xref: /openbmc/linux/kernel/kexec_file.c (revision 63705da3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 static int kexec_calculate_store_digests(struct kimage *image);
33 
34 /*
35  * Currently this is the only default function that is exported as some
36  * architectures need it to do additional handlings.
37  * In the future, other default functions may be exported too if required.
38  */
39 int kexec_image_probe_default(struct kimage *image, void *buf,
40 			      unsigned long buf_len)
41 {
42 	const struct kexec_file_ops * const *fops;
43 	int ret = -ENOEXEC;
44 
45 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
46 		ret = (*fops)->probe(buf, buf_len);
47 		if (!ret) {
48 			image->fops = *fops;
49 			return ret;
50 		}
51 	}
52 
53 	return ret;
54 }
55 
56 /* Architectures can provide this probe function */
57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
58 					 unsigned long buf_len)
59 {
60 	return kexec_image_probe_default(image, buf, buf_len);
61 }
62 
63 static void *kexec_image_load_default(struct kimage *image)
64 {
65 	if (!image->fops || !image->fops->load)
66 		return ERR_PTR(-ENOEXEC);
67 
68 	return image->fops->load(image, image->kernel_buf,
69 				 image->kernel_buf_len, image->initrd_buf,
70 				 image->initrd_buf_len, image->cmdline_buf,
71 				 image->cmdline_buf_len);
72 }
73 
74 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
75 {
76 	return kexec_image_load_default(image);
77 }
78 
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
88 {
89 	return kexec_image_post_load_cleanup_default(image);
90 }
91 
92 #ifdef CONFIG_KEXEC_SIG
93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
94 					  unsigned long buf_len)
95 {
96 	if (!image->fops || !image->fops->verify_sig) {
97 		pr_debug("kernel loader does not support signature verification.\n");
98 		return -EKEYREJECTED;
99 	}
100 
101 	return image->fops->verify_sig(buf, buf_len);
102 }
103 
104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
105 					unsigned long buf_len)
106 {
107 	return kexec_image_verify_sig_default(image, buf, buf_len);
108 }
109 #endif
110 
111 /*
112  * arch_kexec_apply_relocations_add - apply relocations of type RELA
113  * @pi:		Purgatory to be relocated.
114  * @section:	Section relocations applying to.
115  * @relsec:	Section containing RELAs.
116  * @symtab:	Corresponding symtab.
117  *
118  * Return: 0 on success, negative errno on error.
119  */
120 int __weak
121 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
122 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
123 {
124 	pr_err("RELA relocation unsupported.\n");
125 	return -ENOEXEC;
126 }
127 
128 /*
129  * arch_kexec_apply_relocations - apply relocations of type REL
130  * @pi:		Purgatory to be relocated.
131  * @section:	Section relocations applying to.
132  * @relsec:	Section containing RELs.
133  * @symtab:	Corresponding symtab.
134  *
135  * Return: 0 on success, negative errno on error.
136  */
137 int __weak
138 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
139 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
140 {
141 	pr_err("REL relocation unsupported.\n");
142 	return -ENOEXEC;
143 }
144 
145 /*
146  * Free up memory used by kernel, initrd, and command line. This is temporary
147  * memory allocation which is not needed any more after these buffers have
148  * been loaded into separate segments and have been copied elsewhere.
149  */
150 void kimage_file_post_load_cleanup(struct kimage *image)
151 {
152 	struct purgatory_info *pi = &image->purgatory_info;
153 
154 	vfree(image->kernel_buf);
155 	image->kernel_buf = NULL;
156 
157 	vfree(image->initrd_buf);
158 	image->initrd_buf = NULL;
159 
160 	kfree(image->cmdline_buf);
161 	image->cmdline_buf = NULL;
162 
163 	vfree(pi->purgatory_buf);
164 	pi->purgatory_buf = NULL;
165 
166 	vfree(pi->sechdrs);
167 	pi->sechdrs = NULL;
168 
169 #ifdef CONFIG_IMA_KEXEC
170 	vfree(image->ima_buffer);
171 	image->ima_buffer = NULL;
172 #endif /* CONFIG_IMA_KEXEC */
173 
174 	/* See if architecture has anything to cleanup post load */
175 	arch_kimage_file_post_load_cleanup(image);
176 
177 	/*
178 	 * Above call should have called into bootloader to free up
179 	 * any data stored in kimage->image_loader_data. It should
180 	 * be ok now to free it up.
181 	 */
182 	kfree(image->image_loader_data);
183 	image->image_loader_data = NULL;
184 }
185 
186 #ifdef CONFIG_KEXEC_SIG
187 static int
188 kimage_validate_signature(struct kimage *image)
189 {
190 	int ret;
191 
192 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
193 					   image->kernel_buf_len);
194 	if (ret) {
195 
196 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
197 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
198 			return ret;
199 		}
200 
201 		/*
202 		 * If IMA is guaranteed to appraise a signature on the kexec
203 		 * image, permit it even if the kernel is otherwise locked
204 		 * down.
