebooting the system. */
329 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
330 		return -EPERM;
331 
332 	/* Make sure we have a legal set of flags */
333 	if (flags != (flags & KEXEC_FILE_FLAGS))
334 		return -EINVAL;
335 
336 	image = NULL;
337 
338 	if (!mutex_trylock(&kexec_mutex))
339 		return -EBUSY;
340 
341 	dest_image = &kexec_image;
342 	if (flags & KEXEC_FILE_ON_CRASH) {
343 		dest_image = &kexec_crash_image;
344 		if (kexec_crash_image)
345 			arch_kexec_unprotect_crashkres();
346 	}
347 
348 	if (flags & KEXEC_FILE_UNLOAD)
349 		goto exchange;
350 
351 	/*
352 	 * In case of crash, new kernel gets loaded in reserved region. It is
353 	 * same memory where old crash kernel might be loaded. Free any
354 	 * current crash dump kernel before we corrupt it.
355 	 */
356 	if (flags & KEXEC_FILE_ON_CRASH)
357 		kimage_free(xchg(&kexec_crash_image, NULL));
358 
359 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
360 				     cmdline_len, flags);
361 	if (ret)
362 		goto out;
363 
364 	ret = machine_kexec_prepare(image);
365 	if (ret)
366 		goto out;
367 
368 	/*
369 	 * Some architecture(like S390) may touch the crash memory before
370 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
371 	 */
372 	ret = kimage_crash_copy_vmcoreinfo(image);
373 	if (ret)
374 		goto out;
375 
376 	ret = kexec_calculate_store_digests(image);
377 	if (ret)
378 		goto out;
379 
380 	for (i = 0; i < image->nr_segments; i++) {
381 		struct kexec_segment *ksegment;
382 
383 		ksegment = &image->segment[i];
384 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
385 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
386 			 ksegment->memsz);
387 
388 		ret = kimage_load_segment(image, &image->segment[i]);
389 		if (ret)
390 			goto out;
391 	}
392 
393 	kimage_terminate(image);
394 
395 	ret = machine_kexec_post_load(image);
396 	if (ret)
397 		goto out;
398 
399 	/*
400 	 * Free up any temporary buffers allocated which are not needed
401 	 * after image has been loaded
402 	 */
403 	kimage_file_post_load_cleanup(image);
404 exchange:
405 	image = xchg(dest_image, image);
406 out:
407 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
408 		arch_kexec_protect_crashkres();
409 
410 	mutex_unlock(&kexec_mutex);
411 	kimage_free(image);
412 	return ret;
413 }
414 
415 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
416 				    struct kexec_buf *kbuf)
417 {
418 	struct kimage *image = kbuf->image;
419 	unsigned long temp_start, temp_end;
420 
421 	temp_end = min(end, kbuf->buf_max);
422 	temp_start = temp_end - kbuf->memsz;
423 
424 	do {
425 		/* align down start */
426 		temp_start = temp_start & (~(kbuf->buf_align - 1));
427 
428 		if (temp_start < start || temp_start < kbuf->buf_min)
429 			return 0;
430 
431 		temp_end = temp_start + kbuf->memsz - 1;
432 
433 		/*
434 		 * Make sure this does not conflict with any of existing
435 		 * segments
436 		 */
437 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
438 			temp_start = temp_start - PAGE_SIZE;
439 			continue;
440 		}
441 
442 		/* We found a suitable memory range */
443 		break;
444 	} while (1);
445 
446 	/* If we are here, we found a suitable memory range */
447 	kbuf->mem = temp_start;
448 
449 	/* Success, stop navigating through remaining System RAM ranges */
450 	return 1;
451 }
452 
453 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
454 				     struct kexec_buf *kbuf)
455 {
456 	struct kimage *image = kbuf->image;
457 	unsigned long temp_start, temp_end;
458 
459 	temp_start = max(start, kbuf->buf_min);
460 
461 	do {
462 		temp_start = ALIGN(temp_start, kbuf->buf_align);
463 		temp_end = temp_start + kbuf->memsz - 1;
464 
465 		if (temp_end > end || temp_end > kbuf->buf_max)
466 			return 0;
467 		/*
468 		 * Make sure this does not conflict with any of existing
469 		 * segments
470 		 */
471 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
472 			temp_start = temp_start + PAGE_SIZE;
473 			continue;
474 		}
475 
476 		/* We found a suitable memory range */
477 		break;
478 	} while (1);
479 
480 	/* If we are here, we found a suitable memory range */
481 	kbuf->mem = temp_start;
482 
483 	/* Success, stop navigating through remaining System RAM ranges */
484 	return 1;
485 }
486 
487 static int locate_mem_hole_callback(struct resource *res, void *arg)
488 {
489 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
490 	u64 start = res->start, end = res->end;
491 	unsigned long sz = end - start + 1;
492 
493 	/* Returning 0 will take to next memory range */
494 
495 	/* Don't use memory that will be detected and handled by a driver. */
496 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
497 		return 0;
498 
499 	if (sz < kbuf->memsz)
500 		return 0;
501 
502 	if (end < kbuf->buf_min || start > kbuf->buf_max)
503 		return 0;
504 
505 	/*
506 	 * Allocate memory top down with-in ram range. Otherwise bottom up
507 	 * allocation.
