1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha2.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/syscalls.h> 29 #include <linux/vmalloc.h> 30 #include "kexec_internal.h" 31 32 static int kexec_calculate_store_digests(struct kimage *image); 33 34 /* 35 * Currently this is the only default function that is exported as some 36 * architectures need it to do additional handlings. 37 * In the future, other default functions may be exported too if required. 38 */ 39 int kexec_image_probe_default(struct kimage *image, void *buf, 40 unsigned long buf_len) 41 { 42 const struct kexec_file_ops * const *fops; 43 int ret = -ENOEXEC; 44 45 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 46 ret = (*fops)->probe(buf, buf_len); 47 if (!ret) { 48 image->fops = *fops; 49 return ret; 50 } 51 } 52 53 return ret; 54 } 55 56 /* Architectures can provide this probe function */ 57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 58 unsigned long buf_len) 59 { 60 return kexec_image_probe_default(image, buf, buf_len); 61 } 62 63 static void *kexec_image_load_default(struct kimage *image) 64 { 65 if (!image->fops || !image->fops->load) 66 return ERR_PTR(-ENOEXEC); 67 68 return image->fops->load(image, image->kernel_buf, 69 image->kernel_buf_len, image->initrd_buf, 70 image->initrd_buf_len, image->cmdline_buf, 71 image->cmdline_buf_len); 72 } 73 74 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 75 { 76 return kexec_image_load_default(image); 77 } 78 79 int kexec_image_post_load_cleanup_default(struct kimage *image) 80 { 81 if (!image->fops || !image->fops->cleanup) 82 return 0; 83 84 return image->fops->cleanup(image->image_loader_data); 85 } 86 87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 88 { 89 return kexec_image_post_load_cleanup_default(image); 90 } 91 92 #ifdef CONFIG_KEXEC_SIG 93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf, 94 unsigned long buf_len) 95 { 96 if (!image->fops || !image->fops->verify_sig) { 97 pr_debug("kernel loader does not support signature verification.\n"); 98 return -EKEYREJECTED; 99 } 100 101 return image->fops->verify_sig(buf, buf_len); 102 } 103 104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 105 unsigned long buf_len) 106 { 107 return kexec_image_verify_sig_default(image, buf, buf_len); 108 } 109 #endif 110 111 /* 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA 113 * @pi: Purgatory to be relocated. 114 * @section: Section relocations applying to. 115 * @relsec: Section containing RELAs. 116 * @symtab: Corresponding symtab. 117 * 118 * Return: 0 on success, negative errno on error. 119 */ 120 int __weak 121 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, 122 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 123 { 124 pr_err("RELA relocation unsupported.\n"); 125 return -ENOEXEC; 126 } 127 128 /* 129 * arch_kexec_apply_relocations - apply relocations of type REL 130 * @pi: Purgatory to be relocated. 131 * @section: Section relocations applying to. 132 * @relsec: Section containing RELs. 133 * @symtab: Corresponding symtab. 134 * 135 * Return: 0 on success, negative errno on error. 136 */ 137 int __weak 138 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, 139 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 140 { 141 pr_err("REL relocation unsupported.\n"); 142 return -ENOEXEC; 143 } 144 145 /* 146 * Free up memory used by kernel, initrd, and command line. This is temporary 147 * memory allocation which is not needed any more after these buffers have 148 * been loaded into separate segments and have been copied elsewhere. 