205 		 */
206 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
207 		    security_locked_down(LOCKDOWN_KEXEC))
208 			return -EPERM;
209 
210 		pr_debug("kernel signature verification failed (%d).\n", ret);
211 	}
212 
213 	return 0;
214 }
215 #endif
216 
217 /*
218  * In file mode list of segments is prepared by kernel. Copy relevant
219  * data from user space, do error checking, prepare segment list
220  */
221 static int
222 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
223 			     const char __user *cmdline_ptr,
224 			     unsigned long cmdline_len, unsigned flags)
225 {
226 	int ret;
227 	void *ldata;
228 
229 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
230 				       INT_MAX, NULL, READING_KEXEC_IMAGE);
231 	if (ret < 0)
232 		return ret;
233 	image->kernel_buf_len = ret;
234 
235 	/* Call arch image probe handlers */
236 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
237 					    image->kernel_buf_len);
238 	if (ret)
239 		goto out;
240 
241 #ifdef CONFIG_KEXEC_SIG
242 	ret = kimage_validate_signature(image);
243 
244 	if (ret)
245 		goto out;
246 #endif
247 	/* It is possible that there no initramfs is being loaded */
248 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
249 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
250 					       INT_MAX, NULL,
251 					       READING_KEXEC_INITRAMFS);
252 		if (ret < 0)
253 			goto out;
254 		image->initrd_buf_len = ret;
255 		ret = 0;
256 	}
257 
258 	if (cmdline_len) {
259 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
260 		if (IS_ERR(image->cmdline_buf)) {
261 			ret = PTR_ERR(image->cmdline_buf);
262 			image->cmdline_buf = NULL;
263 			goto out;
264 		}
265 
266 		image->cmdline_buf_len = cmdline_len;
267 
268 		/* command line should be a string with last byte null */
269 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
270 			ret = -EINVAL;
271 			goto out;
272 		}
273 
274 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
275 				  image->cmdline_buf_len - 1);
276 	}
277 
278 	/* IMA needs to pass the measurement list to the next kernel. */
279 	ima_add_kexec_buffer(image);
280 
281 	/* Call arch image load handlers */
282 	ldata = arch_kexec_kernel_image_load(image);
283 
284 	if (IS_ERR(ldata)) {
285 		ret = PTR_ERR(ldata);
286 		goto out;
287 	}
288 
289 	image->image_loader_data = ldata;
290 out:
291 	/* In case of error, free up all allocated memory in this function */
292 	if (ret)
293 		kimage_file_post_load_cleanup(image);
294 	return ret;
295 }
296 
297 static int
298 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
299 		       int initrd_fd, const char __user *cmdline_ptr,
300 		       unsigned long cmdline_len, unsigned long flags)
301 {
302 	int ret;
303 	struct kimage *image;
304 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
305 
306 	image = do_kimage_alloc_init();
307 	if (!image)
308 		return -ENOMEM;
309 
310 	image->file_mode = 1;
311 
312 	if (kexec_on_panic) {
313 		/* Enable special crash kernel control page alloc policy. */
314 		image->control_page = crashk_res.start;
315 		image->type = KEXEC_TYPE_CRASH;
316 	}
317 
318 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
319 					   cmdline_ptr, cmdline_len, flags);
320 	if (ret)
321 		goto out_free_image;
322 
323 	ret = sanity_check_segment_list(image);
324 	if (ret)
325 		goto out_free_post_load_bufs;
326 
327 	ret = -ENOMEM;
328 	image->control_code_page = kimage_alloc_control_pages(image,
329 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
330 	if (!image->control_code_page) {
331 		pr_err("Could not allocate control_code_buffer\n");
332 		goto out_free_post_load_bufs;
333 	}
334 
335 	if (!kexec_on_panic) {
336 		image->swap_page = kimage_alloc_control_pages(image, 0);
337 		if (!image->swap_page) {
338 			pr_err("Could not allocate swap buffer\n");
339 			goto out_free_control_pages;
340 		}
341 	}
342 
343 	*rimage = image;
344 	return 0;
345 out_free_control_pages:
346 	kimage_free_page_list(&image->control_pages);
347 out_free_post_load_bufs:
348 	kimage_file_post_load_cleanup(image);
349 out_free_image:
350 	kfree(image);
351 	return ret;
352 }
353 
354 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
355 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
356 		unsigned long, flags)
357 {
358 	int ret = 0, i;
359 	struct kimage **dest_image, *image;
360 
361 	/* We only trust the superuser with rebooting the system. */
362 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
363 		return -EPERM;
364 
365 	/* Make sure we have a legal set of flags */
366 	if (flags != (flags & KEXEC_FILE_FLAGS))
367 		return -EINVAL;
368 
369 	image = NULL;
370 
371 	if (!mutex_trylock(&kexec_mutex))
372 		return -EBUSY;
373 
374 	dest_image = &kexec_image;
375 	if (flags & KEXEC_FILE_ON_CRASH) {
376 		dest_image = &kexec_crash_image;
377 		if (kexec_crash_image)
378 			arch_kexec_unprotect_crashkres();
379 	}
380 
381 	if (flags & KEXEC_FILE_UNLOAD)
382 		goto exchange;
383 
384 	/*
385 	 * In case of crash, new kernel gets loaded in reserved region. It is
386 	 * same memory where old crash kernel might be loaded. Free any
387 	 * current crash dump kernel before we corrupt it.
