xref: /openbmc/linux/kernel/kexec_file.c (revision 62fb295c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 static int kexec_calculate_store_digests(struct kimage *image);
33 
34 /*
35  * Currently this is the only default function that is exported as some
36  * architectures need it to do additional handlings.
37  * In the future, other default functions may be exported too if required.
38  */
39 int kexec_image_probe_default(struct kimage *image, void *buf,
40 			      unsigned long buf_len)
41 {
42 	const struct kexec_file_ops * const *fops;
43 	int ret = -ENOEXEC;
44 
45 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
46 		ret = (*fops)->probe(buf, buf_len);
47 		if (!ret) {
48 			image->fops = *fops;
49 			return ret;
50 		}
51 	}
52 
53 	return ret;
54 }
55 
56 /* Architectures can provide this probe function */
57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
58 					 unsigned long buf_len)
59 {
60 	return kexec_image_probe_default(image, buf, buf_len);
61 }
62 
63 static void *kexec_image_load_default(struct kimage *image)
64 {
65 	if (!image->fops || !image->fops->load)
66 		return ERR_PTR(-ENOEXEC);
67 
68 	return image->fops->load(image, image->kernel_buf,
69 				 image->kernel_buf_len, image->initrd_buf,
70 				 image->initrd_buf_len, image->cmdline_buf,
71 				 image->cmdline_buf_len);
72 }
73 
74 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
75 {
76 	return kexec_image_load_default(image);
77 }
78 
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
88 {
89 	return kexec_image_post_load_cleanup_default(image);
90 }
91 
92 #ifdef CONFIG_KEXEC_SIG
93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
94 					  unsigned long buf_len)
95 {
96 	if (!image->fops || !image->fops->verify_sig) {
97 		pr_debug("kernel loader does not support signature verification.\n");
98 		return -EKEYREJECTED;
99 	}
100 
101 	return image->fops->verify_sig(buf, buf_len);
102 }
103 
104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
105 					unsigned long buf_len)
106 {
107 	return kexec_image_verify_sig_default(image, buf, buf_len);
108 }
109 #endif
110 
111 /*
112  * Free up memory used by kernel, initrd, and command line. This is temporary
113  * memory allocation which is not needed any more after these buffers have
114  * been loaded into separate segments and have been copied elsewhere.
115  */
116 void kimage_file_post_load_cleanup(struct kimage *image)
117 {
118 	struct purgatory_info *pi = &image->purgatory_info;
119 
120 	vfree(image->kernel_buf);
121 	image->kernel_buf = NULL;
122 
123 	vfree(image->initrd_buf);
124 	image->initrd_buf = NULL;
125 
126 	kfree(image->cmdline_buf);
127 	image->cmdline_buf = NULL;
128 
129 	vfree(pi->purgatory_buf);
130 	pi->purgatory_buf = NULL;
131 
132 	vfree(pi->sechdrs);
133 	pi->sechdrs = NULL;
134 
135 #ifdef CONFIG_IMA_KEXEC
136 	vfree(image->ima_buffer);
137 	image->ima_buffer = NULL;
138 #endif /* CONFIG_IMA_KEXEC */
139 
140 	/* See if architecture has anything to cleanup post load */
141 	arch_kimage_file_post_load_cleanup(image);
142 
143 	/*
144 	 * Above call should have called into bootloader to free up
145 	 * any data stored in kimage->image_loader_data. It should
146 	 * be ok now to free it up.
147 	 */
148 	kfree(image->image_loader_data);
149 	image->image_loader_data = NULL;
150 }
151 
152 #ifdef CONFIG_KEXEC_SIG
153 static int
154 kimage_validate_signature(struct kimage *image)
155 {
156 	int ret;
157 
158 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
159 					   image->kernel_buf_len);
160 	if (ret) {
161 
162 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
163 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
164 			return ret;
165 		}
166 
167 		/*
168 		 * If IMA is guaranteed to appraise a signature on the kexec
169 		 * image, permit it even if the kernel is otherwise locked
170 		 * down.