149 */ 150 void kimage_file_post_load_cleanup(struct kimage *image) 151 { 152 struct purgatory_info *pi = &image->purgatory_info; 153 154 vfree(image->kernel_buf); 155 image->kernel_buf = NULL; 156 157 vfree(image->initrd_buf); 158 image->initrd_buf = NULL; 159 160 kfree(image->cmdline_buf); 161 image->cmdline_buf = NULL; 162 163 vfree(pi->purgatory_buf); 164 pi->purgatory_buf = NULL; 165 166 vfree(pi->sechdrs); 167 pi->sechdrs = NULL; 168 169 #ifdef CONFIG_IMA_KEXEC 170 vfree(image->ima_buffer); 171 image->ima_buffer = NULL; 172 #endif /* CONFIG_IMA_KEXEC */ 173 174 /* See if architecture has anything to cleanup post load */ 175 arch_kimage_file_post_load_cleanup(image); 176 177 /* 178 * Above call should have called into bootloader to free up 179 * any data stored in kimage->image_loader_data. It should 180 * be ok now to free it up. 181 */ 182 kfree(image->image_loader_data); 183 image->image_loader_data = NULL; 184 } 185 186 #ifdef CONFIG_KEXEC_SIG 187 static int 188 kimage_validate_signature(struct kimage *image) 189 { 190 int ret; 191 192 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 193 image->kernel_buf_len); 194 if (ret) { 195 196 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) { 197 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 198 return ret; 199 } 200 201 /* 202 * If IMA is guaranteed to appraise a signature on the kexec 203 * image, permit it even if the kernel is otherwise locked 204 * down. 205 */ 206 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 207 security_locked_down(LOCKDOWN_KEXEC)) 208 return -EPERM; 209 210 pr_debug("kernel signature verification failed (%d).\n", ret); 211 } 212 213 return 0; 214 } 215 #endif 216 217 /* 218 * In file mode list of segments is prepared by kernel. Copy relevant 219 * data from user space, do error checking, prepare segment list 220 */ 221 static int 222 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 223 const char __user *cmdline_ptr, 224 unsigned long cmdline_len, unsigned flags) 225 { 226 int ret; 227 void *ldata; 228 229 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 230 INT_MAX, NULL, READING_KEXEC_IMAGE); 231 if (ret < 0) 232 return ret; 233 image->kernel_buf_len = ret; 234 235 /* Call arch image probe handlers */ 236 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 237 image->kernel_buf_len); 238 if (ret) 239 goto out; 240 241 #ifdef CONFIG_KEXEC_SIG 242 ret = kimage_validate_signature(image); 243 244 if (ret) 245 goto out; 246 #endif 247 /* It is possible that there no initramfs is being loaded */ 248 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 249 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 250 INT_MAX, NULL, 251 READING_KEXEC_INITRAMFS); 252 if (ret < 0) 253 goto out; 254 image->initrd_buf_len = ret; 255 ret = 0; 256 } 257 258 if (cmdline_len) { 259 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 260 if (IS_ERR(image->cmdline_buf)) { 261 ret = PTR_ERR(image->cmdline_buf); 262 image->cmdline_buf = NULL; 263 goto out; 264 } 265 266 image->cmdline_buf_len = cmdline_len; 267 268 /* command line should be a string with last byte null */ 269 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 270 ret = -EINVAL; 271 goto out; 272 } 273 274 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 275 image->cmdline_buf_len - 1); 276 } 277 278 /* IMA needs to pass the measurement list to the next kernel. */ 279 ima_add_kexec_buffer(image); 280 281 /* Call arch image load handlers */ 282 ldata = arch_kexec_kernel_image_load(image); 283 284 if (IS_ERR(ldata)) { 285 ret = PTR_ERR(ldata); 286 goto out; 287 } 288 289 image->image_loader_data = ldata; 290 out: 291 /* In case of error, free up all allocated memory in this function */ 292 if (ret) 293 kimage_file_post_load_cleanup(image); 294 return ret; 295 } 296 297 static int 298 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 299 int initrd_fd, const char __user *cmdline_ptr, 300 unsigned long cmdline_len, unsigned long flags) 301 { 302 int ret; 303 