388 	 */
389 	if (flags & KEXEC_FILE_ON_CRASH)
390 		kimage_free(xchg(&kexec_crash_image, NULL));
391 
392 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
393 				     cmdline_len, flags);
394 	if (ret)
395 		goto out;
396 
397 	ret = machine_kexec_prepare(image);
398 	if (ret)
399 		goto out;
400 
401 	/*
402 	 * Some architecture(like S390) may touch the crash memory before
403 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
404 	 */
405 	ret = kimage_crash_copy_vmcoreinfo(image);
406 	if (ret)
407 		goto out;
408 
409 	ret = kexec_calculate_store_digests(image);
410 	if (ret)
411 		goto out;
412 
413 	for (i = 0; i < image->nr_segments; i++) {
414 		struct kexec_segment *ksegment;
415 
416 		ksegment = &image->segment[i];
417 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
418 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
419 			 ksegment->memsz);
420 
421 		ret = kimage_load_segment(image, &image->segment[i]);
422 		if (ret)
423 			goto out;
424 	}
425 
426 	kimage_terminate(image);
427 
428 	ret = machine_kexec_post_load(image);
429 	if (ret)
430 		goto out;
431 
432 	/*
433 	 * Free up any temporary buffers allocated which are not needed
434 	 * after image has been loaded
435 	 */
436 	kimage_file_post_load_cleanup(image);
437 exchange:
438 	image = xchg(dest_image, image);
439 out:
440 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
441 		arch_kexec_protect_crashkres();
442 
443 	mutex_unlock(&kexec_mutex);
444 	kimage_free(image);
445 	return ret;
446 }
447 
448 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
449 				    struct kexec_buf *kbuf)
450 {
451 	struct kimage *image = kbuf->image;
452 	unsigned long temp_start, temp_end;
453 
454 	temp_end = min(end, kbuf->buf_max);
455 	temp_start = temp_end - kbuf->memsz;
456 
457 	do {
458 		/* align down start */
459 		temp_start = temp_start & (~(kbuf->buf_align - 1));
460 
461 		if (temp_start < start || temp_start < kbuf->buf_min)
462 			return 0;
463 
464 		temp_end = temp_start + kbuf->memsz - 1;
465 
466 		/*
467 		 * Make sure this does not conflict with any of existing
468 		 * segments
469 		 */
470 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
471 			temp_start = temp_start - PAGE_SIZE;
472 			continue;
473 		}
474 
475 		/* We found a suitable memory range */
476 		break;
477 	} while (1);
478 
479 	/* If we are here, we found a suitable memory range */
480 	kbuf->mem = temp_start;
481 
482 	/* Success, stop navigating through remaining System RAM ranges */
483 	return 1;
484 }
485 
486 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
487 				     struct kexec_buf *kbuf)
488 {
489 	struct kimage *image = kbuf->image;
490 	unsigned long temp_start, temp_end;
491 
492 	temp_start = max(start, kbuf->buf_min);
493 
494 	do {
495 		temp_start = ALIGN(temp_start, kbuf->buf_align);
496 		temp_end = temp_start + kbuf->memsz - 1;
497 
498 		if (temp_end > end || temp_end > kbuf->buf_max)
499 			return 0;
500 		/*
501 		 * Make sure this does not conflict with any of existing
502 		 * segments
503 		 */
504 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
505 			temp_start = temp_start + PAGE_SIZE;
506 			continue;
507 		}
508 
509 		/* We found a suitable memory range */
510 		break;
511 	} while (1);
512 
513 	/* If we are here, we found a suitable memory range */
514 	kbuf->mem = temp_start;
515 
516 	/* Success, stop navigating through remaining System RAM ranges */
517 	return 1;
518 }
519 
520 static int locate_mem_hole_callback(struct resource *res, void *arg)
521 {
522 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
523 	u64 start = res->start, end = res->end;
524 	unsigned long sz = end - start + 1;
525 
526 	/* Returning 0 will take to next memory range */
527 
528 	/* Don't use memory that will be detected and handled by a driver. */
529 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
530 		return 0;
531 
532 	if (sz < kbuf->memsz)
533 		return 0;
534 
535 	if (end < kbuf->buf_min || start > kbuf->buf_max)
536 		return 0;
537 
538 	/*
539 	 * Allocate memory top down with-in ram range. Otherwise bottom up
540 	 * allocation.