171 		 */
172 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
173 		    security_locked_down(LOCKDOWN_KEXEC))
174 			return -EPERM;
175 
176 		pr_debug("kernel signature verification failed (%d).\n", ret);
177 	}
178 
179 	return 0;
180 }
181 #endif
182 
183 /*
184  * In file mode list of segments is prepared by kernel. Copy relevant
185  * data from user space, do error checking, prepare segment list
186  */
187 static int
188 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
189 			     const char __user *cmdline_ptr,
190 			     unsigned long cmdline_len, unsigned flags)
191 {
192 	int ret;
193 	void *ldata;
194 
195 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
196 				       INT_MAX, NULL, READING_KEXEC_IMAGE);
197 	if (ret < 0)
198 		return ret;
199 	image->kernel_buf_len = ret;
200 
201 	/* Call arch image probe handlers */
202 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
203 					    image->kernel_buf_len);
204 	if (ret)
205 		goto out;
206 
207 #ifdef CONFIG_KEXEC_SIG
208 	ret = kimage_validate_signature(image);
209 
210 	if (ret)
211 		goto out;
212 #endif
213 	/* It is possible that there no initramfs is being loaded */
214 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
215 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
216 					       INT_MAX, NULL,
217 					       READING_KEXEC_INITRAMFS);
218 		if (ret < 0)
219 			goto out;
220 		image->initrd_buf_len = ret;
221 		ret = 0;
222 	}
223 
224 	if (cmdline_len) {
225 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
226 		if (IS_ERR(image->cmdline_buf)) {
227 			ret = PTR_ERR(image->cmdline_buf);
228 			image->cmdline_buf = NULL;
229 			goto out;
230 		}
231 
232 		image->cmdline_buf_len = cmdline_len;
233 
234 		/* command line should be a string with last byte null */
235 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
236 			ret = -EINVAL;
237 			goto out;
238 		}
239 
240 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
241 				  image->cmdline_buf_len - 1);
242 	}
243 
244 	/* IMA needs to pass the measurement list to the next kernel. */
245 	ima_add_kexec_buffer(image);
246 
247 	/* Call arch image load handlers */
248 	ldata = arch_kexec_kernel_image_load(image);
249 
250 	if (IS_ERR(ldata)) {
251 		ret = PTR_ERR(ldata);
252 		goto out;
253 	}
254 
255 	image->image_loader_data = ldata;
256 out:
257 	/* In case of error, free up all allocated memory in this function */
258 	if (ret)
259 		kimage_file_post_load_cleanup(image);
260 	return ret;
261 }
262 
263 static int
264 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
265 		       int initrd_fd, const char __user *cmdline_ptr,
266 		       unsigned long cmdline_len, unsigned long flags)
267 {
268 	int ret;
269 	struct kimage *image;
270 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
271 
272 	image = do_kimage_alloc_init();
273 	if (!image)
274 		return -ENOMEM;
275 
276 	image->file_mode = 1;
277 
278 	if (kexec_on_panic) {
279 		/* Enable special crash kernel control page alloc policy. */
280 		image->control_page = crashk_res.start;
281 		image->type = KEXEC_TYPE_CRASH;
282 	}
283 
284 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
285 					   cmdline_ptr, cmdline_len, flags);
286 	if (ret)
287 		goto out_free_image;
288 
289 	ret = sanity_check_segment_list(image);
290 	if (ret)
291 		goto out_free_post_load_bufs;
292 
293 	ret = -ENOMEM;
294 	image->control_code_page = kimage_alloc_control_pages(image,
295 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
296 	if (!image->control_code_page) {
297 		pr_err("Could not allocate control_code_buffer\n");
298 		goto out_free_post_load_bufs;
299 	}
300 
301 	if (!kexec_on_panic) {
302 		image->swap_page = kimage_alloc_control_pages(image, 0);
303 		if (!image->swap_page) {
304 			pr_err("Could not allocate swap buffer\n");
305 			goto out_free_control_pages;
306 		}
307 	}
308 
309 	*rimage = image;
310 	return 0;
311 out_free_control_pages:
312 	kimage_free_page_list(&image->control_pages);
313 out_free_post_load_bufs:
314 	kimage_file_post_load_cleanup(image);
315 out_free_image:
316 	kfree(image);
317 	return ret;
318 }
319 
320 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
321 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
322 		unsigned long, flags)
323 {
324 	int ret = 0, i;
325 	struct kimage **dest_image, *image;
326 
327 	/* We only trust the superuser with rebooting the system. */
328 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
329 		return -EPERM;
330 
331 	/* Make sure we have a legal set of flags */
332 	if (flags != (flags & KEXEC_FILE_FLAGS))
333 		return -EINVAL;
334 
335 	image = NULL;
336 
337 	if (!mutex_trylock(&kexec_mutex))
338 		return -EBUSY;
339 
340 	dest_image = &kexec_image;
341 	if (flags & KEXEC_FILE_ON_CRASH) {
342 		dest_image = &kexec_crash_image;
343 		if (kexec_crash_image)
344 			arch_kexec_unprotect_crashkres();
345 	}
346 
347 	if (flags & KEXEC_FILE_UNLOAD)
348 		goto exchange;
349 
350 	/*
351 	 * In case of crash, new kernel gets loaded in reserved region. It is
352 	 * same memory where old crash kernel might be loaded. Free any
353 	 * current crash dump kernel before we corrupt it.
