xref: /openbmc/linux/kernel/kexec_file.c (revision 5fb859f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /*
44  * Currently this is the only default function that is exported as some
45  * architectures need it to do additional handlings.
46  * In the future, other default functions may be exported too if required.
47  */
48 int kexec_image_probe_default(struct kimage *image, void *buf,
49 			      unsigned long buf_len)
50 {
51 	const struct kexec_file_ops * const *fops;
52 	int ret = -ENOEXEC;
53 
54 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
55 		ret = (*fops)->probe(buf, buf_len);
56 		if (!ret) {
57 			image->fops = *fops;
58 			return ret;
59 		}
60 	}
61 
62 	return ret;
63 }
64 
65 /* Architectures can provide this probe function */
66 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
67 					 unsigned long buf_len)
68 {
69 	return kexec_image_probe_default(image, buf, buf_len);
70 }
71 
72 static void *kexec_image_load_default(struct kimage *image)
73 {
74 	if (!image->fops || !image->fops->load)
75 		return ERR_PTR(-ENOEXEC);
76 
77 	return image->fops->load(image, image->kernel_buf,
78 				 image->kernel_buf_len, image->initrd_buf,
79 				 image->initrd_buf_len, image->cmdline_buf,
80 				 image->cmdline_buf_len);
81 }
82 
83 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
84 {
85 	return kexec_image_load_default(image);
86 }
87 
88 int kexec_image_post_load_cleanup_default(struct kimage *image)
89 {
90 	if (!image->fops || !image->fops->cleanup)
91 		return 0;
92 
93 	return image->fops->cleanup(image->image_loader_data);
94 }
95 
96 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
97 {
98 	return kexec_image_post_load_cleanup_default(image);
99 }
100 
101 #ifdef CONFIG_KEXEC_SIG
102 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
103 					  unsigned long buf_len)
104 {
105 	if (!image->fops || !image->fops->verify_sig) {
106 		pr_debug("kernel loader does not support signature verification.\n");
107 		return -EKEYREJECTED;
108 	}
109 
110 	return image->fops->verify_sig(buf, buf_len);
111 }
112 
113 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
114 					unsigned long buf_len)
115 {
116 	return kexec_image_verify_sig_default(image, buf, buf_len);
117 }
118 #endif
119 
120 /*
121  * Free up memory used by kernel, initrd, and command line. This is temporary
122  * memory allocation which is not needed any more after these buffers have
123  * been loaded into separate segments and have been copied elsewhere.
124  */
125 void kimage_file_post_load_cleanup(struct kimage *image)
126 {
127 	struct purgatory_info *pi = &image->purgatory_info;
128 
129 	vfree(image->kernel_buf);
130 	image->kernel_buf = NULL;
131 
132 	vfree(image->initrd_buf);
133 	image->initrd_buf = NULL;
134 
135 	kfree(image->cmdline_buf);
136 	image->cmdline_buf = NULL;
137 
138 	vfree(pi->purgatory_buf);
139 	pi->purgatory_buf = NULL;
140 
141 	vfree(pi->sechdrs);
142 	pi->sechdrs = NULL;
143 
144 #ifdef CONFIG_IMA_KEXEC
145 	vfree(image->ima_buffer);
146 	image->ima_buffer = NULL;
147 #endif /* CONFIG_IMA_KEXEC */
148 
149 	/* See if architecture has anything to cleanup post load */
150 	arch_kimage_file_post_load_cleanup(image);
151 
152 	/*
153 	 * Above call should have called into bootloader to free up
154 	 * any data stored in kimage->image_loader_data. It should
155 	 * be ok now to free it up.
156 	 */
157 	kfree(image->image_loader_data);
158 	image->image_loader_data = NULL;
159 }
160 
161 #ifdef CONFIG_KEXEC_SIG
162 static int
163 kimage_validate_signature(struct kimage *image)
164 {
165 	int ret;
166 
167 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
168 					   image->kernel_buf_len);
169 	if (ret) {
170 
171 		if (sig_enforce) {
172 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
173 			return ret;
174 		}
175 
176 		/*
177 		 * If IMA is guaranteed to appraise a signature on the kexec
178 		 * image, permit it even if the kernel is otherwise locked
179 		 * down.
