1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha2.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/syscalls.h> 29 #include <linux/vmalloc.h> 30 #include "kexec_internal.h" 31 32 static int kexec_calculate_store_digests(struct kimage *image); 33 34 /* 35 * Currently this is the only default function that is exported as some 36 * architectures need it to do additional handlings. 37 * In the future, other default functions may be exported too if required. 38 */ 39 int kexec_image_probe_default(struct kimage *image, void *buf, 40 unsigned long buf_len) 41 { 42 const struct kexec_file_ops * const *fops; 43 int ret = -ENOEXEC; 44 45 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 46 ret = (*fops)->probe(buf, buf_len); 47 if (!ret) { 48 image->fops = *fops; 49 return ret; 50 } 51 } 52 53 return ret; 54 } 55 56 /* Architectures can provide this probe function */ 57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 58 unsigned long buf_len) 59 { 60 return kexec_image_probe_default(image, buf, buf_len); 61 } 62 63 static void *kexec_image_load_default(struct kimage *image) 64 { 65 if (!image->fops || !image->fops->load) 66 return ERR_PTR(-ENOEXEC); 67 68 return image->fops->load(image, image->kernel_buf, 69 image->kernel_buf_len, image->initrd_buf, 70 image->initrd_buf_len, image->cmdline_buf, 71 image->cmdline_buf_len); 72 } 73 74 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 75 { 76 return kexec_image_load_default(image); 77 } 78 79 int kexec_image_post_load_cleanup_default(struct kimage *image) 80 { 81 if (!image->fops || !image->fops->cleanup) 82 return 0; 83 84 return image->fops->cleanup(image->image_loader_data); 85 } 86 87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 88 { 89 return kexec_image_post_load_cleanup_default(image); 90 } 91 92 #ifdef CONFIG_KEXEC_SIG 93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf, 94 unsigned long buf_len) 95 { 96 if (!image->fops || !image->fops->verify_sig) { 97 pr_debug("kernel loader does not support signature verification.\n"); 98 return -EKEYREJECTED; 99 } 100 101 return image->fops->verify_sig(buf, buf_len); 102 } 103 104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 105 unsigned long buf_len) 106 { 107 return kexec_image_verify_sig_default(image, buf, buf_len); 108 } 109 #endif 110 111 /* 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA 113 * @pi: Purgatory to be relocated. 114 * @section: Section relocations applying to. 115 * @relsec: Section containing RELAs. 116 * @symtab: Corresponding symtab. 117 * 118 * Return: 0 on success, negative errno on error. 119 */ 120 int __weak 121 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, 122 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 123 { 124 pr_err("RELA relocation unsupported.\n"); 125 return -ENOEXEC; 126 } 127 128 /* 129 * arch_kexec_apply_relocations - apply relocations of type REL 130 * @pi: Purgatory to be relocated. 131 * @section: Section relocations applying to. 132 * @relsec: Section containing RELs. 133 * @symtab: Corresponding symtab. 134 * 135 * Return: 0 on success, negative errno on error. 136 */ 137 int __weak 138 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, 139 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 140 { 141 pr_err("REL relocation unsupported.\n"); 142 return -ENOEXEC; 143 } 144 145 /* 146 * Free up memory used by kernel, initrd, and command line. This is temporary 147 * memory allocation which is not needed any more after these buffers have 148 * been loaded into separate segments and have been copied elsewhere. 149 */ 150 void kimage_file_post_load_cleanup(struct kimage *image) 151 { 152 struct purgatory_info *pi = &image->purgatory_info; 153 154 vfree(image->kernel_buf); 155 image->kernel_buf = NULL; 156 157 vfree(image->initrd_buf); 158 image->initrd_buf = NULL; 159 160 kfree(image->cmdline_buf); 161 image->cmdline_buf = NULL; 162 163 vfree(pi->purgatory_buf); 164 pi->purgatory_buf = NULL; 165 166 vfree(pi->sechdrs); 167 pi->sechdrs = NULL; 168 169 #ifdef CONFIG_IMA_KEXEC 170 vfree(image->ima_buffer); 171 image->ima_buffer = NULL; 172 #endif /* CONFIG_IMA_KEXEC */ 173 174 /* See if architecture has anything to cleanup post load */ 175 arch_kimage_file_post_load_cleanup(image); 176 177 /* 178 * Above call should have called into bootloader to free up 179 * any data stored in kimage->image_loader_data. It should 180 * be ok now to free it up. 181 */ 182 kfree(image->image_loader_data); 183 image->image_loader_data = NULL; 184 } 185 186 #ifdef CONFIG_KEXEC_SIG 187 static int 188 kimage_validate_signature(struct kimage *image) 189 { 190 int ret; 191 192 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 193 image->kernel_buf_len); 194 if (ret) { 195 196 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) { 197 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 198 return ret; 199 } 200 201 /* 202 * If IMA is guaranteed to appraise a signature on the kexec 203 * image, permit it even if the kernel is otherwise locked 204 * down. 205 */ 206 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 207 security_locked_down(LOCKDOWN_KEXEC)) 208 return -EPERM; 209 210 pr_debug("kernel signature verification failed (%d).