354 	 */
355 	if (flags & KEXEC_FILE_ON_CRASH)
356 		kimage_free(xchg(&kexec_crash_image, NULL));
357 
358 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
359 				     cmdline_len, flags);
360 	if (ret)
361 		goto out;
362 
363 	ret = machine_kexec_prepare(image);
364 	if (ret)
365 		goto out;
366 
367 	/*
368 	 * Some architecture(like S390) may touch the crash memory before
369 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
370 	 */
371 	ret = kimage_crash_copy_vmcoreinfo(image);
372 	if (ret)
373 		goto out;
374 
375 	ret = kexec_calculate_store_digests(image);
376 	if (ret)
377 		goto out;
378 
379 	for (i = 0; i < image->nr_segments; i++) {
380 		struct kexec_segment *ksegment;
381 
382 		ksegment = &image->segment[i];
383 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
384 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
385 			 ksegment->memsz);
386 
387 		ret = kimage_load_segment(image, &image->segment[i]);
388 		if (ret)
389 			goto out;
390 	}
391 
392 	kimage_terminate(image);
393 
394 	ret = machine_kexec_post_load(image);
395 	if (ret)
396 		goto out;
397 
398 	/*
399 	 * Free up any temporary buffers allocated which are not needed
400 	 * after image has been loaded
401 	 */
402 	kimage_file_post_load_cleanup(image);
403 exchange:
404 	image = xchg(dest_image, image);
405 out:
406 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
407 		arch_kexec_protect_crashkres();
408 
409 	mutex_unlock(&kexec_mutex);
410 	kimage_free(image);
411 	return ret;
412 }
413 
414 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
415 				    struct kexec_buf *kbuf)
416 {
417 	struct kimage *image = kbuf->image;
418 	unsigned long temp_start, temp_end;
419 
420 	temp_end = min(end, kbuf->buf_max);
421 	temp_start = temp_end - kbuf->memsz;
422 
423 	do {
424 		/* align down start */
425 		temp_start = temp_start & (~(kbuf->buf_align - 1));
426 
427 		if (temp_start < start || temp_start < kbuf->buf_min)
428 			return 0;
429 
430 		temp_end = temp_start + kbuf->memsz - 1;
431 
432 		/*
433 		 * Make sure this does not conflict with any of existing
434 		 * segments
435 		 */
436 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
437 			temp_start = temp_start - PAGE_SIZE;
438 			continue;
439 		}
440 
441 		/* We found a suitable memory range */
442 		break;
443 	} while (1);
444 
445 	/* If we are here, we found a suitable memory range */
446 	kbuf->mem = temp_start;
447 
448 	/* Success, stop navigating through remaining System RAM ranges */
449 	return 1;
450 }
451 
452 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
453 				     struct kexec_buf *kbuf)
454 {
455 	struct kimage *image = kbuf->image;
456 	unsigned long temp_start, temp_end;
457 
458 	temp_start = max(start, kbuf->buf_min);
459 
460 	do {
461 		temp_start = ALIGN(temp_start, kbuf->buf_align);
462 		temp_end = temp_start + kbuf->memsz - 1;
463 
464 		if (temp_end > end || temp_end > kbuf->buf_max)
465 			return 0;
466 		/*
467 		 * Make sure this does not conflict with any of existing
468 		 * segments
469 		 */
470 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
471 			temp_start = temp_start + PAGE_SIZE;
472 			continue;
473 		}
474 
475 		/* We found a suitable memory range */
476 		break;
477 	} while (1);
478 
479 	/* If we are here, we found a suitable memory range */
480 	kbuf->mem = temp_start;
481 
482 	/* Success, stop navigating through remaining System RAM ranges */
483 	return 1;
484 }
485 
486 static int locate_mem_hole_callback(struct resource *res, void *arg)
487 {
488 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
489 	u64 start = res->start, end = res->end;
490 	unsigned long sz = end - start + 1;
491 
492 	/* Returning 0 will take to next memory range */
493 
494 	/* Don't use memory that will be detected and handled by a driver. */
495 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
496 		return 0;
497 
498 	if (sz < kbuf->memsz)
499 		return 0;
500 
501 	if (end < kbuf->buf_min || start > kbuf->buf_max)
502 		return 0;
503 
504 	/*
505 	 * Allocate memory top down with-in ram range. Otherwise bottom up
506 	 * allocation.
507 	 */
508 	if (kbuf->top_down)
509 		return locate_mem_hole_top_down(start, end, kbuf);
510 	return locate_mem_hole_bottom_up(start, end, kbuf);
511 }
512 
513 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
514 static int kexec_walk_memblock(struct kexec_buf *kbuf,
515 			       int (*func)(struct resource *, void *))
516 {
517 	int ret = 0;
518 	u64 i;
519 	phys_addr_t mstart, mend;
520 	struct resource res = { };
521 
522 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
523 		return func(&crashk_res, kbuf);
524 
525 	/*
526 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
527 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
528 	 * locate_mem_hole_callback().