180 		 */
181 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
182 		    security_locked_down(LOCKDOWN_KEXEC))
183 			return -EPERM;
184 
185 		pr_debug("kernel signature verification failed (%d).\n", ret);
186 	}
187 
188 	return 0;
189 }
190 #endif
191 
192 /*
193  * In file mode list of segments is prepared by kernel. Copy relevant
194  * data from user space, do error checking, prepare segment list
195  */
196 static int
197 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
198 			     const char __user *cmdline_ptr,
199 			     unsigned long cmdline_len, unsigned flags)
200 {
201 	int ret;
202 	void *ldata;
203 
204 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
205 				       INT_MAX, NULL, READING_KEXEC_IMAGE);
206 	if (ret < 0)
207 		return ret;
208 	image->kernel_buf_len = ret;
209 
210 	/* Call arch image probe handlers */
211 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212 					    image->kernel_buf_len);
213 	if (ret)
214 		goto out;
215 
216 #ifdef CONFIG_KEXEC_SIG
217 	ret = kimage_validate_signature(image);
218 
219 	if (ret)
220 		goto out;
221 #endif
222 	/* It is possible that there no initramfs is being loaded */
223 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225 					       INT_MAX, NULL,
226 					       READING_KEXEC_INITRAMFS);
227 		if (ret < 0)
228 			goto out;
229 		image->initrd_buf_len = ret;
230 		ret = 0;
231 	}
232 
233 	if (cmdline_len) {
234 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235 		if (IS_ERR(image->cmdline_buf)) {
236 			ret = PTR_ERR(image->cmdline_buf);
237 			image->cmdline_buf = NULL;
238 			goto out;
239 		}
240 
241 		image->cmdline_buf_len = cmdline_len;
242 
243 		/* command line should be a string with last byte null */
244 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245 			ret = -EINVAL;
246 			goto out;
247 		}
248 
249 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250 				  image->cmdline_buf_len - 1);
251 	}
252 
253 	/* IMA needs to pass the measurement list to the next kernel. */
254 	ima_add_kexec_buffer(image);
255 
256 	/* Call arch image load handlers */
257 	ldata = arch_kexec_kernel_image_load(image);
258 
259 	if (IS_ERR(ldata)) {
260 		ret = PTR_ERR(ldata);
261 		goto out;
262 	}
263 
264 	image->image_loader_data = ldata;
265 out:
266 	/* In case of error, free up all allocated memory in this function */
267 	if (ret)
268 		kimage_file_post_load_cleanup(image);
269 	return ret;
270 }
271 
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274 		       int initrd_fd, const char __user *cmdline_ptr,
275 		       unsigned long cmdline_len, unsigned long flags)
276 {
277 	int ret;
278 	struct kimage *image;
279 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280 
281 	image = do_kimage_alloc_init();
282 	if (!image)
283 		return -ENOMEM;
284 
285 	image->file_mode = 1;
286 
287 	if (kexec_on_panic) {
288 		/* Enable special crash kernel control page alloc policy. */
289 		image->control_page = crashk_res.start;
290 		image->type = KEXEC_TYPE_CRASH;
291 	}
292 
293 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
294 					   cmdline_ptr, cmdline_len, flags);
295 	if (ret)
296 		goto out_free_image;
297 
298 	ret = sanity_check_segment_list(image);
299 	if (ret)
300 		goto out_free_post_load_bufs;
301 
302 	ret = -ENOMEM;
303 	image->control_code_page = kimage_alloc_control_pages(image,
304 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
305 	if (!image->control_code_page) {
306 		pr_err("Could not allocate control_code_buffer\n");
307 		goto out_free_post_load_bufs;
308 	}
309 
310 	if (!kexec_on_panic) {
311 		image->swap_page = kimage_alloc_control_pages(image, 0);
312 		if (!image->swap_page) {
313 			pr_err("Could not allocate swap buffer\n");
314 			goto out_free_control_pages;
315 		}
316 	}
317 
318 	*rimage = image;
319 	return 0;
320 out_free_control_pages:
321 	kimage_free_page_list(&image->control_pages);
322 out_free_post_load_bufs:
323 	kimage_file_post_load_cleanup(image);
324 out_free_image:
325 	kfree(image);
326 	return ret;
327 }
328 
329 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
330 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
331 		unsigned long, flags)
332 {
333 	int ret = 0, i;
334 	struct kimage **dest_image, *image;
335 
336 	/* We only trust the superuser with rebooting the system. */
337 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
338 		return -EPERM;
339 
340 	/* Make sure we have a legal set of flags */
341 	if (flags != (flags & KEXEC_FILE_FLAGS))
342 		return -EINVAL;
343 
344 	image = NULL;
345 
346 	if (!mutex_trylock(&kexec_mutex))
347 		return -EBUSY;
348 
349 	dest_image = &kexec_image;
350 	if (flags & KEXEC_FILE_ON_CRASH) {
351 		dest_image = &kexec_crash_image;
352 		if (kexec_crash_image)
353 			arch_kexec_unprotect_crashkres();
354 	}
355 
356 	if (flags & KEXEC_FILE_UNLOAD)
357 		goto exchange;
358 
359 	/*
360 	 * In case of crash, new kernel gets loaded in reserved region. It is
361 	 * same memory where old crash kernel might be loaded. Free any
362 	 * current crash dump kernel before we corrupt it.