\n", ret); 211 } 212 213 return 0; 214 } 215 #endif 216 217 /* 218 * In file mode list of segments is prepared by kernel. Copy relevant 219 * data from user space, do error checking, prepare segment list 220 */ 221 static int 222 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 223 const char __user *cmdline_ptr, 224 unsigned long cmdline_len, unsigned flags) 225 { 226 int ret; 227 void *ldata; 228 229 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 230 INT_MAX, NULL, READING_KEXEC_IMAGE); 231 if (ret < 0) 232 return ret; 233 image->kernel_buf_len = ret; 234 235 /* Call arch image probe handlers */ 236 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 237 image->kernel_buf_len); 238 if (ret) 239 goto out; 240 241 #ifdef CONFIG_KEXEC_SIG 242 ret = kimage_validate_signature(image); 243 244 if (ret) 245 goto out; 246 #endif 247 /* It is possible that there no initramfs is being loaded */ 248 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 249 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 250 INT_MAX, NULL, 251 READING_KEXEC_INITRAMFS); 252 if (ret < 0) 253 goto out; 254 image->initrd_buf_len = ret; 255 ret = 0; 256 } 257 258 if (cmdline_len) { 259 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 260 if (IS_ERR(image->cmdline_buf)) { 261 ret = PTR_ERR(image->cmdline_buf); 262 image->cmdline_buf = NULL; 263 goto out; 264 } 265 266 image->cmdline_buf_len = cmdline_len; 267 268 /* command line should be a string with last byte null */ 269 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 270 ret = -EINVAL; 271 goto out; 272 } 273 274 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 275 image->cmdline_buf_len - 1); 276 } 277 278 /* IMA needs to pass the measurement list to the next kernel. */ 279 ima_add_kexec_buffer(image); 280 281 /* Call arch image load handlers */ 282 ldata = arch_kexec_kernel_image_load(image); 283 284 if (IS_ERR(ldata)) { 285 ret = PTR_ERR(ldata); 286 goto out; 287 } 288 289 image->image_loader_data = ldata; 290 out: 291 /* In case of error, free up all allocated memory in this function */ 292 if (ret) 293 kimage_file_post_load_cleanup(image); 294 return ret; 295 } 296 297 static int 298 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 299 int initrd_fd, const char __user *cmdline_ptr, 300 unsigned long cmdline_len, unsigned long flags) 301 { 302 int ret; 303 struct kimage *image; 304 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 305 306 image = do_kimage_alloc_init(); 307 if (!image) 308 return -ENOMEM; 309 310 image->file_mode = 1; 311 312 if (kexec_on_panic) { 313 /* Enable special crash kernel control page alloc policy. */ 314 image->control_page = crashk_res.start; 315 image->type = KEXEC_TYPE_CRASH; 316 } 317 318 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 319 cmdline_ptr, cmdline_len, flags); 320 if (ret) 321 goto out_free_image; 322 323 ret = sanity_check_segment_list(image); 324 if (ret) 325 goto out_free_post_load_bufs; 326 327 ret = -ENOMEM; 328 image->control_code_page = kimage_alloc_control_pages(image, 329 get_order(KEXEC_CONTROL_PAGE_SIZE)); 330 if (!image->control_code_page) { 331 pr_err("Could not allocate control_code_buffer\n"); 332 goto out_free_post_load_bufs; 333 } 334 335 if (!kexec_on_panic) { 336 image->swap_page = kimage_alloc_control_pages(image, 0); 337 if (!image->swap_page) { 338 pr_err("Could not allocate swap buffer\n"); 339 goto out_free_control_pages; 340 } 341 } 342 343 *rimage = image; 344 return 0; 345 out_free_control_pages: 346 kimage_free_page_list(&image->control_pages); 347 out_free_post_load_bufs: 348 kimage_file_post_load_cleanup(image); 349 out_free_image: 350 kfree(image); 351 return ret; 352 } 353 354 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 355 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 356 unsigned long, flags) 357 { 358 int ret = 0, i; 359 struct kimage **dest_image, *image; 360 361 /* We only trust the superuser