529 	 */
530 	if (kbuf->top_down) {
531 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
532 						&mstart, &mend, NULL) {
533 			/*
534 			 * In memblock, end points to the first byte after the
535 			 * range while in kexec, end points to the last byte
536 			 * in the range.
537 			 */
538 			res.start = mstart;
539 			res.end = mend - 1;
540 			ret = func(&res, kbuf);
541 			if (ret)
542 				break;
543 		}
544 	} else {
545 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
546 					&mstart, &mend, NULL) {
547 			/*
548 			 * In memblock, end points to the first byte after the
549 			 * range while in kexec, end points to the last byte
550 			 * in the range.
551 			 */
552 			res.start = mstart;
553 			res.end = mend - 1;
554 			ret = func(&res, kbuf);
555 			if (ret)
556 				break;
557 		}
558 	}
559 
560 	return ret;
561 }
562 #else
563 static int kexec_walk_memblock(struct kexec_buf *kbuf,
564 			       int (*func)(struct resource *, void *))
565 {
566 	return 0;
567 }
568 #endif
569 
570 /**
571  * kexec_walk_resources - call func(data) on free memory regions
572  * @kbuf:	Context info for the search. Also passed to @func.
573  * @func:	Function to call for each memory region.
574  *
575  * Return: The memory walk will stop when func returns a non-zero value
576  * and that value will be returned. If all free regions are visited without
577  * func returning non-zero, then zero will be returned.
578  */
579 static int kexec_walk_resources(struct kexec_buf *kbuf,
580 				int (*func)(struct resource *, void *))
581 {
582 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
583 		return walk_iomem_res_desc(crashk_res.desc,
584 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
585 					   crashk_res.start, crashk_res.end,
586 					   kbuf, func);
587 	else
588 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
589 }
590 
591 /**
592  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
593  * @kbuf:	Parameters for the memory search.
594  *
595  * On success, kbuf->mem will have the start address of the memory region found.
596  *
597  * Return: 0 on success, negative errno on error.
598  */
599 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
600 {
601 	int ret;
602 
603 	/* Arch knows where to place */
604 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
605 		return 0;
606 
607 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
608 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
609 	else
610 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
611 
612 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
613 }
614 
615 /**
616  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
617  * @kbuf:                       Parameters for the memory search.
618  *
619  * On success, kbuf->mem will have the start address of the memory region found.
620  *
621  * Return: 0 on success, negative errno on error.
622  */
623 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
624 {
625 	return kexec_locate_mem_hole(kbuf);
626 }
627 
628 /**
629  * kexec_add_buffer - place a buffer in a kexec segment
630  * @kbuf:	Buffer contents and memory parameters.
631  *
632  * This function assumes that kexec_mutex is held.
633  * On successful return, @kbuf->mem will have the physical address of
634  * the buffer in memory.
635  *
636  * Return: 0 on success, negative errno on error.
637  */
638 int kexec_add_buffer(struct kexec_buf *kbuf)
639 {
640 	struct kexec_segment *ksegment;
641 	int ret;
642 
643 	/* Currently adding segment this way is allowed only in file mode */
644 	if (!kbuf->image->file_mode)
645 		return -EINVAL;
646 
647 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
648 		return -EINVAL;
649 
650 	/*
651 	 * Make sure we are not trying to add buffer after allocating
652 	 * control pages. All segments need to be placed first before
653 	 * any control pages are allocated. As control page allocation
654 	 * logic goes through list of segments to make sure there are
655 	 * no destination overlaps.
656 	 */
657 	if (!list_empty(&kbuf->image->control_pages)) {
658 		WARN_ON(1);
659 		return -EINVAL;
660 	}
661 
662 	/* Ensure minimum alignment needed for segments. */
663 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
664 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
665 
666 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
667 	ret = arch_kexec_locate_mem_hole(kbuf);
668 	if (ret)
669 		return ret;
670 
671 	/* Found a suitable memory range */
672 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
673 	ksegment->kbuf = kbuf->buffer;
674 	ksegment->bufsz = kbuf->bufsz;
675 	ksegment->mem = kbuf->mem;
676 	ksegment->memsz = kbuf->memsz;
677 	kbuf->image->nr_segments++;
678 	return 0;
679 }
680 
681 /* Calculate and store the digest of segments */
682 static int kexec_calculate_store_digests(struct kimage *image)
683 {
684 	struct crypto_shash *tfm;
685 	struct shash_desc *desc;
686 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
687 	size_t desc_size, nullsz;
688 	char *digest;
689 	void *zero_buf;
690 	struct kexec_sha_region *sha_regions;
691 	struct purgatory_info *pi = &image->purgatory_info;
692 
693 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
694 		return 0;
695 
696 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
697 	zero_buf_sz = PAGE_SIZE;
698 
699 	tfm = crypto_alloc_shash("sha256", 0, 0);
700 	if (IS_ERR(tfm)) {
701 		ret = PTR_ERR(tfm);
702 		goto out;
703 	}
704 
705 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
706 	desc = kzalloc(desc_size, GFP_KERNEL);
707 	if (!desc) {
708 		ret = -ENOMEM;
709 		goto out_free_tfm;
710 	}
711 
712 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
713 	sha_regions = vzalloc(sha_region_sz);
714 	if (!sha_regions) {
715 		ret = -ENOMEM;
716 		goto out_free_desc;
717 	}
718 
719 	desc->tfm   = tfm;
720 
721 	ret = crypto_shash_init(desc);
722 	if (ret < 0)
723 		goto out_free_sha_regions;
724 
725 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
726 	if (!digest) {
727 		ret = -ENOMEM;
728 		goto out_free_sha_regions;
729 	}
730 
731 	for (j = i = 0; i < image->nr_segments; i++) {
732 		struct kexec_segment *ksegment;
733 
734 		ksegment = &image->segment[i];
735 		/*
736 		 * Skip purgatory as it will be modified once we put digest
737 		 * info in purgatory.