363 	 */
364 	if (flags & KEXEC_FILE_ON_CRASH)
365 		kimage_free(xchg(&kexec_crash_image, NULL));
366 
367 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
368 				     cmdline_len, flags);
369 	if (ret)
370 		goto out;
371 
372 	ret = machine_kexec_prepare(image);
373 	if (ret)
374 		goto out;
375 
376 	/*
377 	 * Some architecture(like S390) may touch the crash memory before
378 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
379 	 */
380 	ret = kimage_crash_copy_vmcoreinfo(image);
381 	if (ret)
382 		goto out;
383 
384 	ret = kexec_calculate_store_digests(image);
385 	if (ret)
386 		goto out;
387 
388 	for (i = 0; i < image->nr_segments; i++) {
389 		struct kexec_segment *ksegment;
390 
391 		ksegment = &image->segment[i];
392 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
393 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
394 			 ksegment->memsz);
395 
396 		ret = kimage_load_segment(image, &image->segment[i]);
397 		if (ret)
398 			goto out;
399 	}
400 
401 	kimage_terminate(image);
402 
403 	ret = machine_kexec_post_load(image);
404 	if (ret)
405 		goto out;
406 
407 	/*
408 	 * Free up any temporary buffers allocated which are not needed
409 	 * after image has been loaded
410 	 */
411 	kimage_file_post_load_cleanup(image);
412 exchange:
413 	image = xchg(dest_image, image);
414 out:
415 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
416 		arch_kexec_protect_crashkres();
417 
418 	mutex_unlock(&kexec_mutex);
419 	kimage_free(image);
420 	return ret;
421 }
422 
423 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
424 				    struct kexec_buf *kbuf)
425 {
426 	struct kimage *image = kbuf->image;
427 	unsigned long temp_start, temp_end;
428 
429 	temp_end = min(end, kbuf->buf_max);
430 	temp_start = temp_end - kbuf->memsz;
431 
432 	do {
433 		/* align down start */
434 		temp_start = temp_start & (~(kbuf->buf_align - 1));
435 
436 		if (temp_start < start || temp_start < kbuf->buf_min)
437 			return 0;
438 
439 		temp_end = temp_start + kbuf->memsz - 1;
440 
441 		/*
442 		 * Make sure this does not conflict with any of existing
443 		 * segments
444 		 */
445 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
446 			temp_start = temp_start - PAGE_SIZE;
447 			continue;
448 		}
449 
450 		/* We found a suitable memory range */
451 		break;
452 	} while (1);
453 
454 	/* If we are here, we found a suitable memory range */
455 	kbuf->mem = temp_start;
456 
457 	/* Success, stop navigating through remaining System RAM ranges */
458 	return 1;
459 }
460 
461 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
462 				     struct kexec_buf *kbuf)
463 {
464 	struct kimage *image = kbuf->image;
465 	unsigned long temp_start, temp_end;
466 
467 	temp_start = max(start, kbuf->buf_min);
468 
469 	do {
470 		temp_start = ALIGN(temp_start, kbuf->buf_align);
471 		temp_end = temp_start + kbuf->memsz - 1;
472 
473 		if (temp_end > end || temp_end > kbuf->buf_max)
474 			return 0;
475 		/*
476 		 * Make sure this does not conflict with any of existing
477 		 * segments
478 		 */
479 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
480 			temp_start = temp_start + PAGE_SIZE;
481 			continue;
482 		}
483 
484 		/* We found a suitable memory range */
485 		break;
486 	} while (1);
487 
488 	/* If we are here, we found a suitable memory range */
489 	kbuf->mem = temp_start;
490 
491 	/* Success, stop navigating through remaining System RAM ranges */
492 	return 1;
493 }
494 
495 static int locate_mem_hole_callback(struct resource *res, void *arg)
496 {
497 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
498 	u64 start = res->start, end = res->end;
499 	unsigned long sz = end - start + 1;
500 
501 	/* Returning 0 will take to next memory range */
502 
503 	/* Don't use memory that will be detected and handled by a driver. */
504 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
505 		return 0;
506 
507 	if (sz < kbuf->memsz)
508 		return 0;
509 
510 	if (end < kbuf->buf_min || start > kbuf->buf_max)
511 		return 0;
512 
513 	/*
514 	 * Allocate memory top down with-in ram range. Otherwise bottom up
515 	 * allocation.
516 	 */
517 	if (kbuf->top_down)
518 		return locate_mem_hole_top_down(start, end, kbuf);
519 	return locate_mem_hole_bottom_up(start, end, kbuf);
520 }
521 
522 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
523 static int kexec_walk_memblock(struct kexec_buf *kbuf,
524 			       int (*func)(struct resource *, void *))
525 {
526 	int ret = 0;
527 	u64 i;
528 	phys_addr_t mstart, mend;
529 	struct resource res = { };
530 
531 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
532 		return func(&crashk_res, kbuf);
533 
534 	/*
535 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
536 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
537 	 * locate_mem_hole_callback().