struct kimage *image; 304 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 305 306 image = do_kimage_alloc_init(); 307 if (!image) 308 return -ENOMEM; 309 310 image->file_mode = 1; 311 312 if (kexec_on_panic) { 313 /* Enable special crash kernel control page alloc policy. */ 314 image->control_page = crashk_res.start; 315 image->type = KEXEC_TYPE_CRASH; 316 } 317 318 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 319 cmdline_ptr, cmdline_len, flags); 320 if (ret) 321 goto out_free_image; 322 323 ret = sanity_check_segment_list(image); 324 if (ret) 325 goto out_free_post_load_bufs; 326 327 ret = -ENOMEM; 328 image->control_code_page = kimage_alloc_control_pages(image, 329 get_order(KEXEC_CONTROL_PAGE_SIZE)); 330 if (!image->control_code_page) { 331 pr_err("Could not allocate control_code_buffer\n"); 332 goto out_free_post_load_bufs; 333 } 334 335 if (!kexec_on_panic) { 336 image->swap_page = kimage_alloc_control_pages(image, 0); 337 if (!image->swap_page) { 338 pr_err("Could not allocate swap buffer\n"); 339 goto out_free_control_pages; 340 } 341 } 342 343 *rimage = image; 344 return 0; 345 out_free_control_pages: 346 kimage_free_page_list(&image->control_pages); 347 out_free_post_load_bufs: 348 kimage_file_post_load_cleanup(image); 349 out_free_image: 350 kfree(image); 351 return ret; 352 } 353 354 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 355 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 356 unsigned long, flags) 357 { 358 int ret = 0, i; 359 struct kimage **dest_image, *image; 360 361 /* We only trust the superuser with rebooting the system. */ 362 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 363 return -EPERM; 364 365 /* Make sure we have a legal set of flags */ 366 if (flags != (flags & KEXEC_FILE_FLAGS)) 367 return -EINVAL; 368 369 image = NULL; 370 371 if (!mutex_trylock(&kexec_mutex)) 372 return -EBUSY; 373 374 dest_image = &kexec_image; 375 if (flags & KEXEC_FILE_ON_CRASH) { 376 dest_image = &kexec_crash_image; 377 if (kexec_crash_image) 378 arch_kexec_unprotect_crashkres(); 379 } 380 381 if (flags & KEXEC_FILE_UNLOAD) 382 goto exchange; 383 384 /* 385 * In case of crash, new kernel gets loaded in reserved region. It is 386 * same memory where old crash kernel might be loaded. Free any 387 * current crash dump kernel before we corrupt it. 388 */ 389 if (flags & KEXEC_FILE_ON_CRASH) 390 kimage_free(xchg(&kexec_crash_image, NULL)); 391 392 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 393 cmdline_len, flags); 394 if (ret) 395 goto out; 396 397 ret = machine_kexec_prepare(image); 398 if (ret) 399 goto out; 400 401 /* 402 * Some architecture(like S390) may touch the crash memory before 403 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 404 */ 405 ret = kimage_crash_copy_vmcoreinfo(image); 406 if (ret) 407 goto out; 408 409 ret = kexec_calculate_store_digests(image); 410 if (ret) 411 goto out; 412 413 for (i = 0; i < image->nr_segments; i++) { 414 struct kexec_segment *ksegment; 415 416 ksegment = &image->segment[i]; 417 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 418 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 419 ksegment->memsz); 420 421 ret = kimage_load_segment(image, &image->segment[i]); 422 if (ret) 423 goto out; 424 } 425 426 kimage_terminate(image); 427 428 ret = machine_kexec_post_load(image); 429 if (ret) 430 goto out; 431 432 /* 433 * Free up any temporary buffers allocated which are not needed 434 * after image has been loaded 435 */ 436 kimage_file_post_load_cleanup(image); 437 exchange: 438 image = xchg(dest_image, image); 439 out: 440 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 441 arch_kexec_protect_crashkres(); 442 443 mutex_unlock(&kexec_mutex); 444 kimage_free(image); 445 return ret; 446 } 447 448 