738 		 */
739 		if (ksegment->kbuf == pi->purgatory_buf)
740 			continue;
741 
742 		ret = crypto_shash_update(desc, ksegment->kbuf,
743 					  ksegment->bufsz);
744 		if (ret)
745 			break;
746 
747 		/*
748 		 * Assume rest of the buffer is filled with zero and
749 		 * update digest accordingly.
750 		 */
751 		nullsz = ksegment->memsz - ksegment->bufsz;
752 		while (nullsz) {
753 			unsigned long bytes = nullsz;
754 
755 			if (bytes > zero_buf_sz)
756 				bytes = zero_buf_sz;
757 			ret = crypto_shash_update(desc, zero_buf, bytes);
758 			if (ret)
759 				break;
760 			nullsz -= bytes;
761 		}
762 
763 		if (ret)
764 			break;
765 
766 		sha_regions[j].start = ksegment->mem;
767 		sha_regions[j].len = ksegment->memsz;
768 		j++;
769 	}
770 
771 	if (!ret) {
772 		ret = crypto_shash_final(desc, digest);
773 		if (ret)
774 			goto out_free_digest;
775 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
776 						     sha_regions, sha_region_sz, 0);
777 		if (ret)
778 			goto out_free_digest;
779 
780 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
781 						     digest, SHA256_DIGEST_SIZE, 0);
782 		if (ret)
783 			goto out_free_digest;
784 	}
785 
786 out_free_digest:
787 	kfree(digest);
788 out_free_sha_regions:
789 	vfree(sha_regions);
790 out_free_desc:
791 	kfree(desc);
792 out_free_tfm:
793 	kfree(tfm);
794 out:
795 	return ret;
796 }
797 
798 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
799 /*
800  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
801  * @pi:		Purgatory to be loaded.
802  * @kbuf:	Buffer to setup.
803  *
804  * Allocates the memory needed for the buffer. Caller is responsible to free
805  * the memory after use.
806  *
807  * Return: 0 on success, negative errno on error.
808  */
809 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
810 				      struct kexec_buf *kbuf)
811 {
812 	const Elf_Shdr *sechdrs;
813 	unsigned long bss_align;
814 	unsigned long bss_sz;
815 	unsigned long align;
816 	int i, ret;
817 
818 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
819 	kbuf->buf_align = bss_align = 1;
820 	kbuf->bufsz = bss_sz = 0;
821 
822 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
823 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
824 			continue;
825 
826 		align = sechdrs[i].sh_addralign;
827 		if (sechdrs[i].sh_type != SHT_NOBITS) {
828 			if (kbuf->buf_align < align)
829 				kbuf->buf_align = align;
830 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
831 			kbuf->bufsz += sechdrs[i].sh_size;
832 		} else {
833 			if (bss_align < align)
834 				bss_align = align;
835 			bss_sz = ALIGN(bss_sz, align);
836 			bss_sz += sechdrs[i].sh_size;
837 		}
838 	}
839 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
840 	kbuf->memsz = kbuf->bufsz + bss_sz;
841 	if (kbuf->buf_align < bss_align)
842 		kbuf->buf_align = bss_align;
843 
844 	kbuf->buffer = vzalloc(kbuf->bufsz);
845 	if (!kbuf->buffer)
846 		return -ENOMEM;
847 	pi->purgatory_buf = kbuf->buffer;
848 
849 	ret = kexec_add_buffer(kbuf);
850 	if (ret)
851 		goto out;
852 
853 	return 0;
854 out:
855 	vfree(pi->purgatory_buf);
856 	pi->purgatory_buf = NULL;
857 	return ret;
858 }
859 
860 /*
861  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
862  * @pi:		Purgatory to be loaded.
863  * @kbuf:	Buffer prepared to store purgatory.