538 	 */
539 	if (kbuf->top_down) {
540 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
541 						&mstart, &mend, NULL) {
542 			/*
543 			 * In memblock, end points to the first byte after the
544 			 * range while in kexec, end points to the last byte
545 			 * in the range.
546 			 */
547 			res.start = mstart;
548 			res.end = mend - 1;
549 			ret = func(&res, kbuf);
550 			if (ret)
551 				break;
552 		}
553 	} else {
554 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555 					&mstart, &mend, NULL) {
556 			/*
557 			 * In memblock, end points to the first byte after the
558 			 * range while in kexec, end points to the last byte
559 			 * in the range.
560 			 */
561 			res.start = mstart;
562 			res.end = mend - 1;
563 			ret = func(&res, kbuf);
564 			if (ret)
565 				break;
566 		}
567 	}
568 
569 	return ret;
570 }
571 #else
572 static int kexec_walk_memblock(struct kexec_buf *kbuf,
573 			       int (*func)(struct resource *, void *))
574 {
575 	return 0;
576 }
577 #endif
578 
579 /**
580  * kexec_walk_resources - call func(data) on free memory regions
581  * @kbuf:	Context info for the search. Also passed to @func.
582  * @func:	Function to call for each memory region.
583  *
584  * Return: The memory walk will stop when func returns a non-zero value
585  * and that value will be returned. If all free regions are visited without
586  * func returning non-zero, then zero will be returned.
587  */
588 static int kexec_walk_resources(struct kexec_buf *kbuf,
589 				int (*func)(struct resource *, void *))
590 {
591 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
592 		return walk_iomem_res_desc(crashk_res.desc,
593 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
594 					   crashk_res.start, crashk_res.end,
595 					   kbuf, func);
596 	else
597 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
598 }
599 
600 /**
601  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
602  * @kbuf:	Parameters for the memory search.
603  *
604  * On success, kbuf->mem will have the start address of the memory region found.
605  *
606  * Return: 0 on success, negative errno on error.
607  */
608 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
609 {
610 	int ret;
611 
612 	/* Arch knows where to place */
613 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
614 		return 0;
615 
616 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
617 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
618 	else
619 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
620 
621 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
622 }
623 
624 /**
625  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
626  * @kbuf:                       Parameters for the memory search.
627  *
628  * On success, kbuf->mem will have the start address of the memory region found.
629  *
630  * Return: 0 on success, negative errno on error.
631  */
632 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
633 {
634 	return kexec_locate_mem_hole(kbuf);
635 }
636 
637 /**
638  * kexec_add_buffer - place a buffer in a kexec segment
639  * @kbuf:	Buffer contents and memory parameters.
640  *
641  * This function assumes that kexec_mutex is held.
642  * On successful return, @kbuf->mem will have the physical address of
643  * the buffer in memory.
644  *
645  * Return: 0 on success, negative errno on error.
646  */
647 int kexec_add_buffer(struct kexec_buf *kbuf)
648 {
649 	struct kexec_segment *ksegment;
650 	int ret;
651 
652 	/* Currently adding segment this way is allowed only in file mode */
653 	if (!kbuf->image->file_mode)
654 		return -EINVAL;
655 
656 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
657 		return -EINVAL;
658 
659 	/*
660 	 * Make sure we are not trying to add buffer after allocating
661 	 * control pages. All segments need to be placed first before
662 	 * any control pages are allocated. As control page allocation
663 	 * logic goes through list of segments to make sure there are
664 	 * no destination overlaps.
665 	 */
666 	if (!list_empty(&kbuf->image->control_pages)) {
667 		WARN_ON(1);
668 		return -EINVAL;
669 	}
670 
671 	/* Ensure minimum alignment needed for segments. */
672 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
673 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
674 
675 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
676 	ret = arch_kexec_locate_mem_hole(kbuf);
677 	if (ret)
678 		return ret;
679 
680 	/* Found a suitable memory range */
681 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
682 	ksegment->kbuf = kbuf->buffer;
683 	ksegment->bufsz = kbuf->bufsz;
684 	ksegment->mem = kbuf->mem;
685 	ksegment->memsz = kbuf->memsz;
686 	kbuf->image->nr_segments++;
687 	return 0;
688 }
689 
690 /* Calculate and store the digest of segments */
691 static int kexec_calculate_store_digests(struct kimage *image)
692 {
693 	struct crypto_shash *tfm;
694 	struct shash_desc *desc;
695 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
696 	size_t desc_size, nullsz;
697 	char *digest;
698 	void *zero_buf;
699 	struct kexec_sha_region *sha_regions;
700 	struct purgatory_info *pi = &image->purgatory_info;
701 
702 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
703 		return 0;
704 
705 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
706 	zero_buf_sz = PAGE_SIZE;
707 
708 	tfm = crypto_alloc_shash("sha256", 0, 0);
709 	if (IS_ERR(tfm)) {
710 		ret = PTR_ERR(tfm);
711 		goto out;
712 	}
713 
714 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
715 	desc = kzalloc(desc_size, GFP_KERNEL);
716 	if (!desc) {
717 		ret = -ENOMEM;
718 		goto out_free_tfm;
719 	}
720 
721 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
722 	sha_regions = vzalloc(sha_region_sz);
723 	if (!sha_regions) {
724 		ret = -ENOMEM;
725 		goto out_free_desc;
726 	}
727 
728 	desc->tfm   = tfm;
729 
730 	ret = crypto_shash_init(desc);
731 	if (ret < 0)
732 		goto out_free_sha_regions;
733 
734 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
735 	if (!digest) {
736 		ret = -ENOMEM;
737 		goto out_free_sha_regions;
738 	}
739 
740 	for (j = i = 0; i < image->nr_segments; i++) {
741 		struct kexec_segment *ksegment;
742 
743 		ksegment = &image->segment[i];
744 		/*
745 		 * Skip purgatory as it will be modified once we put digest
746 		 * info in purgatory.