with rebooting the system. */ 362 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 363 return -EPERM; 364 365 /* Make sure we have a legal set of flags */ 366 if (flags != (flags & KEXEC_FILE_FLAGS)) 367 return -EINVAL; 368 369 image = NULL; 370 371 if (!mutex_trylock(&kexec_mutex)) 372 return -EBUSY; 373 374 dest_image = &kexec_image; 375 if (flags & KEXEC_FILE_ON_CRASH) { 376 dest_image = &kexec_crash_image; 377 if (kexec_crash_image) 378 arch_kexec_unprotect_crashkres(); 379 } 380 381 if (flags & KEXEC_FILE_UNLOAD) 382 goto exchange; 383 384 /* 385 * In case of crash, new kernel gets loaded in reserved region. It is 386 * same memory where old crash kernel might be loaded. Free any 387 * current crash dump kernel before we corrupt it. 388 */ 389 if (flags & KEXEC_FILE_ON_CRASH) 390 kimage_free(xchg(&kexec_crash_image, NULL)); 391 392 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 393 cmdline_len, flags); 394 if (ret) 395 goto out; 396 397 ret = machine_kexec_prepare(image); 398 if (ret) 399 goto out; 400 401 /* 402 * Some architecture(like S390) may touch the crash memory before 403 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 404 */ 405 ret = kimage_crash_copy_vmcoreinfo(image); 406 if (ret) 407 goto out; 408 409 ret = kexec_calculate_store_digests(image); 410 if (ret) 411 goto out; 412 413 for (i = 0; i < image->nr_segments; i++) { 414 struct kexec_segment *ksegment; 415 416 ksegment = &image->segment[i]; 417 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 418 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 419 ksegment->memsz); 420 421 ret = kimage_load_segment(image, &image->segment[i]); 422 if (ret) 423 goto out; 424 } 425 426 kimage_terminate(image); 427 428 ret = machine_kexec_post_load(image); 429 if (ret) 430 goto out; 431 432 /* 433 * Free up any temporary buffers allocated which are not needed 434 * after image has been loaded 435 */ 436 kimage_file_post_load_cleanup(image); 437 exchange: 438 image = xchg(dest_image, image); 439 out: 440 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 441 arch_kexec_protect_crashkres(); 442 443 mutex_unlock(&kexec_mutex); 444 kimage_free(image); 445 return ret; 446 } 447 448 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 449 struct kexec_buf *kbuf) 450 { 451 struct kimage *image = kbuf->image; 452 unsigned long temp_start, temp_end; 453 454 temp_end = min(end, kbuf->buf_max); 455 temp_start = temp_end - kbuf->memsz; 456 457 do { 458 /* align down start */ 459 temp_start = temp_start & (~(kbuf->buf_align - 1)); 460 461 if (temp_start < start || temp_start < kbuf->buf_min) 462 return 0; 463 464 temp_end = temp_start + kbuf->memsz - 1; 465 466 /* 467 * Make sure this does not conflict with any of existing 468 * segments 469 */ 470 if (kimage_is_destination_range(image, temp_start, temp_end)) { 471 temp_start = temp_start - PAGE_SIZE; 472 continue; 473 } 474 475 /* We found a suitable memory range */ 476 break; 477 } while (1); 478 479 /* If we are here, we found a suitable memory range */ 480 kbuf->mem = temp_start; 481 482 /* Success, stop navigating through remaining System RAM ranges */ 483 return 1; 484 } 485 486 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 487 struct kexec_buf *kbuf) 488 { 489 struct kimage *image = kbuf->image; 490 unsigned long temp_start, temp_end; 491 492 temp_start = max(start, kbuf->buf_min); 493 494 do { 495 temp_start = ALIGN(temp_start, kbuf->buf_align); 496 temp_end = temp_start + kbuf->memsz - 1; 497 498 if (temp_end > end || temp_end > kbuf->buf_max) 499 return 0; 500 /* 501 * Make sure this does not conflict with any of existing 502 * segments 503 */ 504 if (kimage_is_destination_range(image, temp_start, temp_end)) { 505 temp_start = temp_start + PAGE_SIZE; 506 continue; 507 } 508 509 /* We found a suitable memory range */ 510 break; 511 } while (1); 512 513 /* If we are here, we found a suitable memory range */ 514 kbuf->mem = temp_start; 515 516 /* Success, stop navigating through remaining System RAM ranges */ 517 return 1; 518 } 519 520 static int locate_mem_hole_callback(struct resource *res, void *arg) 521 { 522 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 523 u64 start = res->start, end = res->end; 524 unsigned long sz = end - start + 1; 525 526 /* Returning 0 will take to next memory range */ 527 528 /* Don't use memory that will be detected and handled by a driver. */ 529 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 530 return 0; 531 532 if (sz < kbuf->memsz) 533 return 0; 534 535 if (end < kbuf->buf_min || start > kbuf->buf_max) 536 return 0; 537 538 /* 539 * Allocate memory top down with-in ram range. Otherwise bottom up 540 * allocation. 