508 	 */
509 	if (kbuf->top_down)
510 		return locate_mem_hole_top_down(start, end, kbuf);
511 	return locate_mem_hole_bottom_up(start, end, kbuf);
512 }
513 
514 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
515 static int kexec_walk_memblock(struct kexec_buf *kbuf,
516 			       int (*func)(struct resource *, void *))
517 {
518 	int ret = 0;
519 	u64 i;
520 	phys_addr_t mstart, mend;
521 	struct resource res = { };
522 
523 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
524 		return func(&crashk_res, kbuf);
525 
526 	/*
527 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
528 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
529 	 * locate_mem_hole_callback().
530 	 */
531 	if (kbuf->top_down) {
532 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
533 						&mstart, &mend, NULL) {
534 			/*
535 			 * In memblock, end points to the first byte after the
536 			 * range while in kexec, end points to the last byte
537 			 * in the range.
538 			 */
539 			res.start = mstart;
540 			res.end = mend - 1;
541 			ret = func(&res, kbuf);
542 			if (ret)
543 				break;
544 		}
545 	} else {
546 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
547 					&mstart, &mend, NULL) {
548 			/*
549 			 * In memblock, end points to the first byte after the
550 			 * range while in kexec, end points to the last byte
551 			 * in the range.
552 			 */
553 			res.start = mstart;
554 			res.end = mend - 1;
555 			ret = func(&res, kbuf);
556 			if (ret)
557 				break;
558 		}
559 	}
560 
561 	return ret;
562 }
563 #else
564 static int kexec_walk_memblock(struct kexec_buf *kbuf,
565 			       int (*func)(struct resource *, void *))
566 {
567 	return 0;
568 }
569 #endif
570 
571 /**
572  * kexec_walk_resources - call func(data) on free memory regions
573  * @kbuf:	Context info for the search. Also passed to @func.
574  * @func:	Function to call for each memory region.
575  *
576  * Return: The memory walk will stop when func returns a non-zero value
577  * and that value will be returned. If all free regions are visited without
578  * func returning non-zero, then zero will be returned.
579  */
580 static int kexec_walk_resources(struct kexec_buf *kbuf,
581 				int (*func)(struct resource *, void *))
582 {
583 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
584 		return walk_iomem_res_desc(crashk_res.desc,
585 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
586 					   crashk_res.start, crashk_res.end,
587 					   kbuf, func);
588 	else
589 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
590 }
591 
592 /**
593  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
594  * @kbuf:	Parameters for the memory search.
595  *
596  * On success, kbuf->mem will have the start address of the memory region found.
597  *
598  * Return: 0 on success, negative errno on error.
599  */
600 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
601 {
602 	int ret;
603 
604 	/* Arch knows where to place */
605 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
606 		return 0;
607 
608 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
609 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
610 	else
611 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
612 
613 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
614 }
615 
616 /**
617  * kexec_add_buffer - place a buffer in a kexec segment
618  * @kbuf:	Buffer contents and memory parameters.
619  *
620  * This function assumes that kexec_mutex is held.
621  * On successful return, @kbuf->mem will have the physical address of
622  * the buffer in memory.
623  *
624  * Return: 0 on success, negative errno on error.