747 		 */
748 		if (ksegment->kbuf == pi->purgatory_buf)
749 			continue;
750 
751 		ret = crypto_shash_update(desc, ksegment->kbuf,
752 					  ksegment->bufsz);
753 		if (ret)
754 			break;
755 
756 		/*
757 		 * Assume rest of the buffer is filled with zero and
758 		 * update digest accordingly.
759 		 */
760 		nullsz = ksegment->memsz - ksegment->bufsz;
761 		while (nullsz) {
762 			unsigned long bytes = nullsz;
763 
764 			if (bytes > zero_buf_sz)
765 				bytes = zero_buf_sz;
766 			ret = crypto_shash_update(desc, zero_buf, bytes);
767 			if (ret)
768 				break;
769 			nullsz -= bytes;
770 		}
771 
772 		if (ret)
773 			break;
774 
775 		sha_regions[j].start = ksegment->mem;
776 		sha_regions[j].len = ksegment->memsz;
777 		j++;
778 	}
779 
780 	if (!ret) {
781 		ret = crypto_shash_final(desc, digest);
782 		if (ret)
783 			goto out_free_digest;
784 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
785 						     sha_regions, sha_region_sz, 0);
786 		if (ret)
787 			goto out_free_digest;
788 
789 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
790 						     digest, SHA256_DIGEST_SIZE, 0);
791 		if (ret)
792 			goto out_free_digest;
793 	}
794 
795 out_free_digest:
796 	kfree(digest);
797 out_free_sha_regions:
798 	vfree(sha_regions);
799 out_free_desc:
800 	kfree(desc);
801 out_free_tfm:
802 	kfree(tfm);
803 out:
804 	return ret;
805 }
806 
807 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
808 /*
809  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
810  * @pi:		Purgatory to be loaded.
811  * @kbuf:	Buffer to setup.
812  *
813  * Allocates the memory needed for the buffer. Caller is responsible to free
814  * the memory after use.
815  *
816  * Return: 0 on success, negative errno on error.
817  */
818 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
819 				      struct kexec_buf *kbuf)
820 {
821 	const Elf_Shdr *sechdrs;
822 	unsigned long bss_align;
823 	unsigned long bss_sz;
824 	unsigned long align;
825 	int i, ret;
826 
827 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
828 	kbuf->buf_align = bss_align = 1;
829 	kbuf->bufsz = bss_sz = 0;
830 
831 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
832 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
833 			continue;
834 
835 		align = sechdrs[i].sh_addralign;
836 		if (sechdrs[i].sh_type != SHT_NOBITS) {
837 			if (kbuf->buf_align < align)
838 				kbuf->buf_align = align;
839 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
840 			kbuf->bufsz += sechdrs[i].sh_size;
841 		} else {
842 			if (bss_align < align)
843 				bss_align = align;
844 			bss_sz = ALIGN(bss_sz, align);
845 			bss_sz += sechdrs[i].sh_size;
846 		}
847 	}
848 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
849 	kbuf->memsz = kbuf->bufsz + bss_sz;
850 	if (kbuf->buf_align < bss_align)
851 		kbuf->buf_align = bss_align;
852 
853 	kbuf->buffer = vzalloc(kbuf->bufsz);
854 	if (!kbuf->buffer)
855 		return -ENOMEM;
856 	pi->purgatory_buf = kbuf->buffer;
857 
858 	ret = kexec_add_buffer(kbuf);
859 	if (ret)
860 		goto out;
861 
862 	return 0;
863 out:
864 	vfree(pi->purgatory_buf);
865 	pi->purgatory_buf = NULL;
866 	return ret;
867 }
868 
869 /*
870  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
871  * @pi:		Purgatory to be loaded.