864  *
865  * Allocates the memory needed for the buffer. Caller is responsible to free
866  * the memory after use.
867  *
868  * Return: 0 on success, negative errno on error.
869  */
870 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
871 					 struct kexec_buf *kbuf)
872 {
873 	unsigned long bss_addr;
874 	unsigned long offset;
875 	Elf_Shdr *sechdrs;
876 	int i;
877 
878 	/*
879 	 * The section headers in kexec_purgatory are read-only. In order to
880 	 * have them modifiable make a temporary copy.
881 	 */
882 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
883 	if (!sechdrs)
884 		return -ENOMEM;
885 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
886 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
887 	pi->sechdrs = sechdrs;
888 
889 	offset = 0;
890 	bss_addr = kbuf->mem + kbuf->bufsz;
891 	kbuf->image->start = pi->ehdr->e_entry;
892 
893 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
894 		unsigned long align;
895 		void *src, *dst;
896 
897 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
898 			continue;
899 
900 		align = sechdrs[i].sh_addralign;
901 		if (sechdrs[i].sh_type == SHT_NOBITS) {
902 			bss_addr = ALIGN(bss_addr, align);
903 			sechdrs[i].sh_addr = bss_addr;
904 			bss_addr += sechdrs[i].sh_size;
905 			continue;
906 		}
907 
908 		offset = ALIGN(offset, align);
909 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
910 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
911 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
912 					 + sechdrs[i].sh_size)) {
913 			kbuf->image->start -= sechdrs[i].sh_addr;
914 			kbuf->image->start += kbuf->mem + offset;
915 		}
916 
917 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
918 		dst = pi->purgatory_buf + offset;
919 		memcpy(dst, src, sechdrs[i].sh_size);
920 
921 		sechdrs[i].sh_addr = kbuf->mem + offset;
922 		sechdrs[i].sh_offset = offset;
923 		offset += sechdrs[i].sh_size;
924 	}
925 
926 	return 0;
927 }
928 
929 static int kexec_apply_relocations(struct kimage *image)
930 {
931 	int i, ret;
932 	struct purgatory_info *pi = &image->purgatory_info;
933 	const Elf_Shdr *sechdrs;
934 
935 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
936 
937 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
938 		const Elf_Shdr *relsec;
939 		const Elf_Shdr *symtab;
940 		Elf_Shdr *section;
941 
942 		relsec = sechdrs + i;
943 
944 		if (relsec->sh_type != SHT_RELA &&
945 		    relsec->sh_type != SHT_REL)
946 			continue;
947 
948 		/*
949 		 * For section of type SHT_RELA/SHT_REL,
950 		 * ->sh_link contains section header index of associated
951 		 * symbol table. And ->sh_info contains section header
952 		 * index of section to which relocations apply.
953 		 */
954 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
955 		    relsec->sh_link >= pi->ehdr->e_shnum)
956 			return -ENOEXEC;
957 
958 		section = pi->sechdrs + relsec->sh_info;
959 		symtab = sechdrs + relsec->sh_link;
960 
961 		if (!(section->sh_flags & SHF_ALLOC))
962 			continue;
963 
964 		/*
965 		 * symtab->sh_link contain section header index of associated
966 		 * string table.
967 		 */
968 		if (symtab->sh_link >= pi->ehdr->e_shnum)
969 			/* Invalid section number? */
970 			continue;
971 
972 		/*
973 		 * Respective architecture needs to provide support for applying
974 		 * relocations of type SHT_RELA/SHT_REL.
975 		 */
976 		if (relsec->sh_type == SHT_RELA)
977 			ret = arch_kexec_apply_relocations_add(pi, section,
978 							       relsec, symtab);
979 		else if (relsec->sh_type == SHT_REL)
980 			ret = arch_kexec_apply_relocations(pi, section,
981 							   relsec, symtab);
982 		if (ret)
983 			return ret;
984 	}
985 
986 	return 0;
987 }
988 
989 /*
990  * kexec_load_purgatory - Load and relocate the purgatory object.
991  * @image:	Image to add the purgatory to.
992  * @kbuf:	Memory parameters to use.
993  *
994  * Allocates the memory needed for image->purgatory_info.sechdrs and
995  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
996  * to free the memory after use.
997  *
998  * Return: 0 on success, negative errno on error.
999  */
1000 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1001 {
1002 	struct purgatory_info *pi = &image->purgatory_info;
1003 	int ret;
1004 
1005 	if (kexec_purgatory_size <= 0)
1006 		return -EINVAL;
1007 
1008 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1009 
1010 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1011 	if (ret)
1012 		return ret;
1013 
1014 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1015 	if (ret)
1016 		goto out_free_kbuf;
1017 
1018 	ret = kexec_apply_relocations(image);
1019 	if (ret)
1020 		goto out;
1021 
1022 	return 0;
1023 out:
1024 	vfree(pi->sechdrs);
1025 	pi->sechdrs = NULL;
1026 out_free_kbuf:
1027 	vfree(pi->purgatory_buf);
1028 	pi->purgatory_buf = NULL;
1029 	return ret;
1030 }
1031 
1032 /*
1033  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1034  * @pi:		Purgatory to search in.