625  */
626 int kexec_add_buffer(struct kexec_buf *kbuf)
627 {
628 	struct kexec_segment *ksegment;
629 	int ret;
630 
631 	/* Currently adding segment this way is allowed only in file mode */
632 	if (!kbuf->image->file_mode)
633 		return -EINVAL;
634 
635 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
636 		return -EINVAL;
637 
638 	/*
639 	 * Make sure we are not trying to add buffer after allocating
640 	 * control pages. All segments need to be placed first before
641 	 * any control pages are allocated. As control page allocation
642 	 * logic goes through list of segments to make sure there are
643 	 * no destination overlaps.
644 	 */
645 	if (!list_empty(&kbuf->image->control_pages)) {
646 		WARN_ON(1);
647 		return -EINVAL;
648 	}
649 
650 	/* Ensure minimum alignment needed for segments. */
651 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
652 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
653 
654 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
655 	ret = arch_kexec_locate_mem_hole(kbuf);
656 	if (ret)
657 		return ret;
658 
659 	/* Found a suitable memory range */
660 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
661 	ksegment->kbuf = kbuf->buffer;
662 	ksegment->bufsz = kbuf->bufsz;
663 	ksegment->mem = kbuf->mem;
664 	ksegment->memsz = kbuf->memsz;
665 	kbuf->image->nr_segments++;
666 	return 0;
667 }
668 
669 /* Calculate and store the digest of segments */
670 static int kexec_calculate_store_digests(struct kimage *image)
671 {
672 	struct crypto_shash *tfm;
673 	struct shash_desc *desc;
674 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
675 	size_t desc_size, nullsz;
676 	char *digest;
677 	void *zero_buf;
678 	struct kexec_sha_region *sha_regions;
679 	struct purgatory_info *pi = &image->purgatory_info;
680 
681 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
682 		return 0;
683 
684 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
685 	zero_buf_sz = PAGE_SIZE;
686 
687 	tfm = crypto_alloc_shash("sha256", 0, 0);
688 	if (IS_ERR(tfm)) {
689 		ret = PTR_ERR(tfm);
690 		goto out;
691 	}
692 
693 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
694 	desc = kzalloc(desc_size, GFP_KERNEL);
695 	if (!desc) {
696 		ret = -ENOMEM;
697 		goto out_free_tfm;
698 	}
699 
700 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
701 	sha_regions = vzalloc(sha_region_sz);
702 	if (!sha_regions) {
703 		ret = -ENOMEM;
704 		goto out_free_desc;
705 	}
706 
707 	desc->tfm   = tfm;
708 
709 	ret = crypto_shash_init(desc);
710 	if (ret < 0)
711 		goto out_free_sha_regions;
712 
713 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
714 	if (!digest) {
715 		ret = -ENOMEM;
716 		goto out_free_sha_regions;
717 	}
718 
719 	for (j = i = 0; i < image->nr_segments; i++) {
720 		struct kexec_segment *ksegment;
721 
722 		ksegment = &image->segment[i];
723 		/*
724 		 * Skip purgatory as it will be modified once we put digest
725 		 * info in purgatory.
726 		 */
727 		if (ksegment->kbuf == pi->purgatory_buf)
728 			continue;
729 
730 		ret = crypto_shash_update(desc, ksegment->kbuf,
731 					  ksegment->bufsz);
732 		if (ret)
733 			break;
734 
735 		/*
736 		 * Assume rest of the buffer is filled with zero and
737 		 * update digest accordingly.
738 		 */
739 		nullsz = ksegment->memsz - ksegment->bufsz;
740 		while (nullsz) {
741 			unsigned long bytes = nullsz;
742 
743 			if (bytes > zero_buf_sz)
744 				bytes = zero_buf_sz;
745 			ret = crypto_shash_update(desc, zero_buf, bytes);
746 			if (ret)
747 				break;
748 			nullsz -= bytes;
749 		}
750 
751 		if (ret)
752 			break;
753 
754 		sha_regions[j].start = ksegment->mem;
755 		sha_regions[j].len = ksegment->memsz;
756 		j++;
757 	}
758 
759 	if (!ret) {
760 		ret = crypto_shash_final(desc, digest);
761 		if (ret)
762 			goto out_free_digest;
763 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
764 						     sha_regions, sha_region_sz, 0);
765 		if (ret)
766 			goto out_free_digest;
767 
768 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
769 						     digest, SHA256_DIGEST_SIZE, 0);
770 		if (ret)
771 			goto out_free_digest;
772 	}
773 
774 out_free_digest:
775 	kfree(digest);
776 out_free_sha_regions:
777 	vfree(sha_regions);
778 out_free_desc:
779 	kfree(desc);
780 out_free_tfm:
781 	kfree(tfm);
782 out:
783 	return ret;
784 }
785 
786 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
787 /*
788  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
789  * @pi:		Purgatory to be loaded.