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 449 struct kexec_buf *kbuf) 450 { 451 struct kimage *image = kbuf->image; 452 unsigned long temp_start, temp_end; 453 454 temp_end = min(end, kbuf->buf_max); 455 temp_start = temp_end - kbuf->memsz; 456 457 do { 458 /* align down start */ 459 temp_start = temp_start & (~(kbuf->buf_align - 1)); 460 461 if (temp_start < start || temp_start < kbuf->buf_min) 462 return 0; 463 464 temp_end = temp_start + kbuf->memsz - 1; 465 466 /* 467 * Make sure this does not conflict with any of existing 468 * segments 469 */ 470 if (kimage_is_destination_range(image, temp_start, temp_end)) { 471 temp_start = temp_start - PAGE_SIZE; 472 continue; 473 } 474 475 /* We found a suitable memory range */ 476 break; 477 } while (1); 478 479 /* If we are here, we found a suitable memory range */ 480 kbuf->mem = temp_start; 481 482 /* Success, stop navigating through remaining System RAM ranges */ 483 return 1; 484 } 485 486 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 487 struct kexec_buf *kbuf) 488 { 489 struct kimage *image = kbuf->image; 490 unsigned long temp_start, temp_end; 491 492 temp_start = max(start, kbuf->buf_min); 493 494 do { 495 temp_start = ALIGN(temp_start, kbuf->buf_align); 496 temp_end = temp_start + kbuf->memsz - 1; 497 498 if (temp_end > end || temp_end > kbuf->buf_max) 499 return 0; 500 /* 501 * Make sure this does not conflict with any of existing 502 * segments 503 */ 504 if (kimage_is_destination_range(image, temp_start, temp_end)) { 505 temp_start = temp_start + PAGE_SIZE; 506 continue; 507 } 508 509 /* We found a suitable memory range */ 510 break; 511 } while (1); 512 513 /* If we are here, we found a suitable memory range */ 514 kbuf->mem = temp_start; 515 516 /* Success, stop navigating through remaining System RAM ranges */ 517 return 1; 518 } 519 520 static int locate_mem_hole_callback(struct resource *res, void *arg) 521 { 522 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 523 u64 start = res->start, end = res->end; 524 unsigned long sz = end - start + 1; 525 526 /* Returning 0 will take to next memory range */ 527 528 /* Don't use memory that will be detected and handled by a driver. */ 529 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 530 return 0; 531 532 if (sz < kbuf->memsz) 533 return 0; 534 535 if (end < kbuf->buf_min || start > kbuf->buf_max) 536 return 0; 537 538 /* 539 * Allocate memory top down with-in ram range. Otherwise bottom up 540 * allocation. 541 */ 542 if (kbuf->top_down) 543 return locate_mem_hole_top_down(start, end, kbuf); 544 return locate_mem_hole_bottom_up(start, end, kbuf); 545 } 546 547 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 548 static int kexec_walk_memblock(struct kexec_buf *kbuf, 549 int (*func)(struct resource *, void *)) 550 { 551 int ret = 0; 552 u64 i; 553 phys_addr_t mstart, mend; 554 struct resource res = { }; 555 556 if (kbuf->image->type == KEXEC_TYPE_CRASH) 557 return func(&crashk_res, kbuf); 558 559 if (kbuf->top_down) { 560 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 561 &mstart, &mend, NULL) { 562 /* 563 * In memblock, end points to the first byte after the 564 * range while in kexec, end points to the last byte 565 * in the range. 566 */ 567 res.start = mstart; 568 res.end = mend - 1; 569 ret = func(&res, kbuf); 570 if (ret) 571 break; 572 } 573 } else { 574 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 575 &mstart, &mend, NULL) { 576 /* 577 * In memblock, end points to the first byte after the 578 * range while in kexec, end points to the last byte 579 * in the range. 