541 */ 542 if (kbuf->top_down) 543 return locate_mem_hole_top_down(start, end, kbuf); 544 return locate_mem_hole_bottom_up(start, end, kbuf); 545 } 546 547 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 548 static int kexec_walk_memblock(struct kexec_buf *kbuf, 549 int (*func)(struct resource *, void *)) 550 { 551 int ret = 0; 552 u64 i; 553 phys_addr_t mstart, mend; 554 struct resource res = { }; 555 556 if (kbuf->image->type == KEXEC_TYPE_CRASH) 557 return func(&crashk_res, kbuf); 558 559 if (kbuf->top_down) { 560 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 561 &mstart, &mend, NULL) { 562 /* 563 * In memblock, end points to the first byte after the 564 * range while in kexec, end points to the last byte 565 * in the range. 566 */ 567 res.start = mstart; 568 res.end = mend - 1; 569 ret = func(&res, kbuf); 570 if (ret) 571 break; 572 } 573 } else { 574 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 575 &mstart, &mend, NULL) { 576 /* 577 * In memblock, end points to the first byte after the 578 * range while in kexec, end points to the last byte 579 * in the range. 580 */ 581 res.start = mstart; 582 res.end = mend - 1; 583 ret = func(&res, kbuf); 584 if (ret) 585 break; 586 } 587 } 588 589 return ret; 590 } 591 #else 592 static int kexec_walk_memblock(struct kexec_buf *kbuf, 593 int (*func)(struct resource *, void *)) 594 { 595 return 0; 596 } 597 #endif 598 599 /** 600 * kexec_walk_resources - call func(data) on free memory regions 601 * @kbuf: Context info for the search. Also passed to @func. 602 * @func: Function to call for each memory region. 603 * 604 * Return: The memory walk will stop when func returns a non-zero value 605 * and that value will be returned. If all free regions are visited without 606 * func returning non-zero, then zero will be returned. 607 */ 608 static int kexec_walk_resources(struct kexec_buf *kbuf, 609 int (*func)(struct resource *, void *)) 610 { 611 if (kbuf->image->type == KEXEC_TYPE_CRASH) 612 return walk_iomem_res_desc(crashk_res.desc, 613 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 614 crashk_res.start, crashk_res.end, 615 kbuf, func); 616 else 617 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 618 } 619 620 /** 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 622 * @kbuf: Parameters for the memory search. 623 * 624 * On success, kbuf->mem will have the start address of the memory region found. 625 * 626 * Return: 0 on success, negative errno on error. 627 */ 628 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 629 { 630 int ret; 631 632 /* Arch knows where to place */ 633 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 634 return 0; 635 636 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 637 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 638 else 639 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 640 641 return ret == 1 ? 0 : -EADDRNOTAVAIL; 642 } 643 644 /** 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments. 646 * @kbuf: Parameters for the memory search. 647 * 648 * On success, kbuf->mem will have the start address of the memory region found. 649 * 650 * Return: 0 on success, negative errno on error. 651 */ 652 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 653 { 654 return kexec_locate_mem_hole(kbuf); 655 } 656 657 /** 658 * kexec_add_buffer - place a buffer in a kexec segment 659 * @kbuf: Buffer contents and memory parameters. 660 * 661 * This function assumes that kexec_mutex is held. 662 * On successful return, @kbuf->mem will have the physical address of 663 * the buffer in memory. 664 * 665 * Return: 0 on success, negative errno on error. 666 */ 667 int kexec_add_buffer(struct kexec_buf *kbuf) 668 { 669 struct kexec_segment *ksegment; 670 int ret; 671 672 /* Currently adding segment this way is allowed only in file mode */ 673 if (!kbuf->image->file_mode) 674 return -EINVAL; 675 676 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 677 return -EINVAL; 678 679 /* 680 * Make sure we are not trying to add buffer after allocating 681 * control pages. All segments need to be placed first before 682 * any control pages are allocated. As control page allocation 683 * logic goes through list of segments to make sure there are 684 * no destination overlaps. 