1035  * @name:	Name of the symbol.
1036  *
1037  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1038  */
1039 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1040 						  const char *name)
1041 {
1042 	const Elf_Shdr *sechdrs;
1043 	const Elf_Ehdr *ehdr;
1044 	const Elf_Sym *syms;
1045 	const char *strtab;
1046 	int i, k;
1047 
1048 	if (!pi->ehdr)
1049 		return NULL;
1050 
1051 	ehdr = pi->ehdr;
1052 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1053 
1054 	for (i = 0; i < ehdr->e_shnum; i++) {
1055 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1056 			continue;
1057 
1058 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1059 			/* Invalid strtab section number */
1060 			continue;
1061 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1062 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1063 
1064 		/* Go through symbols for a match */
1065 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1066 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1067 				continue;
1068 
1069 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1070 				continue;
1071 
1072 			if (syms[k].st_shndx == SHN_UNDEF ||
1073 			    syms[k].st_shndx >= ehdr->e_shnum) {
1074 				pr_debug("Symbol: %s has bad section index %d.\n",
1075 						name, syms[k].st_shndx);
1076 				return NULL;
1077 			}
1078 
1079 			/* Found the symbol we are looking for */
1080 			return &syms[k];
1081 		}
1082 	}
1083 
1084 	return NULL;
1085 }
1086 
1087 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1088 {
1089 	struct purgatory_info *pi = &image->purgatory_info;
1090 	const Elf_Sym *sym;
1091 	Elf_Shdr *sechdr;
1092 
1093 	sym = kexec_purgatory_find_symbol(pi, name);
1094 	if (!sym)
1095 		return ERR_PTR(-EINVAL);
1096 
1097 	sechdr = &pi->sechdrs[sym->st_shndx];
1098 
1099 	/*
1100 	 * Returns the address where symbol will finally be loaded after
1101 	 * kexec_load_segment()
1102 	 */
1103 	return (void *)(sechdr->sh_addr + sym->st_value);
1104 }
1105 
1106 /*
1107  * Get or set value of a symbol. If "get_value" is true, symbol value is
1108  * returned in buf otherwise symbol value is set based on value in buf.
1109  */
1110 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1111 				   void *buf, unsigned int size, bool get_value)
1112 {
1113 	struct purgatory_info *pi = &image->purgatory_info;
1114 	const Elf_Sym *sym;
1115 	Elf_Shdr *sec;
1116 	char *sym_buf;
1117 
1118 	sym = kexec_purgatory_find_symbol(pi, name);
1119 	if (!sym)
1120 		return -EINVAL;
1121 
1122 	if (sym->st_size != size) {
1123 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1124 		       name, (unsigned long)sym->st_size, size);
1125 		return -EINVAL;
1126 	}
1127 
1128 	sec = pi->sechdrs + sym->st_shndx;
1129 
1130 	if (sec->sh_type == SHT_NOBITS) {
1131 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1132 		       get_value ? "get" : "set");
1133 		return -EINVAL;
1134 	}
1135 
1136 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1137 
1138 	if (get_value)
1139 		memcpy((void *)buf, sym_buf, size);
1140 	else
1141 		memcpy((void *)sym_buf, buf, size);
1142 
1143 	return 0;
1144 }
1145 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1146 
1147 int crash_exclude_mem_range(struct crash_mem *mem,
1148 			    unsigned long long mstart, unsigned long long mend)
1149 {
1150 	int i, j;
1151 	unsigned long long start, end, p_start, p_end;
1152 	struct crash_mem_range temp_range = {0, 0};
1153 
1154 	for (i = 0; i < mem->nr_ranges; i++) {
1155 		start = mem->ranges[i].start;
1156 		end = mem->ranges[i].end;
1157 		p_start = mstart;
1158 		p_end = mend;
1159 
1160 		if (mstart > end || mend < start)
1161 			continue;
1162 
1163 		/* Truncate any area outside of range */
1164 		if (mstart < start)
1165 			p_start = start;
1166 		if (mend > end)
1167 			p_end = end;
1168 
1169 		/* Found completely overlapping range */
1170 		if (p_start == start && p_end == end) {
1171 			mem->ranges[i].start = 0;
1172 			mem->ranges[i].end = 0;
1173 			if (i < mem->nr_ranges - 1) {
1174 				/* Shift rest of the ranges to left */
1175 				for (j = i; j < mem->nr_ranges - 1; j++) {
1176 					mem->ranges[j].start =
1177 						mem->ranges[j+1].start;
1178 					mem->ranges[j].end =
1179 							mem->ranges[j+1].end;
1180 				}
1181 
1182 				/*
1183 				 * Continue to check if there are another overlapping ranges
1184 				 * from the current position because of shifting the above
1185 				 * mem ranges.