580 */ 581 res.start = mstart; 582 res.end = mend - 1; 583 ret = func(&res, kbuf); 584 if (ret) 585 break; 586 } 587 } 588 589 return ret; 590 } 591 #else 592 static int kexec_walk_memblock(struct kexec_buf *kbuf, 593 int (*func)(struct resource *, void *)) 594 { 595 return 0; 596 } 597 #endif 598 599 /** 600 * kexec_walk_resources - call func(data) on free memory regions 601 * @kbuf: Context info for the search. Also passed to @func. 602 * @func: Function to call for each memory region. 603 * 604 * Return: The memory walk will stop when func returns a non-zero value 605 * and that value will be returned. If all free regions are visited without 606 * func returning non-zero, then zero will be returned. 607 */ 608 static int kexec_walk_resources(struct kexec_buf *kbuf, 609 int (*func)(struct resource *, void *)) 610 { 611 if (kbuf->image->type == KEXEC_TYPE_CRASH) 612 return walk_iomem_res_desc(crashk_res.desc, 613 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 614 crashk_res.start, crashk_res.end, 615 kbuf, func); 616 else 617 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 618 } 619 620 /** 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 622 * @kbuf: Parameters for the memory search. 623 * 624 * On success, kbuf->mem will have the start address of the memory region found. 625 * 626 * Return: 0 on success, negative errno on error. 627 */ 628 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 629 { 630 int ret; 631 632 /* Arch knows where to place */ 633 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 634 return 0; 635 636 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 637 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 638 else 639 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 640 641 return ret == 1 ? 0 : -EADDRNOTAVAIL; 642 } 643 644 /** 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments. 646 * @kbuf: Parameters for the memory search. 647 * 648 * On success, kbuf->mem will have the start address of the memory region found. 649 * 650 * Return: 0 on success, negative errno on error. 651 */ 652 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf) 653 { 654 return kexec_locate_mem_hole(kbuf); 655 } 656 657 /** 658 * kexec_add_buffer - place a buffer in a kexec segment 659 * @kbuf: Buffer contents and memory parameters. 660 * 661 * This function assumes that kexec_mutex is held. 662 * On successful return, @kbuf->mem will have the physical address of 663 * the buffer in memory. 664 * 665 * Return: 0 on success, negative errno on error. 666 */ 667 int kexec_add_buffer(struct kexec_buf *kbuf) 668 { 669 struct kexec_segment *ksegment; 670 int ret; 671 672 /* Currently adding segment this way is allowed only in file mode */ 673 if (!kbuf->image->file_mode) 674 return -EINVAL; 675 676 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 677 return -EINVAL; 678 679 /* 680 * Make sure we are not trying to add buffer after allocating 681 * control pages. All segments need to be placed first before 682 * any control pages are allocated. As control page allocation 683 * logic goes through list of segments to make sure there are 684 * no destination overlaps. 685 */ 686 if (!list_empty(&kbuf->image->control_pages)) { 687 WARN_ON(1); 688 return -EINVAL; 689 } 690 691 /* Ensure minimum alignment needed for segments. */ 692 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 693 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 694 695 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 696 ret = arch_kexec_locate_mem_hole(kbuf); 697 if (ret) 698 return ret; 699 700 /* Found a suitable memory range */ 701 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 702 ksegment->kbuf = kbuf->buffer; 703 ksegment->bufsz = kbuf->bufsz; 704 ksegment->mem = kbuf->mem; 705 ksegment->memsz = kbuf->memsz; 706 kbuf->image->nr_segments++; 707 return 0; 708 } 709 710 /* Calculate and store the digest of segments */ 711 static int kexec_calculate_store_digests(struct kimage *image) 712 { 