541 	 */
542 	if (kbuf->top_down)
543 		return locate_mem_hole_top_down(start, end, kbuf);
544 	return locate_mem_hole_bottom_up(start, end, kbuf);
545 }
546 
547 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
548 static int kexec_walk_memblock(struct kexec_buf *kbuf,
549 			       int (*func)(struct resource *, void *))
550 {
551 	int ret = 0;
552 	u64 i;
553 	phys_addr_t mstart, mend;
554 	struct resource res = { };
555 
556 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
557 		return func(&crashk_res, kbuf);
558 
559 	/*
560 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
561 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
562 	 * locate_mem_hole_callback().
563 	 */
564 	if (kbuf->top_down) {
565 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
566 						&mstart, &mend, NULL) {
567 			/*
568 			 * In memblock, end points to the first byte after the
569 			 * range while in kexec, end points to the last byte
570 			 * in the range.
571 			 */
572 			res.start = mstart;
573 			res.end = mend - 1;
574 			ret = func(&res, kbuf);
575 			if (ret)
576 				break;
577 		}
578 	} else {
579 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
580 					&mstart, &mend, NULL) {
581 			/*
582 			 * In memblock, end points to the first byte after the
583 			 * range while in kexec, end points to the last byte
584 			 * in the range.
585 			 */
586 			res.start = mstart;
587 			res.end = mend - 1;
588 			ret = func(&res, kbuf);
589 			if (ret)
590 				break;
591 		}
592 	}
593 
594 	return ret;
595 }
596 #else
597 static int kexec_walk_memblock(struct kexec_buf *kbuf,
598 			       int (*func)(struct resource *, void *))
599 {
600 	return 0;
601 }
602 #endif
603 
604 /**
605  * kexec_walk_resources - call func(data) on free memory regions
606  * @kbuf:	Context info for the search. Also passed to @func.
607  * @func:	Function to call for each memory region.
608  *
609  * Return: The memory walk will stop when func returns a non-zero value
610  * and that value will be returned. If all free regions are visited without
611  * func returning non-zero, then zero will be returned.
612  */
613 static int kexec_walk_resources(struct kexec_buf *kbuf,
614 				int (*func)(struct resource *, void *))
615 {
616 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
617 		return walk_iomem_res_desc(crashk_res.desc,
618 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
619 					   crashk_res.start, crashk_res.end,
620 					   kbuf, func);
621 	else
622 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
623 }
624 
625 /**
626  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
627  * @kbuf:	Parameters for the memory search.
628  *
629  * On success, kbuf->mem will have the start address of the memory region found.
630  *
631  * Return: 0 on success, negative errno on error.
632  */
633 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
634 {
635 	int ret;
636 
637 	/* Arch knows where to place */
638 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
639 		return 0;
640 
641 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
642 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
643 	else
644 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
645 
646 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
647 }
648 
649 /**
650  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
651  * @kbuf:                       Parameters for the memory search.
652  *
653  * On success, kbuf->mem will have the start address of the memory region found.
654  *
655  * Return: 0 on success, negative errno on error.
656  */
657 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
658 {
659 	return kexec_locate_mem_hole(kbuf);
660 }
661 
662 /**
663  * kexec_add_buffer - place a buffer in a kexec segment
664  * @kbuf:	Buffer contents and memory parameters.
665  *
666  * This function assumes that kexec_mutex is held.
667  * On successful return, @kbuf->mem will have the physical address of
668  * the buffer in memory.
669  *
670  * Return: 0 on success, negative errno on error.
671  */
672 int kexec_add_buffer(struct kexec_buf *kbuf)
673 {
674 	struct kexec_segment *ksegment;
675 	int ret;
676 
677 	/* Currently adding segment this way is allowed only in file mode */
678 	if (!kbuf->image->file_mode)
679 		return -EINVAL;
680 
681 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
682 		return -EINVAL;
683 
684 	/*
685 	 * Make sure we are not trying to add buffer after allocating
686 	 * control pages. All segments need to be placed first before
687 	 * any control pages are allocated. As control page allocation
688 	 * logic goes through list of segments to make sure there are
689 	 * no destination overlaps.