790  * @kbuf:	Buffer to setup.
791  *
792  * Allocates the memory needed for the buffer. Caller is responsible to free
793  * the memory after use.
794  *
795  * Return: 0 on success, negative errno on error.
796  */
797 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
798 				      struct kexec_buf *kbuf)
799 {
800 	const Elf_Shdr *sechdrs;
801 	unsigned long bss_align;
802 	unsigned long bss_sz;
803 	unsigned long align;
804 	int i, ret;
805 
806 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
807 	kbuf->buf_align = bss_align = 1;
808 	kbuf->bufsz = bss_sz = 0;
809 
810 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
811 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
812 			continue;
813 
814 		align = sechdrs[i].sh_addralign;
815 		if (sechdrs[i].sh_type != SHT_NOBITS) {
816 			if (kbuf->buf_align < align)
817 				kbuf->buf_align = align;
818 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
819 			kbuf->bufsz += sechdrs[i].sh_size;
820 		} else {
821 			if (bss_align < align)
822 				bss_align = align;
823 			bss_sz = ALIGN(bss_sz, align);
824 			bss_sz += sechdrs[i].sh_size;
825 		}
826 	}
827 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
828 	kbuf->memsz = kbuf->bufsz + bss_sz;
829 	if (kbuf->buf_align < bss_align)
830 		kbuf->buf_align = bss_align;
831 
832 	kbuf->buffer = vzalloc(kbuf->bufsz);
833 	if (!kbuf->buffer)
834 		return -ENOMEM;
835 	pi->purgatory_buf = kbuf->buffer;
836 
837 	ret = kexec_add_buffer(kbuf);
838 	if (ret)
839 		goto out;
840 
841 	return 0;
842 out:
843 	vfree(pi->purgatory_buf);
844 	pi->purgatory_buf = NULL;
845 	return ret;
846 }
847 
848 /*
849  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
850  * @pi:		Purgatory to be loaded.
851  * @kbuf:	Buffer prepared to store purgatory.
852  *
853  * Allocates the memory needed for the buffer. Caller is responsible to free
854  * the memory after use.
855  *
856  * Return: 0 on success, negative errno on error.
857  */
858 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
859 					 struct kexec_buf *kbuf)
860 {
861 	unsigned long bss_addr;
862 	unsigned long offset;
863 	Elf_Shdr *sechdrs;
864 	int i;
865 
866 	/*
867 	 * The section headers in kexec_purgatory are read-only. In order to
868 	 * have them modifiable make a temporary copy.
869 	 */
870 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
871 	if (!sechdrs)
872 		return -ENOMEM;
873 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
874 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
875 	pi->sechdrs = sechdrs;
876 
877 	offset = 0;
878 	bss_addr = kbuf->mem + kbuf->bufsz;
879 	kbuf->image->start = pi->ehdr->e_entry;
880 
881 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
882 		unsigned long align;
883 		void *src, *dst;
884 
885 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
886 			continue;
887 
888 		align = sechdrs[i].sh_addralign;
889 		if (sechdrs[i].sh_type == SHT_NOBITS) {
890 			bss_addr = ALIGN(bss_addr, align);
891 			sechdrs[i].sh_addr = bss_addr;
892 			bss_addr += sechdrs[i].sh_size;
893 			continue;
894 		}
895 
896 		offset = ALIGN(offset, align);
897 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
898 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
899 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
900 					 + sechdrs[i].sh_size)) {
901 			kbuf->image->start -= sechdrs[i].sh_addr;
902 			kbuf->image->start += kbuf->mem + offset;
903 		}
904 
905 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
906 		dst = pi->purgatory_buf + offset;
907 		memcpy(dst, src, sechdrs[i].sh_size);
908 
909 		sechdrs[i].sh_addr = kbuf->mem + offset;
910 		sechdrs[i].sh_offset = offset;
911 		offset += sechdrs[i].sh_size;
912 	}
913 
914 	return 0;
915 }
916 
917 static int kexec_apply_relocations(struct kimage *image)
918 {
919 	int i, ret;
920 	struct purgatory_info *pi = &image->purgatory_info;
921 	const Elf_Shdr *sechdrs;
922 
923 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
924 
925 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
926 		const Elf_Shdr *relsec;
927 		const Elf_Shdr *symtab;
928 		Elf_Shdr *section;
929 
930 		relsec = sechdrs + i;
931 
932 		if (relsec->sh_type != SHT_RELA &&
933 		    relsec->sh_type != SHT_REL)
934 			continue;
935 
936 		/*
937 		 * For section of type SHT_RELA/SHT_REL,
938 		 * ->sh_link contains section header index of associated
939 		 * symbol table. And ->sh_info contains section header
940 		 * index of section to which relocations apply.