685 */ 686 if (!list_empty(&kbuf->image->control_pages)) { 687 WARN_ON(1); 688 return -EINVAL; 689 } 690 691 /* Ensure minimum alignment needed for segments. */ 692 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 693 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 694 695 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 696 ret = arch_kexec_locate_mem_hole(kbuf); 697 if (ret) 698 return ret; 699 700 /* Found a suitable memory range */ 701 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 702 ksegment->kbuf = kbuf->buffer; 703 ksegment->bufsz = kbuf->bufsz; 704 ksegment->mem = kbuf->mem; 705 ksegment->memsz = kbuf->memsz; 706 kbuf->image->nr_segments++; 707 return 0; 708 } 709 710 /* Calculate and store the digest of segments */ 711 static int kexec_calculate_store_digests(struct kimage *image) 712 { 713 struct crypto_shash *tfm; 714 struct shash_desc *desc; 715 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 716 size_t desc_size, nullsz; 717 char *digest; 718 void *zero_buf; 719 struct kexec_sha_region *sha_regions; 720 struct purgatory_info *pi = &image->purgatory_info; 721 722 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) 723 return 0; 724 725 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 726 zero_buf_sz = PAGE_SIZE; 727 728 tfm = crypto_alloc_shash("sha256", 0, 0); 729 if (IS_ERR(tfm)) { 730 ret = PTR_ERR(tfm); 731 goto out; 732 } 733 734 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 735 desc = kzalloc(desc_size, GFP_KERNEL); 736 if (!desc) { 737 ret = -ENOMEM; 738 goto out_free_tfm; 739 } 740 741 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 742 sha_regions = vzalloc(sha_region_sz); 743 if (!sha_regions) 744 goto out_free_desc; 745 746 desc->tfm = tfm; 747 748 ret = crypto_shash_init(desc); 749 if (ret < 0) 750 goto out_free_sha_regions; 751 752 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 753 if (!digest) { 754 ret = -ENOMEM; 755 goto out_free_sha_regions; 756 } 757 758 for (j = i = 0; i < image->nr_segments; i++) { 759 struct kexec_segment *ksegment; 760 761 ksegment = &image->segment[i]; 762 /* 763 * Skip purgatory as it will be modified once we put digest 764 * info in purgatory. 765 */ 766 if (ksegment->kbuf == pi->purgatory_buf) 767 continue; 768 769 ret = crypto_shash_update(desc, ksegment->kbuf, 770 ksegment->bufsz); 771 if (ret) 772 break; 773 774 /* 775 * Assume rest of the buffer is filled with zero and 776 * update digest accordingly. 777 */ 778 nullsz = ksegment->memsz - ksegment->bufsz; 779 while (nullsz) { 780 unsigned long bytes = nullsz; 781 782 if (bytes > zero_buf_sz) 783 bytes = zero_buf_sz; 784 ret = crypto_shash_update(desc, zero_buf, bytes); 785 if (ret) 786 break; 787 nullsz -= bytes; 788 } 789 790 if (ret) 791 break; 792 793 sha_regions[j].start = ksegment->mem; 794 sha_regions[j].len = ksegment->memsz; 795 j++; 796 } 797 798 if (!ret) { 799 ret = crypto_shash_final(desc, digest); 800 if (ret) 801 goto out_free_digest; 802 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 803 sha_regions, sha_region_sz, 0); 804 if (ret) 805 goto out_free_digest; 806 807 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 808 digest, SHA256_DIGEST_SIZE, 0); 809 if (ret) 810 goto out_free_digest; 811 } 812 813 out_free_digest: 814 kfree(digest); 815 out_free_sha_regions: 816 vfree(sha_regions); 817 out_free_desc: 818 kfree(desc); 819 out_free_tfm: 820 kfree(tfm); 821 out: 822 return ret; 823 } 824 825 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY 826 /* 827 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 828 * @pi: Purgatory to be loaded. 829 * @kbuf: Buffer to setup. 830 * 831 * Allocates the memory needed for the buffer. Caller is responsible to free 832 * the memory after use. 833 * 834 * Return: 0 on success, negative errno on error. 835 */ 836 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 837 struct kexec_buf *kbuf) 838 { 839 const Elf_Shdr *sechdrs; 840 unsigned long bss_align; 841 unsigned long bss_sz; 842 unsigned long align; 843 int i, ret; 844 845 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 846 kbuf->buf_align = bss_align = 1; 847 kbuf->bufsz = bss_sz = 0; 848 849 for (i = 0; i < pi->ehdr->e_shnum; i++) { 850 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 851 continue; 852 853 align = sechdrs[i].sh_addralign; 854 if (sechdrs[i].sh_type != SHT_NOBITS) { 855 if (kbuf->buf_align < align) 856 kbuf->buf_align = align; 857 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 858 kbuf->bufsz += sechdrs[i].sh_size; 859 } else { 860 if (bss_align < align) 861 bss_align = align; 862 bss_sz = ALIGN(bss_sz, align); 863 bss_sz += sechdrs[i].sh_size; 864 } 865 } 866 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 867 kbuf->memsz = kbuf->bufsz + bss_sz; 868 if (kbuf->buf_align < bss_align) 869 kbuf->buf_align = bss_align; 870 871 kbuf->buffer = vzalloc(kbuf->bufsz); 872 if (!kbuf->buffer) 873 return -ENOMEM; 874 pi->purgatory_buf = kbuf->buffer; 875 876 ret = kexec_add_buffer(kbuf); 877 if (ret) 878 goto out; 879 880 return 0; 881 out: 882 vfree(pi->purgatory_buf); 883 pi->purgatory_buf = NULL; 884 return ret; 885 } 886 887 /* 888 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 889 * @pi: Purgatory to be loaded. 