690 	 */
691 	if (!list_empty(&kbuf->image->control_pages)) {
692 		WARN_ON(1);
693 		return -EINVAL;
694 	}
695 
696 	/* Ensure minimum alignment needed for segments. */
697 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
698 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
699 
700 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
701 	ret = arch_kexec_locate_mem_hole(kbuf);
702 	if (ret)
703 		return ret;
704 
705 	/* Found a suitable memory range */
706 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
707 	ksegment->kbuf = kbuf->buffer;
708 	ksegment->bufsz = kbuf->bufsz;
709 	ksegment->mem = kbuf->mem;
710 	ksegment->memsz = kbuf->memsz;
711 	kbuf->image->nr_segments++;
712 	return 0;
713 }
714 
715 /* Calculate and store the digest of segments */
716 static int kexec_calculate_store_digests(struct kimage *image)
717 {
718 	struct crypto_shash *tfm;
719 	struct shash_desc *desc;
720 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
721 	size_t desc_size, nullsz;
722 	char *digest;
723 	void *zero_buf;
724 	struct kexec_sha_region *sha_regions;
725 	struct purgatory_info *pi = &image->purgatory_info;
726 
727 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
728 		return 0;
729 
730 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
731 	zero_buf_sz = PAGE_SIZE;
732 
733 	tfm = crypto_alloc_shash("sha256", 0, 0);
734 	if (IS_ERR(tfm)) {
735 		ret = PTR_ERR(tfm);
736 		goto out;
737 	}
738 
739 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
740 	desc = kzalloc(desc_size, GFP_KERNEL);
741 	if (!desc) {
742 		ret = -ENOMEM;
743 		goto out_free_tfm;
744 	}
745 
746 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
747 	sha_regions = vzalloc(sha_region_sz);
748 	if (!sha_regions) {
749 		ret = -ENOMEM;
750 		goto out_free_desc;
751 	}
752 
753 	desc->tfm   = tfm;
754 
755 	ret = crypto_shash_init(desc);
756 	if (ret < 0)
757 		goto out_free_sha_regions;
758 
759 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
760 	if (!digest) {
761 		ret = -ENOMEM;
762 		goto out_free_sha_regions;
763 	}
764 
765 	for (j = i = 0; i < image->nr_segments; i++) {
766 		struct kexec_segment *ksegment;
767 
768 		ksegment = &image->segment[i];
769 		/*
770 		 * Skip purgatory as it will be modified once we put digest
771 		 * info in purgatory.
772 		 */
773 		if (ksegment->kbuf == pi->purgatory_buf)
774 			continue;
775 
776 		ret = crypto_shash_update(desc, ksegment->kbuf,
777 					  ksegment->bufsz);
778 		if (ret)
779 			break;
780 
781 		/*
782 		 * Assume rest of the buffer is filled with zero and
783 		 * update digest accordingly.
784 		 */
785 		nullsz = ksegment->memsz - ksegment->bufsz;
786 		while (nullsz) {
787 			unsigned long bytes = nullsz;
788 
789 			if (bytes > zero_buf_sz)
790 				bytes = zero_buf_sz;
791 			ret = crypto_shash_update(desc, zero_buf, bytes);
792 			if (ret)
793 				break;
794 			nullsz -= bytes;
795 		}
796 
797 		if (ret)
798 			break;
799 
800 		sha_regions[j].start = ksegment->mem;
801 		sha_regions[j].len = ksegment->memsz;
802 		j++;
803 	}
804 
805 	if (!ret) {
806 		ret = crypto_shash_final(desc, digest);
807 		if (ret)
808 			goto out_free_digest;
809 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
810 						     sha_regions, sha_region_sz, 0);
811 		if (ret)
812 			goto out_free_digest;
813 
814 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
815 						     digest, SHA256_DIGEST_SIZE, 0);
816 		if (ret)
817 			goto out_free_digest;
818 	}
819 
820 out_free_digest:
821 	kfree(digest);
822 out_free_sha_regions:
823 	vfree(sha_regions);
824 out_free_desc:
825 	kfree(desc);
826 out_free_tfm:
827 	kfree(tfm);
828 out:
829 	return ret;
830 }
831 
832 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
833 /*
834  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
835  * @pi:		Purgatory to be loaded.
836  * @kbuf:	Buffer to setup.
837  *
838  * Allocates the memory needed for the buffer. Caller is responsible to free
839  * the memory after use.
840  *
841  * Return: 0 on success, negative errno on error.
842  */
843 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
844 				      struct kexec_buf *kbuf)
845 {
846 	const Elf_Shdr *sechdrs;
847 	unsigned long bss_align;
848 	unsigned long bss_sz;
849 	unsigned long align;
850 	int i, ret;
851 
852 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
853 	kbuf->buf_align = bss_align = 1;
854 	kbuf->bufsz = bss_sz = 0;
855 
856 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
857 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
858 			continue;
859 
860 		align = sechdrs[i].sh_addralign;
861 		if (sechdrs[i].sh_type != SHT_NOBITS) {
862 			if (kbuf->buf_align < align)
863 				kbuf->buf_align = align;
864 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
865 			kbuf->bufsz += sechdrs[i].sh_size;
866 		} else {
867 			if (bss_align < align)
868 				bss_align = align;
869 			bss_sz = ALIGN(bss_sz, align);
870 			bss_sz += sechdrs[i].sh_size;
871 		}
872 	}
873 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
874 	kbuf->memsz = kbuf->bufsz + bss_sz;
875 	if (kbuf->buf_align < bss_align)
876 		kbuf->buf_align = bss_align;
877 
878 	kbuf->buffer = vzalloc(kbuf->bufsz);
879 	if (!kbuf->buffer)
880 		return -ENOMEM;
881 	pi->purgatory_buf = kbuf->buffer;
882 
883 	ret = kexec_add_buffer(kbuf);
884 	if (ret)
885 		goto out;
886 
887 	return 0;
888 out:
889 	vfree(pi->purgatory_buf);
890 	pi->purgatory_buf = NULL;
891 	return ret;
892 }
893 
894 /*
895  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
896  * @pi:		Purgatory to be loaded.