941 		 */
942 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
943 		    relsec->sh_link >= pi->ehdr->e_shnum)
944 			return -ENOEXEC;
945 
946 		section = pi->sechdrs + relsec->sh_info;
947 		symtab = sechdrs + relsec->sh_link;
948 
949 		if (!(section->sh_flags & SHF_ALLOC))
950 			continue;
951 
952 		/*
953 		 * symtab->sh_link contain section header index of associated
954 		 * string table.
955 		 */
956 		if (symtab->sh_link >= pi->ehdr->e_shnum)
957 			/* Invalid section number? */
958 			continue;
959 
960 		/*
961 		 * Respective architecture needs to provide support for applying
962 		 * relocations of type SHT_RELA/SHT_REL.
963 		 */
964 		if (relsec->sh_type == SHT_RELA)
965 			ret = arch_kexec_apply_relocations_add(pi, section,
966 							       relsec, symtab);
967 		else if (relsec->sh_type == SHT_REL)
968 			ret = arch_kexec_apply_relocations(pi, section,
969 							   relsec, symtab);
970 		if (ret)
971 			return ret;
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  * kexec_load_purgatory - Load and relocate the purgatory object.
979  * @image:	Image to add the purgatory to.
980  * @kbuf:	Memory parameters to use.
981  *
982  * Allocates the memory needed for image->purgatory_info.sechdrs and
983  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
984  * to free the memory after use.
985  *
986  * Return: 0 on success, negative errno on error.
987  */
988 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
989 {
990 	struct purgatory_info *pi = &image->purgatory_info;
991 	int ret;
992 
993 	if (kexec_purgatory_size <= 0)
994 		return -EINVAL;
995 
996 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
997 
998 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
999 	if (ret)
1000 		return ret;
1001 
1002 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1003 	if (ret)
1004 		goto out_free_kbuf;
1005 
1006 	ret = kexec_apply_relocations(image);
1007 	if (ret)
1008 		goto out;
1009 
1010 	return 0;
1011 out:
1012 	vfree(pi->sechdrs);
1013 	pi->sechdrs = NULL;
1014 out_free_kbuf:
1015 	vfree(pi->purgatory_buf);
1016 	pi->purgatory_buf = NULL;
1017 	return ret;
1018 }
1019 
1020 /*
1021  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1022  * @pi:		Purgatory to search in.
1023  * @name:	Name of the symbol.