890 * @kbuf: Buffer prepared to store purgatory. 891 * 892 * Allocates the memory needed for the buffer. Caller is responsible to free 893 * the memory after use. 894 * 895 * Return: 0 on success, negative errno on error. 896 */ 897 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 898 struct kexec_buf *kbuf) 899 { 900 unsigned long bss_addr; 901 unsigned long offset; 902 Elf_Shdr *sechdrs; 903 int i; 904 905 /* 906 * The section headers in kexec_purgatory are read-only. In order to 907 * have them modifiable make a temporary copy. 908 */ 909 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); 910 if (!sechdrs) 911 return -ENOMEM; 912 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, 913 pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 914 pi->sechdrs = sechdrs; 915 916 offset = 0; 917 bss_addr = kbuf->mem + kbuf->bufsz; 918 kbuf->image->start = pi->ehdr->e_entry; 919 920 for (i = 0; i < pi->ehdr->e_shnum; i++) { 921 unsigned long align; 922 void *src, *dst; 923 924 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 925 continue; 926 927 align = sechdrs[i].sh_addralign; 928 if (sechdrs[i].sh_type == SHT_NOBITS) { 929 bss_addr = ALIGN(bss_addr, align); 930 sechdrs[i].sh_addr = bss_addr; 931 bss_addr += sechdrs[i].sh_size; 932 continue; 933 } 934 935 offset = ALIGN(offset, align); 936 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 937 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 938 pi->ehdr->e_entry < (sechdrs[i].sh_addr 939 + sechdrs[i].sh_size)) { 940 kbuf->image->start -= sechdrs[i].sh_addr; 941 kbuf->image->start += kbuf->mem + offset; 942 } 943 944 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 945 dst = pi->purgatory_buf + offset; 946 memcpy(dst, src, sechdrs[i].sh_size); 947 948 sechdrs[i].sh_addr = kbuf->mem + offset; 949 sechdrs[i].sh_offset = offset; 950 offset += sechdrs[i].sh_size; 951 } 952 953 return 0; 954 } 955 956 static int kexec_apply_relocations(struct kimage *image) 957 { 958 int i, ret; 959 struct purgatory_info *pi = &image->purgatory_info; 960 const Elf_Shdr *sechdrs; 961 962 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 963 964 for (i = 0; i < pi->ehdr->e_shnum; i++) { 965 const Elf_Shdr *relsec; 966 const Elf_Shdr *symtab; 967 Elf_Shdr *section; 968 969 relsec = sechdrs + i; 970 971 if (relsec->sh_type != SHT_RELA && 972 relsec->sh_type != SHT_REL) 973 continue; 974 975 /* 976 * For section of type SHT_RELA/SHT_REL, 977 * ->sh_link contains section header index of associated 978 * symbol table. And ->sh_info contains section header 979 * index of section to which relocations apply. 980 */ 981 if (relsec->sh_info >= pi->ehdr->e_shnum || 982 relsec->sh_link >= pi->ehdr->e_shnum) 983 return -ENOEXEC; 984 985 section = pi->sechdrs + relsec->sh_info; 986 symtab = sechdrs + relsec->sh_link; 987 988 if (!(section->sh_flags & SHF_ALLOC)) 989 continue; 990 991 /* 992 * symtab->sh_link contain section header index of associated 993 * string table. 994 */ 995 if (symtab->sh_link >= pi->ehdr->e_shnum) 996 /* Invalid section number? */ 997 continue; 998 999 /* 1000 * Respective architecture needs to provide support for applying 1001 * relocations of type SHT_RELA/SHT_REL. 1002 */ 1003 if (relsec->sh_type == SHT_RELA) 1004 ret = arch_kexec_apply_relocations_add(pi, section, 1005 relsec, symtab); 1006 else if (relsec->sh_type == SHT_REL) 1007 ret = arch_kexec_apply_relocations(pi, section, 1008 relsec, symtab); 1009 if (ret) 1010 return ret; 1011 } 1012 1013 return 0; 1014 } 1015 1016 /* 1017 * kexec_load_purgatory - Load and relocate the purgatory object. 1018 * @image: Image to add the purgatory to. 1019 * @kbuf: Memory parameters to use. 1020 * 1021 * Allocates the memory needed for image->purgatory_info.sechdrs and 1022 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1023 * to free the memory after use. 1024 * 1025 * Return: 0 on success, negative errno on error. 