872  * @kbuf:	Buffer prepared to store purgatory.
873  *
874  * Allocates the memory needed for the buffer. Caller is responsible to free
875  * the memory after use.
876  *
877  * Return: 0 on success, negative errno on error.
878  */
879 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
880 					 struct kexec_buf *kbuf)
881 {
882 	unsigned long bss_addr;
883 	unsigned long offset;
884 	Elf_Shdr *sechdrs;
885 	int i;
886 
887 	/*
888 	 * The section headers in kexec_purgatory are read-only. In order to
889 	 * have them modifiable make a temporary copy.
890 	 */
891 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
892 	if (!sechdrs)
893 		return -ENOMEM;
894 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
895 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
896 	pi->sechdrs = sechdrs;
897 
898 	offset = 0;
899 	bss_addr = kbuf->mem + kbuf->bufsz;
900 	kbuf->image->start = pi->ehdr->e_entry;
901 
902 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
903 		unsigned long align;
904 		void *src, *dst;
905 
906 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
907 			continue;
908 
909 		align = sechdrs[i].sh_addralign;
910 		if (sechdrs[i].sh_type == SHT_NOBITS) {
911 			bss_addr = ALIGN(bss_addr, align);
912 			sechdrs[i].sh_addr = bss_addr;
913 			bss_addr += sechdrs[i].sh_size;
914 			continue;
915 		}
916 
917 		offset = ALIGN(offset, align);
918 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
919 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
920 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
921 					 + sechdrs[i].sh_size)) {
922 			kbuf->image->start -= sechdrs[i].sh_addr;
923 			kbuf->image->start += kbuf->mem + offset;
924 		}
925 
926 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
927 		dst = pi->purgatory_buf + offset;
928 		memcpy(dst, src, sechdrs[i].sh_size);
929 
930 		sechdrs[i].sh_addr = kbuf->mem + offset;
931 		sechdrs[i].sh_offset = offset;
932 		offset += sechdrs[i].sh_size;
933 	}
934 
935 	return 0;
936 }
937 
938 static int kexec_apply_relocations(struct kimage *image)
939 {
940 	int i, ret;
941 	struct purgatory_info *pi = &image->purgatory_info;
942 	const Elf_Shdr *sechdrs;
943 
944 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
945 
946 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
947 		const Elf_Shdr *relsec;
948 		const Elf_Shdr *symtab;
949 		Elf_Shdr *section;
950 
951 		relsec = sechdrs + i;
952 
953 		if (relsec->sh_type != SHT_RELA &&
954 		    relsec->sh_type != SHT_REL)
955 			continue;
956 
957 		/*
958 		 * For section of type SHT_RELA/SHT_REL,
959 		 * ->sh_link contains section header index of associated
960 		 * symbol table. And ->sh_info contains section header
961 		 * index of section to which relocations apply.
962 		 */
963 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
964 		    relsec->sh_link >= pi->ehdr->e_shnum)
965 			return -ENOEXEC;
966 
967 		section = pi->sechdrs + relsec->sh_info;
968 		symtab = sechdrs + relsec->sh_link;
969 
970 		if (!(section->sh_flags & SHF_ALLOC))
971 			continue;
972 
973 		/*
974 		 * symtab->sh_link contain section header index of associated
975 		 * string table.
976 		 */
977 		if (symtab->sh_link >= pi->ehdr->e_shnum)
978 			/* Invalid section number? */
979 			continue;
980 
981 		/*
982 		 * Respective architecture needs to provide support for applying
983 		 * relocations of type SHT_RELA/SHT_REL.
984 		 */
985 		if (relsec->sh_type == SHT_RELA)
986 			ret = arch_kexec_apply_relocations_add(pi, section,
987 							       relsec, symtab);
988 		else if (relsec->sh_type == SHT_REL)
989 			ret = arch_kexec_apply_relocations(pi, section,
990 							   relsec, symtab);
991 		if (ret)
992 			return ret;
993 	}
994 
995 	return 0;
996 }
997 
998 /*
999  * kexec_load_purgatory - Load and relocate the purgatory object.
1000  * @image:	Image to add the purgatory to.
1001  * @kbuf:	Memory parameters to use.
1002  *
1003  * Allocates the memory needed for image->purgatory_info.sechdrs and
1004  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1005  * to free the memory after use.
1006  *
1007  * Return: 0 on success, negative errno on error.
1008  */
1009 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1010 {
1011 	struct purgatory_info *pi = &image->purgatory_info;
1012 	int ret;
1013 
1014 	if (kexec_purgatory_size <= 0)
1015 		return -EINVAL;
1016 
1017 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1018 
1019 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1020 	if (ret)
1021 		return ret;
1022 
1023 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1024 	if (ret)
1025 		goto out_free_kbuf;
1026 
1027 	ret = kexec_apply_relocations(image);
1028 	if (ret)
1029 		goto out;
1030 
1031 	return 0;
1032 out:
1033 	vfree(pi->sechdrs);
1034 	pi->sechdrs = NULL;
1035 out_free_kbuf:
1036 	vfree(pi->purgatory_buf);
1037 	pi->purgatory_buf = NULL;
1038 	return ret;
1039 }
1040 
1041 /*
1042  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1043  * @pi:		Purgatory to search in.