1024  *
1025  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1026  */
1027 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1028 						  const char *name)
1029 {
1030 	const Elf_Shdr *sechdrs;
1031 	const Elf_Ehdr *ehdr;
1032 	const Elf_Sym *syms;
1033 	const char *strtab;
1034 	int i, k;
1035 
1036 	if (!pi->ehdr)
1037 		return NULL;
1038 
1039 	ehdr = pi->ehdr;
1040 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1041 
1042 	for (i = 0; i < ehdr->e_shnum; i++) {
1043 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1044 			continue;
1045 
1046 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1047 			/* Invalid strtab section number */
1048 			continue;
1049 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1050 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1051 
1052 		/* Go through symbols for a match */
1053 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1054 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1055 				continue;
1056 
1057 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1058 				continue;
1059 
1060 			if (syms[k].st_shndx == SHN_UNDEF ||
1061 			    syms[k].st_shndx >= ehdr->e_shnum) {
1062 				pr_debug("Symbol: %s has bad section index %d.\n",
1063 						name, syms[k].st_shndx);
1064 				return NULL;
1065 			}
1066 
1067 			/* Found the symbol we are looking for */
1068 			return &syms[k];
1069 		}
1070 	}
1071 
1072 	return NULL;
1073 }
1074 
1075 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1076 {
1077 	struct purgatory_info *pi = &image->purgatory_info;
1078 	const Elf_Sym *sym;
1079 	Elf_Shdr *sechdr;
1080 
1081 	sym = kexec_purgatory_find_symbol(pi, name);
1082 	if (!sym)
1083 		return ERR_PTR(-EINVAL);
1084 
1085 	sechdr = &pi->sechdrs[sym->st_shndx];
1086 
1087 	/*
1088 	 * Returns the address where symbol will finally be loaded after
1089 	 * kexec_load_segment()
1090 	 */
1091 	return (void *)(sechdr->sh_addr + sym->st_value);
1092 }
1093 
1094 /*
1095  * Get or set value of a symbol. If "get_value" is true, symbol value is
1096  * returned in buf otherwise symbol value is set based on value in buf.
1097  */
1098 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1099 				   void *buf, unsigned int size, bool get_value)
1100 {
1101 	struct purgatory_info *pi = &image->purgatory_info;
1102 	const Elf_Sym *sym;
1103 	Elf_Shdr *sec;
1104 	char *sym_buf;
1105 
1106 	sym = kexec_purgatory_find_symbol(pi, name);
1107 	if (!sym)
1108 		return -EINVAL;
1109 
1110 	if (sym->st_size != size) {
1111 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1112 		       name, (unsigned long)sym->st_size, size);
1113 		return -EINVAL;
1114 	}
1115 
1116 	sec = pi->sechdrs + sym->st_shndx;
1117 
1118 	if (sec->sh_type == SHT_NOBITS) {
1119 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1120 		       get_value ? "get" : "set");
1121 		return -EINVAL;
1122 	}
1123 
1124 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1125 
1126 	if (get_value)
1127 		memcpy((void *)buf, sym_buf, size);
1128 	else
1129 		memcpy((void *)sym_buf, buf, size);
1130 
1131 	return 0;
1132 }
1133 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1134 
1135 int crash_exclude_mem_range(struct crash_mem *mem,
1136 			    unsigned long long mstart, unsigned long long mend)
1137 {
1138 	int i, j;
1139 	unsigned long long start, end, p_start, p_end;
1140 	struct crash_mem_range temp_range = {0, 0};
1141 
1142 	for (i = 0; i < mem->nr_ranges; i++) {
1143 		start = mem->ranges[i].start;
1144 		end = mem->ranges[i].end;
1145 		p_start = mstart;
1146 		p_end = mend;
1147 
1148 		if (mstart > end || mend < start)
1149 			continue;
1150 
1151 		/* Truncate any area outside of range */
1152 		if (mstart < start)
1153 			p_start = start;
1154 		if (mend > end)
1155 			p_end = end;
1156 
1157 		/* Found completely overlapping range */
1158 		if (p_start == start && p_end == end) {
1159 			mem->ranges[i].start = 0;
1160 			mem->ranges[i].end = 0;
1161 			if (i < mem->nr_ranges - 1) {
1162 				/* Shift rest of the ranges to left */
1163 				for (j = i; j < mem->nr_ranges - 1; j++) {
1164 					mem->ranges[j].start =
1165 						mem->ranges[j+1].start;
1166 					mem->ranges[j].end =
1167 							mem->ranges[j+1].end;
1168 				}
1169 
1170 				/*
1171 				 * Continue to check if there are another overlapping ranges
1172 				 * from the current position because of shifting the above
1173 				 * mem ranges.