897  * @kbuf:	Buffer prepared to store purgatory.
898  *
899  * Allocates the memory needed for the buffer. Caller is responsible to free
900  * the memory after use.
901  *
902  * Return: 0 on success, negative errno on error.
903  */
904 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
905 					 struct kexec_buf *kbuf)
906 {
907 	unsigned long bss_addr;
908 	unsigned long offset;
909 	Elf_Shdr *sechdrs;
910 	int i;
911 
912 	/*
913 	 * The section headers in kexec_purgatory are read-only. In order to
914 	 * have them modifiable make a temporary copy.
915 	 */
916 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
917 	if (!sechdrs)
918 		return -ENOMEM;
919 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
920 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
921 	pi->sechdrs = sechdrs;
922 
923 	offset = 0;
924 	bss_addr = kbuf->mem + kbuf->bufsz;
925 	kbuf->image->start = pi->ehdr->e_entry;
926 
927 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
928 		unsigned long align;
929 		void *src, *dst;
930 
931 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
932 			continue;
933 
934 		align = sechdrs[i].sh_addralign;
935 		if (sechdrs[i].sh_type == SHT_NOBITS) {
936 			bss_addr = ALIGN(bss_addr, align);
937 			sechdrs[i].sh_addr = bss_addr;
938 			bss_addr += sechdrs[i].sh_size;
939 			continue;
940 		}
941 
942 		offset = ALIGN(offset, align);
943 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
944 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
945 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
946 					 + sechdrs[i].sh_size)) {
947 			kbuf->image->start -= sechdrs[i].sh_addr;
948 			kbuf->image->start += kbuf->mem + offset;
949 		}
950 
951 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
952 		dst = pi->purgatory_buf + offset;
953 		memcpy(dst, src, sechdrs[i].sh_size);
954 
955 		sechdrs[i].sh_addr = kbuf->mem + offset;
956 		sechdrs[i].sh_offset = offset;
957 		offset += sechdrs[i].sh_size;
958 	}
959 
960 	return 0;
961 }
962 
963 static int kexec_apply_relocations(struct kimage *image)
964 {
965 	int i, ret;
966 	struct purgatory_info *pi = &image->purgatory_info;
967 	const Elf_Shdr *sechdrs;
968 
969 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
970 
971 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
972 		const Elf_Shdr *relsec;
973 		const Elf_Shdr *symtab;
974 		Elf_Shdr *section;
975 
976 		relsec = sechdrs + i;
977 
978 		if (relsec->sh_type != SHT_RELA &&
979 		    relsec->sh_type != SHT_REL)
980 			continue;
981 
982 		/*
983 		 * For section of type SHT_RELA/SHT_REL,
984 		 * ->sh_link contains section header index of associated
985 		 * symbol table. And ->sh_info contains section header
986 		 * index of section to which relocations apply.
987 		 */
988 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
989 		    relsec->sh_link >= pi->ehdr->e_shnum)
990 			return -ENOEXEC;
991 
992 		section = pi->sechdrs + relsec->sh_info;
993 		symtab = sechdrs + relsec->sh_link;
994 
995 		if (!(section->sh_flags & SHF_ALLOC))
996 			continue;
997 
998 		/*
999 		 * symtab->sh_link contain section header index of associated
1000 		 * string table.
1001 		 */
1002 		if (symtab->sh_link >= pi->ehdr->e_shnum)
1003 			/* Invalid section number? */
1004 			continue;
1005 
1006 		/*
1007 		 * Respective architecture needs to provide support for applying
1008 		 * relocations of type SHT_RELA/SHT_REL.
1009 		 */
1010 		if (relsec->sh_type == SHT_RELA)
1011 			ret = arch_kexec_apply_relocations_add(pi, section,
1012 							       relsec, symtab);
1013 		else if (relsec->sh_type == SHT_REL)
1014 			ret = arch_kexec_apply_relocations(pi, section,
1015 							   relsec, symtab);
1016 		if (ret)
1017 			return ret;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * kexec_load_purgatory - Load and relocate the purgatory object.
1025  * @image:	Image to add the purgatory to.
1026  * @kbuf:	Memory parameters to use.
1027  *
1028  * Allocates the memory needed for image->purgatory_info.sechdrs and
1029  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1030  * to free the memory after use.
1031  *
1032  * Return: 0 on success, negative errno on error.