1186 				 */
1187 				i--;
1188 				mem->nr_ranges--;
1189 				continue;
1190 			}
1191 			mem->nr_ranges--;
1192 			return 0;
1193 		}
1194 
1195 		if (p_start > start && p_end < end) {
1196 			/* Split original range */
1197 			mem->ranges[i].end = p_start - 1;
1198 			temp_range.start = p_end + 1;
1199 			temp_range.end = end;
1200 		} else if (p_start != start)
1201 			mem->ranges[i].end = p_start - 1;
1202 		else
1203 			mem->ranges[i].start = p_end + 1;
1204 		break;
1205 	}
1206 
1207 	/* If a split happened, add the split to array */
1208 	if (!temp_range.end)
1209 		return 0;
1210 
1211 	/* Split happened */
1212 	if (i == mem->max_nr_ranges - 1)
1213 		return -ENOMEM;
1214 
1215 	/* Location where new range should go */
1216 	j = i + 1;
1217 	if (j < mem->nr_ranges) {
1218 		/* Move over all ranges one slot towards the end */
1219 		for (i = mem->nr_ranges - 1; i >= j; i--)
1220 			mem->ranges[i + 1] = mem->ranges[i];
1221 	}
1222 
1223 	mem->ranges[j].start = temp_range.start;
1224 	mem->ranges[j].end = temp_range.end;
1225 	mem->nr_ranges++;
1226 	return 0;
1227 }
1228 
1229 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1230 			  void **addr, unsigned long *sz)
1231 {
1232 	Elf64_Ehdr *ehdr;
1233 	Elf64_Phdr *phdr;
1234 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1235 	unsigned char *buf;
1236 	unsigned int cpu, i;
1237 	unsigned long long notes_addr;
1238 	unsigned long mstart, mend;
1239 
1240 	/* extra phdr for vmcoreinfo ELF note */
1241 	nr_phdr = nr_cpus + 1;
1242 	nr_phdr += mem->nr_ranges;
1243 
1244 	/*
1245 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1246 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1247 	 * I think this is required by tools like gdb. So same physical
1248 	 * memory will be mapped in two ELF headers. One will contain kernel
1249 	 * text virtual addresses and other will have __va(physical) addresses.
1250 	 */
1251 
1252 	nr_phdr++;
1253 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1254 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1255 
1256 	buf = vzalloc(elf_sz);
1257 	if (!buf)
1258 		return -ENOMEM;
1259 
1260 	ehdr = (Elf64_Ehdr *)buf;
1261 	phdr = (Elf64_Phdr *)(ehdr + 1);
1262 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1263 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1264 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1265 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1266 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1267 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1268 	ehdr->e_type = ET_CORE;
1269 	ehdr->e_machine = ELF_ARCH;
1270 	ehdr->e_version = EV_CURRENT;
1271 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1272 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1273 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1274 
1275 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1276 	for_each_present_cpu(cpu) {
1277 		phdr->p_type = PT_NOTE;
1278 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1279 		phdr->p_offset = phdr->p_paddr = notes_addr;
1280 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1281 		(ehdr->e_phnum)++;
1282 		phdr++;
1283 	}
1284 
1285 	/* Prepare one PT_NOTE header for vmcoreinfo */
1286 	phdr->p_type = PT_NOTE;
1287 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1288 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1289 	(ehdr->e_phnum)++;
1290 	phdr++;
1291 
1292 	/* Prepare PT_LOAD type program header for kernel text region */
1293 	if (need_kernel_map) {
1294 		phdr->p_type = PT_LOAD;
1295 		phdr->p_flags = PF_R|PF_W|PF_X;
1296 		phdr->p_vaddr = (unsigned long) _text;
1297 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1298 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1299 		ehdr->e_phnum++;
1300 		phdr++;
1301 	}
1302 
1303 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1304 	for (i = 0; i < mem->nr_ranges; i++) {
1305 		mstart = mem->ranges[i].start;
1306 		mend = mem->ranges[i].end;
1307 
1308 		phdr->p_type = PT_LOAD;
1309 		phdr->p_flags = PF_R|PF_W|PF_X;
1310 		phdr->p_offset  = mstart;
1311 
1312 		phdr->p_paddr = mstart;
1313 		phdr->p_vaddr = (unsigned long) __va(mstart);
1314 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1315 		phdr->p_align = 0;
1316 		ehdr->e_phnum++;
1317 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1318 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1319 			ehdr->e_phnum, phdr->p_offset);
1320 		phdr++;
1321 	}
1322 
1323 	*addr = buf;
1324 	*sz = elf_sz;
1325 	return 0;
1326 }
1327