1174 				 */
1175 				i--;
1176 				mem->nr_ranges--;
1177 				continue;
1178 			}
1179 			mem->nr_ranges--;
1180 			return 0;
1181 		}
1182 
1183 		if (p_start > start && p_end < end) {
1184 			/* Split original range */
1185 			mem->ranges[i].end = p_start - 1;
1186 			temp_range.start = p_end + 1;
1187 			temp_range.end = end;
1188 		} else if (p_start != start)
1189 			mem->ranges[i].end = p_start - 1;
1190 		else
1191 			mem->ranges[i].start = p_end + 1;
1192 		break;
1193 	}
1194 
1195 	/* If a split happened, add the split to array */
1196 	if (!temp_range.end)
1197 		return 0;
1198 
1199 	/* Split happened */
1200 	if (i == mem->max_nr_ranges - 1)
1201 		return -ENOMEM;
1202 
1203 	/* Location where new range should go */
1204 	j = i + 1;
1205 	if (j < mem->nr_ranges) {
1206 		/* Move over all ranges one slot towards the end */
1207 		for (i = mem->nr_ranges - 1; i >= j; i--)
1208 			mem->ranges[i + 1] = mem->ranges[i];
1209 	}
1210 
1211 	mem->ranges[j].start = temp_range.start;
1212 	mem->ranges[j].end = temp_range.end;
1213 	mem->nr_ranges++;
1214 	return 0;
1215 }
1216 
1217 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1218 			  void **addr, unsigned long *sz)
1219 {
1220 	Elf64_Ehdr *ehdr;
1221 	Elf64_Phdr *phdr;
1222 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1223 	unsigned char *buf;
1224 	unsigned int cpu, i;
1225 	unsigned long long notes_addr;
1226 	unsigned long mstart, mend;
1227 
1228 	/* extra phdr for vmcoreinfo ELF note */
1229 	nr_phdr = nr_cpus + 1;
1230 	nr_phdr += mem->nr_ranges;
1231 
1232 	/*
1233 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1234 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1235 	 * I think this is required by tools like gdb. So same physical
1236 	 * memory will be mapped in two ELF headers. One will contain kernel
1237 	 * text virtual addresses and other will have __va(physical) addresses.
1238 	 */
1239 
1240 	nr_phdr++;
1241 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1242 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1243 
1244 	buf = vzalloc(elf_sz);
1245 	if (!buf)
1246 		return -ENOMEM;
1247 
1248 	ehdr = (Elf64_Ehdr *)buf;
1249 	phdr = (Elf64_Phdr *)(ehdr + 1);
1250 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1251 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1252 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1253 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1254 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1255 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1256 	ehdr->e_type = ET_CORE;
1257 	ehdr->e_machine = ELF_ARCH;
1258 	ehdr->e_version = EV_CURRENT;
1259 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1260 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1261 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1262 
1263 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1264 	for_each_present_cpu(cpu) {
1265 		phdr->p_type = PT_NOTE;
1266 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1267 		phdr->p_offset = phdr->p_paddr = notes_addr;
1268 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1269 		(ehdr->e_phnum)++;
1270 		phdr++;
1271 	}
1272 
1273 	/* Prepare one PT_NOTE header for vmcoreinfo */
1274 	phdr->p_type = PT_NOTE;
1275 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1276 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1277 	(ehdr->e_phnum)++;
1278 	phdr++;
1279 
1280 	/* Prepare PT_LOAD type program header for kernel text region */
1281 	if (need_kernel_map) {
1282 		phdr->p_type = PT_LOAD;
1283 		phdr->p_flags = PF_R|PF_W|PF_X;
1284 		phdr->p_vaddr = (unsigned long) _text;
1285 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1286 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1287 		ehdr->e_phnum++;
1288 		phdr++;
1289 	}
1290 
1291 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1292 	for (i = 0; i < mem->nr_ranges; i++) {
1293 		mstart = mem->ranges[i].start;
1294 		mend = mem->ranges[i].end;
1295 
1296 		phdr->p_type = PT_LOAD;
1297 		phdr->p_flags = PF_R|PF_W|PF_X;
1298 		phdr->p_offset  = mstart;
1299 
1300 		phdr->p_paddr = mstart;
1301 		phdr->p_vaddr = (unsigned long) __va(mstart);
1302 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1303 		phdr->p_align = 0;
1304 		ehdr->e_phnum++;
1305 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1306 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1307 			ehdr->e_phnum, phdr->p_offset);
1308 		phdr++;
1309 	}
1310 
1311 	*addr = buf;
1312 	*sz = elf_sz;
1313 	return 0;
1314 }
1315