1026 */ 1027 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1028 { 1029 struct purgatory_info *pi = &image->purgatory_info; 1030 int ret; 1031 1032 if (kexec_purgatory_size <= 0) 1033 return -EINVAL; 1034 1035 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1036 1037 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1038 if (ret) 1039 return ret; 1040 1041 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1042 if (ret) 1043 goto out_free_kbuf; 1044 1045 ret = kexec_apply_relocations(image); 1046 if (ret) 1047 goto out; 1048 1049 return 0; 1050 out: 1051 vfree(pi->sechdrs); 1052 pi->sechdrs = NULL; 1053 out_free_kbuf: 1054 vfree(pi->purgatory_buf); 1055 pi->purgatory_buf = NULL; 1056 return ret; 1057 } 1058 1059 /* 1060 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1061 * @pi: Purgatory to search in. 1062 * @name: Name of the symbol. 1063 * 1064 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1065 */ 1066 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1067 const char *name) 1068 { 1069 const Elf_Shdr *sechdrs; 1070 const Elf_Ehdr *ehdr; 1071 const Elf_Sym *syms; 1072 const char *strtab; 1073 int i, k; 1074 1075 if (!pi->ehdr) 1076 return NULL; 1077 1078 ehdr = pi->ehdr; 1079 sechdrs = (void *)ehdr + ehdr->e_shoff; 1080 1081 for (i = 0; i < ehdr->e_shnum; i++) { 1082 if (sechdrs[i].sh_type != SHT_SYMTAB) 1083 continue; 1084 1085 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1086 /* Invalid strtab section number */ 1087 continue; 1088 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1089 syms = (void *)ehdr + sechdrs[i].sh_offset; 1090 1091 /* Go through symbols for a match */ 1092 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1093 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1094 continue; 1095 1096 if (strcmp(strtab + syms[k].st_name, name) != 0) 1097 continue; 1098 1099 if (syms[k].st_shndx == SHN_UNDEF || 1100 syms[k].st_shndx >= ehdr->e_shnum) { 1101 pr_debug("Symbol: %s has bad section index %d.\n", 1102 name, syms[k].st_shndx); 1103 return NULL; 1104 } 1105 1106 /* Found the symbol we are looking for */ 1107 return &syms[k]; 1108 } 1109 } 1110 1111 return NULL; 1112 } 1113 1114 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1115 { 1116 struct purgatory_info *pi = &image->purgatory_info; 1117 const Elf_Sym *sym; 1118 Elf_Shdr *sechdr; 1119 1120 sym = kexec_purgatory_find_symbol(pi, name); 1121 if (!sym) 1122 return ERR_PTR(-EINVAL); 1123 1124 sechdr = &pi->sechdrs[sym->st_shndx]; 1125 1126 /* 1127 * Returns the address where symbol will finally be loaded after 1128 * kexec_load_segment() 1129 */ 1130 return (void *)(sechdr->sh_addr + sym->st_value); 1131 } 1132 1133 /* 1134 * Get or set value of a symbol. If "get_value" is true, symbol value is 1135 * returned in buf otherwise symbol value is set based on value in buf. 1136 */ 1137 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1138 void *buf, unsigned int size, bool get_value) 1139 { 1140 struct purgatory_info *pi = &image->purgatory_info; 1141 const Elf_Sym *sym; 1142 Elf_Shdr *sec; 1143 char *sym_buf; 1144 1145 sym = kexec_purgatory_find_symbol(pi, name); 1146 if (!sym) 1147 return -EINVAL; 1148 1149 if (sym->st_size != size) { 1150 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1151 name, (unsigned long)sym->st_size, size); 1152 return -EINVAL; 1153 } 1154 1155 sec = pi->sechdrs + sym->st_shndx; 1156 1157 if (sec->sh_type == SHT_NOBITS) { 1158 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1159 get_value ? "get" : "set"); 1160 return -EINVAL; 1161 } 1162 1163 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1164 1165 if (get_value) 1166 memcpy((void *)buf, sym_buf, size); 1167 else 1168 memcpy((void *)sym_buf, buf, size); 1169 1170 return 0; 1171 } 1172 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ 1173 1174 int crash_exclude_mem_range(struct crash_mem *mem, 1175 unsigned long long mstart, unsigned long long mend) 1176 { 1177 int i, j; 1178 unsigned long long start, end, p_start, p_end; 1179 struct crash_mem_range temp_range = {0, 0}; 1180 1181 for (i = 0; i < mem->nr_ranges; i++) { 1182 start = mem->ranges[i].start; 1183 end = mem->ranges[i].end; 1184 p_start = mstart; 1185 p_end = mend; 1186 1187 if (mstart > end || mend < start) 1188 continue; 1189 1190 /* Truncate any area outside of range */ 1191 if (mstart < start) 1192 p_start = start; 1193 if (mend > end) 1194 p_end = end; 1195 1196 /* Found completely overlapping range */ 1197 if (p_start == start && p_end == end) { 1198 mem->ranges[i].start = 0; 1199 mem->ranges[i].end = 0; 1200 if (i < mem->nr_ranges - 1) { 1201 /* Shift rest of the ranges to left */ 1202 for (j = i; j < mem->nr_ranges - 1; j++) { 1203 mem->ranges[j].start = 1204 mem->ranges[j+1].start; 1205 mem->ranges[j].end = 1206 mem->ranges[j+1].end; 1207 } 1208 1209 /* 1210 * Continue to check if there are another overlapping ranges 1211 * from the current position because of shifting the above 1212 * mem ranges. 