1044  * @name:	Name of the symbol.
1045  *
1046  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1047  */
1048 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1049 						  const char *name)
1050 {
1051 	const Elf_Shdr *sechdrs;
1052 	const Elf_Ehdr *ehdr;
1053 	const Elf_Sym *syms;
1054 	const char *strtab;
1055 	int i, k;
1056 
1057 	if (!pi->ehdr)
1058 		return NULL;
1059 
1060 	ehdr = pi->ehdr;
1061 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1062 
1063 	for (i = 0; i < ehdr->e_shnum; i++) {
1064 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1065 			continue;
1066 
1067 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1068 			/* Invalid strtab section number */
1069 			continue;
1070 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1071 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1072 
1073 		/* Go through symbols for a match */
1074 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1075 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1076 				continue;
1077 
1078 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1079 				continue;
1080 
1081 			if (syms[k].st_shndx == SHN_UNDEF ||
1082 			    syms[k].st_shndx >= ehdr->e_shnum) {
1083 				pr_debug("Symbol: %s has bad section index %d.\n",
1084 						name, syms[k].st_shndx);
1085 				return NULL;
1086 			}
1087 
1088 			/* Found the symbol we are looking for */
1089 			return &syms[k];
1090 		}
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
1096 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1097 {
1098 	struct purgatory_info *pi = &image->purgatory_info;
1099 	const Elf_Sym *sym;
1100 	Elf_Shdr *sechdr;
1101 
1102 	sym = kexec_purgatory_find_symbol(pi, name);
1103 	if (!sym)
1104 		return ERR_PTR(-EINVAL);
1105 
1106 	sechdr = &pi->sechdrs[sym->st_shndx];
1107 
1108 	/*
1109 	 * Returns the address where symbol will finally be loaded after
1110 	 * kexec_load_segment()
1111 	 */
1112 	return (void *)(sechdr->sh_addr + sym->st_value);
1113 }
1114 
1115 /*
1116  * Get or set value of a symbol. If "get_value" is true, symbol value is
1117  * returned in buf otherwise symbol value is set based on value in buf.
1118  */
1119 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1120 				   void *buf, unsigned int size, bool get_value)
1121 {
1122 	struct purgatory_info *pi = &image->purgatory_info;
1123 	const Elf_Sym *sym;
1124 	Elf_Shdr *sec;
1125 	char *sym_buf;
1126 
1127 	sym = kexec_purgatory_find_symbol(pi, name);
1128 	if (!sym)
1129 		return -EINVAL;
1130 
1131 	if (sym->st_size != size) {
1132 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1133 		       name, (unsigned long)sym->st_size, size);
1134 		return -EINVAL;
1135 	}
1136 
1137 	sec = pi->sechdrs + sym->st_shndx;
1138 
1139 	if (sec->sh_type == SHT_NOBITS) {
1140 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1141 		       get_value ? "get" : "set");
1142 		return -EINVAL;
1143 	}
1144 
1145 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1146 
1147 	if (get_value)
1148 		memcpy((void *)buf, sym_buf, size);
1149 	else
1150 		memcpy((void *)sym_buf, buf, size);
1151 
1152 	return 0;
1153 }
1154 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1155 
1156 int crash_exclude_mem_range(struct crash_mem *mem,
1157 			    unsigned long long mstart, unsigned long long mend)
1158 {
1159 	int i, j;
1160 	unsigned long long start, end, p_start, p_end;
1161 	struct crash_mem_range temp_range = {0, 0};
1162 
1163 	for (i = 0; i < mem->nr_ranges; i++) {
1164 		start = mem->ranges[i].start;
1165 		end = mem->ranges[i].end;
1166 		p_start = mstart;
1167 		p_end = mend;
1168 
1169 		if (mstart > end || mend < start)
1170 			continue;
1171 
1172 		/* Truncate any area outside of range */
1173 		if (mstart < start)
1174 			p_start = start;
1175 		if (mend > end)
1176 			p_end = end;
1177 
1178 		/* Found completely overlapping range */
1179 		if (p_start == start && p_end == end) {
1180 			mem->ranges[i].start = 0;
1181 			mem->ranges[i].end = 0;
1182 			if (i < mem->nr_ranges - 1) {
1183 				/* Shift rest of the ranges to left */
1184 				for (j = i; j < mem->nr_ranges - 1; j++) {
1185 					mem->ranges[j].start =
1186 						mem->ranges[j+1].start;
1187 					mem->ranges[j].end =
1188 							mem->ranges[j+1].end;
1189 				}
1190 
1191 				/*
1192 				 * Continue to check if there are another overlapping ranges
1193 				 * from the current position because of shifting the above
1194 				 * mem ranges.