1033  */
1034 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1035 {
1036 	struct purgatory_info *pi = &image->purgatory_info;
1037 	int ret;
1038 
1039 	if (kexec_purgatory_size <= 0)
1040 		return -EINVAL;
1041 
1042 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1043 
1044 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1045 	if (ret)
1046 		return ret;
1047 
1048 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1049 	if (ret)
1050 		goto out_free_kbuf;
1051 
1052 	ret = kexec_apply_relocations(image);
1053 	if (ret)
1054 		goto out;
1055 
1056 	return 0;
1057 out:
1058 	vfree(pi->sechdrs);
1059 	pi->sechdrs = NULL;
1060 out_free_kbuf:
1061 	vfree(pi->purgatory_buf);
1062 	pi->purgatory_buf = NULL;
1063 	return ret;
1064 }
1065 
1066 /*
1067  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1068  * @pi:		Purgatory to search in.
1069  * @name:	Name of the symbol.
1070  *
1071  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1072  */
1073 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1074 						  const char *name)
1075 {
1076 	const Elf_Shdr *sechdrs;
1077 	const Elf_Ehdr *ehdr;
1078 	const Elf_Sym *syms;
1079 	const char *strtab;
1080 	int i, k;
1081 
1082 	if (!pi->ehdr)
1083 		return NULL;
1084 
1085 	ehdr = pi->ehdr;
1086 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1087 
1088 	for (i = 0; i < ehdr->e_shnum; i++) {
1089 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1090 			continue;
1091 
1092 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1093 			/* Invalid strtab section number */
1094 			continue;
1095 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1096 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1097 
1098 		/* Go through symbols for a match */
1099 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1100 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1101 				continue;
1102 
1103 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1104 				continue;
1105 
1106 			if (syms[k].st_shndx == SHN_UNDEF ||
1107 			    syms[k].st_shndx >= ehdr->e_shnum) {
1108 				pr_debug("Symbol: %s has bad section index %d.\n",
1109 						name, syms[k].st_shndx);
1110 				return NULL;
1111 			}
1112 
1113 			/* Found the symbol we are looking for */
1114 			return &syms[k];
1115 		}
1116 	}
1117 
1118 	return NULL;
1119 }
1120 
1121 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1122 {
1123 	struct purgatory_info *pi = &image->purgatory_info;
1124 	const Elf_Sym *sym;
1125 	Elf_Shdr *sechdr;
1126 
1127 	sym = kexec_purgatory_find_symbol(pi, name);
1128 	if (!sym)
1129 		return ERR_PTR(-EINVAL);
1130 
1131 	sechdr = &pi->sechdrs[sym->st_shndx];
1132 
1133 	/*
1134 	 * Returns the address where symbol will finally be loaded after
1135 	 * kexec_load_segment()
1136 	 */
1137 	return (void *)(sechdr->sh_addr + sym->st_value);
1138 }
1139 
1140 /*
1141  * Get or set value of a symbol. If "get_value" is true, symbol value is
1142  * returned in buf otherwise symbol value is set based on value in buf.
1143  */
1144 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1145 				   void *buf, unsigned int size, bool get_value)
1146 {
1147 	struct purgatory_info *pi = &image->purgatory_info;
1148 	const Elf_Sym *sym;
1149 	Elf_Shdr *sec;
1150 	char *sym_buf;
1151 
1152 	sym = kexec_purgatory_find_symbol(pi, name);
1153 	if (!sym)
1154 		return -EINVAL;
1155 
1156 	if (sym->st_size != size) {
1157 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1158 		       name, (unsigned long)sym->st_size, size);
1159 		return -EINVAL;
1160 	}
1161 
1162 	sec = pi->sechdrs + sym->st_shndx;
1163 
1164 	if (sec->sh_type == SHT_NOBITS) {
1165 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1166 		       get_value ? "get" : "set");
1167 		return -EINVAL;
1168 	}
1169 
1170 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1171 
1172 	if (get_value)
1173 		memcpy((void *)buf, sym_buf, size);
1174 	else
1175 		memcpy((void *)sym_buf, buf, size);
1176 
1177 	return 0;
1178 }
1179 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1180 
1181 int crash_exclude_mem_range(struct crash_mem *mem,
1182 			    unsigned long long mstart, unsigned long long mend)
1183 {
1184 	int i, j;
1185 	unsigned long long start, end, p_start, p_end;
1186 	struct crash_mem_range temp_range = {0, 0};
1187 
1188 	for (i = 0; i < mem->nr_ranges; i++) {
1189 		start = mem->ranges[i].start;
1190 		end = mem->ranges[i].end;
1191 		p_start = mstart;
1192 		p_end = mend;
1193 
1194 		if (mstart > end || mend < start)
1195 			continue;
1196 
1197 		/* Truncate any area outside of range */
1198 		if (mstart < start)
1199 			p_start = start;
1200 		if (mend > end)
1201 			p_end = end;
1202 
1203 		/* Found completely overlapping range */
1204 		if (p_start == start && p_end == end) {
1205 			mem->ranges[i].start = 0;
1206 			mem->ranges[i].end = 0;
1207 			if (i < mem->nr_ranges - 1) {
1208 				/* Shift rest of the ranges to left */
1209 				for (j = i; j < mem->nr_ranges - 1; j++) {
1210 					mem->ranges[j].start =
1211 						mem->ranges[j+1].start;
1212 					mem->ranges[j].end =
1213 							mem->ranges[j+1].end;
1214 				}
1215 
1216 				/*
1217 				 * Continue to check if there are another overlapping ranges
1218 				 * from the current position because of shifting the above
1219 				 * mem ranges.