1213 */ 1214 i--; 1215 mem->nr_ranges--; 1216 continue; 1217 } 1218 mem->nr_ranges--; 1219 return 0; 1220 } 1221 1222 if (p_start > start && p_end < end) { 1223 /* Split original range */ 1224 mem->ranges[i].end = p_start - 1; 1225 temp_range.start = p_end + 1; 1226 temp_range.end = end; 1227 } else if (p_start != start) 1228 mem->ranges[i].end = p_start - 1; 1229 else 1230 mem->ranges[i].start = p_end + 1; 1231 break; 1232 } 1233 1234 /* If a split happened, add the split to array */ 1235 if (!temp_range.end) 1236 return 0; 1237 1238 /* Split happened */ 1239 if (i == mem->max_nr_ranges - 1) 1240 return -ENOMEM; 1241 1242 /* Location where new range should go */ 1243 j = i + 1; 1244 if (j < mem->nr_ranges) { 1245 /* Move over all ranges one slot towards the end */ 1246 for (i = mem->nr_ranges - 1; i >= j; i--) 1247 mem->ranges[i + 1] = mem->ranges[i]; 1248 } 1249 1250 mem->ranges[j].start = temp_range.start; 1251 mem->ranges[j].end = temp_range.end; 1252 mem->nr_ranges++; 1253 return 0; 1254 } 1255 1256 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, 1257 void **addr, unsigned long *sz) 1258 { 1259 Elf64_Ehdr *ehdr; 1260 Elf64_Phdr *phdr; 1261 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 1262 unsigned char *buf; 1263 unsigned int cpu, i; 1264 unsigned long long notes_addr; 1265 unsigned long mstart, mend; 1266 1267 /* extra phdr for vmcoreinfo ELF note */ 1268 nr_phdr = nr_cpus + 1; 1269 nr_phdr += mem->nr_ranges; 1270 1271 /* 1272 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 1273 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 1274 * I think this is required by tools like gdb. So same physical 1275 * memory will be mapped in two ELF headers. One will contain kernel 1276 * text virtual addresses and other will have __va(physical) addresses. 1277 */ 1278 1279 nr_phdr++; 1280 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 1281 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 1282 1283 buf = vzalloc(elf_sz); 1284 if (!buf) 1285 return -ENOMEM; 1286 1287 ehdr = (Elf64_Ehdr *)buf; 1288 phdr = (Elf64_Phdr *)(ehdr + 1); 1289 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1290 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 1291 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1292 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1293 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 1294 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 1295 ehdr->e_type = ET_CORE; 1296 ehdr->e_machine = ELF_ARCH; 1297 ehdr->e_version = EV_CURRENT; 1298 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1299 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1300 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1301 1302 /* Prepare one phdr of type PT_NOTE for each present CPU */ 1303 for_each_present_cpu(cpu) { 1304 phdr->p_type = PT_NOTE; 1305 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 1306 phdr->p_offset = phdr->p_paddr = notes_addr; 1307 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 1308 (ehdr->e_phnum)++; 1309 phdr++; 1310 } 1311 1312 /* Prepare one PT_NOTE header for vmcoreinfo */ 1313 phdr->p_type = PT_NOTE; 1314 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 1315 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 1316 (ehdr->e_phnum)++; 1317 phdr++; 1318 1319 /* Prepare PT_LOAD type program header for kernel text region */ 1320 if (kernel_map) { 1321 phdr->p_type = PT_LOAD; 1322 phdr->p_flags = PF_R|PF_W|PF_X; 1323 phdr->p_vaddr = (unsigned long) _text; 1324 phdr->p_filesz = phdr->p_memsz = _end - _text; 1325 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 1326 ehdr->e_phnum++; 1327 phdr++; 1328 } 1329 1330 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 1331 for (i = 0; i < mem->nr_ranges; i++) { 1332 mstart = mem->ranges[i].start; 1333 mend = mem->ranges[i].end; 1334 1335 phdr->p_type = PT_LOAD; 1336 phdr->p_flags = PF_R|PF_W|PF_X; 1337 phdr->p_offset = mstart; 1338 1339 phdr->p_paddr = mstart; 1340 phdr->p_vaddr = (unsigned long) __va(mstart); 1341 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 1342 phdr->p_align = 0; 1343 ehdr->e_phnum++; 1344 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 1345 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 1346 ehdr->e_phnum, phdr->p_offset); 1347 phdr++; 1348 } 1349 1350 *addr = buf; 1351 *sz = elf_sz; 1352 return 0; 1353 } 1354