1195 				 */
1196 				i--;
1197 				mem->nr_ranges--;
1198 				continue;
1199 			}
1200 			mem->nr_ranges--;
1201 			return 0;
1202 		}
1203 
1204 		if (p_start > start && p_end < end) {
1205 			/* Split original range */
1206 			mem->ranges[i].end = p_start - 1;
1207 			temp_range.start = p_end + 1;
1208 			temp_range.end = end;
1209 		} else if (p_start != start)
1210 			mem->ranges[i].end = p_start - 1;
1211 		else
1212 			mem->ranges[i].start = p_end + 1;
1213 		break;
1214 	}
1215 
1216 	/* If a split happened, add the split to array */
1217 	if (!temp_range.end)
1218 		return 0;
1219 
1220 	/* Split happened */
1221 	if (i == mem->max_nr_ranges - 1)
1222 		return -ENOMEM;
1223 
1224 	/* Location where new range should go */
1225 	j = i + 1;
1226 	if (j < mem->nr_ranges) {
1227 		/* Move over all ranges one slot towards the end */
1228 		for (i = mem->nr_ranges - 1; i >= j; i--)
1229 			mem->ranges[i + 1] = mem->ranges[i];
1230 	}
1231 
1232 	mem->ranges[j].start = temp_range.start;
1233 	mem->ranges[j].end = temp_range.end;
1234 	mem->nr_ranges++;
1235 	return 0;
1236 }
1237 
1238 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1239 			  void **addr, unsigned long *sz)
1240 {
1241 	Elf64_Ehdr *ehdr;
1242 	Elf64_Phdr *phdr;
1243 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1244 	unsigned char *buf;
1245 	unsigned int cpu, i;
1246 	unsigned long long notes_addr;
1247 	unsigned long mstart, mend;
1248 
1249 	/* extra phdr for vmcoreinfo ELF note */
1250 	nr_phdr = nr_cpus + 1;
1251 	nr_phdr += mem->nr_ranges;
1252 
1253 	/*
1254 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1255 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1256 	 * I think this is required by tools like gdb. So same physical
1257 	 * memory will be mapped in two ELF headers. One will contain kernel
1258 	 * text virtual addresses and other will have __va(physical) addresses.
1259 	 */
1260 
1261 	nr_phdr++;
1262 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1263 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1264 
1265 	buf = vzalloc(elf_sz);
1266 	if (!buf)
1267 		return -ENOMEM;
1268 
1269 	ehdr = (Elf64_Ehdr *)buf;
1270 	phdr = (Elf64_Phdr *)(ehdr + 1);
1271 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1272 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1273 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1274 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1275 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1276 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1277 	ehdr->e_type = ET_CORE;
1278 	ehdr->e_machine = ELF_ARCH;
1279 	ehdr->e_version = EV_CURRENT;
1280 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1281 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1282 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1283 
1284 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1285 	for_each_present_cpu(cpu) {
1286 		phdr->p_type = PT_NOTE;
1287 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1288 		phdr->p_offset = phdr->p_paddr = notes_addr;
1289 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1290 		(ehdr->e_phnum)++;
1291 		phdr++;
1292 	}
1293 
1294 	/* Prepare one PT_NOTE header for vmcoreinfo */
1295 	phdr->p_type = PT_NOTE;
1296 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1297 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1298 	(ehdr->e_phnum)++;
1299 	phdr++;
1300 
1301 	/* Prepare PT_LOAD type program header for kernel text region */
1302 	if (need_kernel_map) {
1303 		phdr->p_type = PT_LOAD;
1304 		phdr->p_flags = PF_R|PF_W|PF_X;
1305 		phdr->p_vaddr = (unsigned long) _text;
1306 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1307 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1308 		ehdr->e_phnum++;
1309 		phdr++;
1310 	}
1311 
1312 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1313 	for (i = 0; i < mem->nr_ranges; i++) {
1314 		mstart = mem->ranges[i].start;
1315 		mend = mem->ranges[i].end;
1316 
1317 		phdr->p_type = PT_LOAD;
1318 		phdr->p_flags = PF_R|PF_W|PF_X;
1319 		phdr->p_offset  = mstart;
1320 
1321 		phdr->p_paddr = mstart;
1322 		phdr->p_vaddr = (unsigned long) __va(mstart);
1323 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1324 		phdr->p_align = 0;
1325 		ehdr->e_phnum++;
1326 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1327 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1328 			ehdr->e_phnum, phdr->p_offset);
1329 		phdr++;
1330 	}
1331 
1332 	*addr = buf;
1333 	*sz = elf_sz;
1334 	return 0;
1335 }
1336