1220 				 */
1221 				i--;
1222 				mem->nr_ranges--;
1223 				continue;
1224 			}
1225 			mem->nr_ranges--;
1226 			return 0;
1227 		}
1228 
1229 		if (p_start > start && p_end < end) {
1230 			/* Split original range */
1231 			mem->ranges[i].end = p_start - 1;
1232 			temp_range.start = p_end + 1;
1233 			temp_range.end = end;
1234 		} else if (p_start != start)
1235 			mem->ranges[i].end = p_start - 1;
1236 		else
1237 			mem->ranges[i].start = p_end + 1;
1238 		break;
1239 	}
1240 
1241 	/* If a split happened, add the split to array */
1242 	if (!temp_range.end)
1243 		return 0;
1244 
1245 	/* Split happened */
1246 	if (i == mem->max_nr_ranges - 1)
1247 		return -ENOMEM;
1248 
1249 	/* Location where new range should go */
1250 	j = i + 1;
1251 	if (j < mem->nr_ranges) {
1252 		/* Move over all ranges one slot towards the end */
1253 		for (i = mem->nr_ranges - 1; i >= j; i--)
1254 			mem->ranges[i + 1] = mem->ranges[i];
1255 	}
1256 
1257 	mem->ranges[j].start = temp_range.start;
1258 	mem->ranges[j].end = temp_range.end;
1259 	mem->nr_ranges++;
1260 	return 0;
1261 }
1262 
1263 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1264 			  void **addr, unsigned long *sz)
1265 {
1266 	Elf64_Ehdr *ehdr;
1267 	Elf64_Phdr *phdr;
1268 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1269 	unsigned char *buf;
1270 	unsigned int cpu, i;
1271 	unsigned long long notes_addr;
1272 	unsigned long mstart, mend;
1273 
1274 	/* extra phdr for vmcoreinfo ELF note */
1275 	nr_phdr = nr_cpus + 1;
1276 	nr_phdr += mem->nr_ranges;
1277 
1278 	/*
1279 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1280 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1281 	 * I think this is required by tools like gdb. So same physical
1282 	 * memory will be mapped in two ELF headers. One will contain kernel
1283 	 * text virtual addresses and other will have __va(physical) addresses.
1284 	 */
1285 
1286 	nr_phdr++;
1287 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1288 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1289 
1290 	buf = vzalloc(elf_sz);
1291 	if (!buf)
1292 		return -ENOMEM;
1293 
1294 	ehdr = (Elf64_Ehdr *)buf;
1295 	phdr = (Elf64_Phdr *)(ehdr + 1);
1296 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1297 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1298 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1299 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1300 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1301 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1302 	ehdr->e_type = ET_CORE;
1303 	ehdr->e_machine = ELF_ARCH;
1304 	ehdr->e_version = EV_CURRENT;
1305 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1306 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1307 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1308 
1309 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1310 	for_each_present_cpu(cpu) {
1311 		phdr->p_type = PT_NOTE;
1312 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1313 		phdr->p_offset = phdr->p_paddr = notes_addr;
1314 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1315 		(ehdr->e_phnum)++;
1316 		phdr++;
1317 	}
1318 
1319 	/* Prepare one PT_NOTE header for vmcoreinfo */
1320 	phdr->p_type = PT_NOTE;
1321 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1322 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1323 	(ehdr->e_phnum)++;
1324 	phdr++;
1325 
1326 	/* Prepare PT_LOAD type program header for kernel text region */
1327 	if (kernel_map) {
1328 		phdr->p_type = PT_LOAD;
1329 		phdr->p_flags = PF_R|PF_W|PF_X;
1330 		phdr->p_vaddr = (unsigned long) _text;
1331 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1332 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1333 		ehdr->e_phnum++;
1334 		phdr++;
1335 	}
1336 
1337 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1338 	for (i = 0; i < mem->nr_ranges; i++) {
1339 		mstart = mem->ranges[i].start;
1340 		mend = mem->ranges[i].end;
1341 
1342 		phdr->p_type = PT_LOAD;
1343 		phdr->p_flags = PF_R|PF_W|PF_X;
1344 		phdr->p_offset  = mstart;
1345 
1346 		phdr->p_paddr = mstart;
1347 		phdr->p_vaddr = (unsigned long) __va(mstart);
1348 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1349 		phdr->p_align = 0;
1350 		ehdr->e_phnum++;
1351 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1352 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1353 			ehdr->e_phnum, phdr->p_offset);
1354 		phdr++;
1355 	}
1356 
1357 	*addr = buf;
1358 	*sz = elf_sz;
1359 	return 0;
1360 }
1361