713 struct crypto_shash *tfm; 714 struct shash_desc *desc; 715 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 716 size_t desc_size, nullsz; 717 char *digest; 718 void *zero_buf; 719 struct kexec_sha_region *sha_regions; 720 struct purgatory_info *pi = &image->purgatory_info; 721 722 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) 723 return 0; 724 725 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 726 zero_buf_sz = PAGE_SIZE; 727 728 tfm = crypto_alloc_shash("sha256", 0, 0); 729 if (IS_ERR(tfm)) { 730 ret = PTR_ERR(tfm); 731 goto out; 732 } 733 734 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 735 desc = kzalloc(desc_size, GFP_KERNEL); 736 if (!desc) { 737 ret = -ENOMEM; 738 goto out_free_tfm; 739 } 740 741 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 742 sha_regions = vzalloc(sha_region_sz); 743 if (!sha_regions) { 744 ret = -ENOMEM; 745 goto out_free_desc; 746 } 747 748 desc->tfm = tfm; 749 750 ret = crypto_shash_init(desc); 751 if (ret < 0) 752 goto out_free_sha_regions; 753 754 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 755 if (!digest) { 756 ret = -ENOMEM; 757 goto out_free_sha_regions; 758 } 759 760 for (j = i = 0; i < image->nr_segments; i++) { 761 struct kexec_segment *ksegment; 762 763 ksegment = &image->segment[i]; 764 /* 765 * Skip purgatory as it will be modified once we put digest 766 * info in purgatory. 767 */ 768 if (ksegment->kbuf == pi->purgatory_buf) 769 continue; 770 771 ret = crypto_shash_update(desc, ksegment->kbuf, 772 ksegment->bufsz); 773 if (ret) 774 break; 775 776 /* 777 * Assume rest of the buffer is filled with zero and 778 * update digest accordingly. 779 */ 780 nullsz = ksegment->memsz - ksegment->bufsz; 781 while (nullsz) { 782 unsigned long bytes = nullsz; 783 784 if (bytes > zero_buf_sz) 785 bytes = zero_buf_sz; 786 ret = crypto_shash_update(desc, zero_buf, bytes); 787 if (ret) 788 break; 789 nullsz -= bytes; 790 } 791 792 if (ret) 793 break; 794 795 sha_regions[j].start = ksegment->mem; 796 sha_regions[j].len = ksegment->memsz; 797 j++; 798 } 799 800 if (!ret) { 801 ret = crypto_shash_final(desc, digest); 802 if (ret) 803 goto out_free_digest; 804 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 805 sha_regions, sha_region_sz, 0); 806 if (ret) 807 goto out_free_digest; 808 809 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 810 digest, SHA256_DIGEST_SIZE, 0); 811 if (ret) 812 goto out_free_digest; 813 } 814 815 out_free_digest: 816 kfree(digest); 817 out_free_sha_regions: 818 vfree(sha_regions); 819 out_free_desc: 820 kfree(desc); 821 out_free_tfm: 822 kfree(tfm); 823 out: 824 return ret; 825 } 826 827 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY 828 /* 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 830 * @pi: Purgatory to be loaded. 831 * @kbuf: Buffer to setup. 832 * 833 * Allocates the memory needed for the buffer. Caller is responsible to free 834 * the memory after use. 835 * 836 * Return: 0 on success, negative errno on error. 837 */ 838 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 839 struct kexec_buf *kbuf) 840 { 841 const Elf_Shdr *sechdrs; 842 unsigned long bss_align; 843 unsigned long bss_sz; 844 unsigned long align; 845 int i, ret; 846 847 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 848 kbuf->buf_align = bss_align = 1; 849 kbuf->bufsz = bss_sz = 0; 850 851 for (i = 0; i < pi->ehdr->e_shnum; i++) { 852 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 853 continue; 854 855 align = sechdrs[i].sh_addralign; 856 if (sechdrs[i].sh_type != SHT_NOBITS) { 857 if (kbuf->buf_align < align) 858 kbuf->buf_align = align; 859 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 860 kbuf->bufsz += sechdrs[i].sh_size; 861 } else { 862 if (bss_align < align) 863 bss_align = align; 864 bss_sz = ALIGN(bss_sz, align); 865 bss_sz += sechdrs[i].sh_size; 866 } 867 } 868 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 869 kbuf->memsz = kbuf->bufsz + bss_sz; 870 if (kbuf->buf_align < bss_align) 871 kbuf->buf_align = bss_align; 872 873 kbuf->buffer = vzalloc(kbuf->bufsz); 874 if (!kbuf->buffer) 875 return -ENOMEM; 876 pi->purgatory_buf = kbuf->buffer; 877 878 ret = kexec_add_buffer(kbuf); 879 if (ret) 880 goto out; 881 882 return 0; 883 out: 884 vfree(pi->purgatory_buf); 885 pi->purgatory_buf = NULL; 886 return ret; 887 } 888 889 /* 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 891 * @pi: Purgatory to be loaded. 892 * @kbuf: Buffer prepared to store purgatory. 893 * 894 * Allocates the memory needed for the buffer. Caller is responsible to free 895 * the memory after use. 896 * 897 * Return: 0 on success, negative errno on error. 898 */ 899 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 900 struct kexec_buf *kbuf) 901 { 902 unsigned long bss_addr; 903 unsigned long offset; 904 Elf_Shdr *sechdrs; 905 int i; 906 907 /* 908 * The section headers in kexec_purgatory are read-only. In order to 909 * have them modifiable make a temporary copy. 910 */ 911 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); 912 if (!sechdrs) 913 return -ENOMEM; 914 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, 915 pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 916 pi->sechdrs = sechdrs; 917 918 offset = 0; 919 bss_addr = kbuf->mem + kbuf->bufsz; 920 kbuf->image->start = pi->ehdr->e_entry; 921 922 for (i = 0; i < pi->ehdr->e_shnum; i++) { 923 unsigned long align; 924 void *src, *dst; 925 926 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 927 continue; 928 929 align = sechdrs[i].sh_addralign; 930 if (sechdrs[i].sh_type == SHT_NOBITS) { 931 bss_addr = ALIGN(bss_addr, align); 932 sechdrs[i].sh_addr = bss_addr; 933 bss_addr += sechdrs[i].sh_size; 934 continue; 935 } 936 937 offset = ALIGN(offset, align); 938 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 939 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 940 pi->ehdr->e_entry < (sechdrs[i].sh_addr 941 + sechdrs[i].sh_size)) { 942 kbuf->image->start -= sechdrs[i].sh_addr; 943 kbuf->image->start += kbuf->mem + offset; 944 } 945 946 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 947 dst = pi->purgatory_buf + offset; 948 memcpy(dst, src, sechdrs[i].sh_size); 949 950 sechdrs[i].sh_addr = kbuf->mem + offset; 951 sechdrs[i].sh_offset = offset; 952 offset += sechdrs[i].sh_size; 953 } 954 955 return 0; 956 } 957 958 static int kexec_apply_relocations(struct kimage *image) 959 { 960 int i, ret; 961 struct purgatory_info *pi = &image->purgatory_info; 962 const Elf_Shdr *sechdrs; 963 964 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 965 966 for (i = 0; i < pi->ehdr->e_shnum; i++) { 967 const Elf_Shdr *relsec; 968 const Elf_Shdr *symtab; 969 Elf_Shdr *section; 970 971 relsec = sechdrs + i; 972 973 if (relsec->sh_type != SHT_RELA && 974 relsec->sh_type != SHT_REL) 975 continue; 976 977 /* 978 * For section of type SHT_RELA/SHT_REL, 979 * ->sh_link contains section header index of associated 980 * symbol table. And ->sh_info contains section header 981 * index of section to which relocations apply. 982 */ 983 if (relsec->sh_info >= pi->ehdr->e_shnum || 984 relsec->sh_link >= pi->ehdr->e_shnum) 985 return -ENOEXEC; 986 987 section = pi->sechdrs + relsec->sh_info; 988 symtab = sechdrs + relsec->sh_link; 989 990 if (!(section->sh_flags & SHF_ALLOC)) 991 continue; 992 993 /* 994 * symtab->sh_link contain section header index of associated 995 * string table. 996 */ 997 if (symtab->sh_link >= pi->ehdr->e_shnum) 998 /* Invalid section number? */ 999 continue; 1000 1001 /* 1002 * Respective architecture needs to provide support for applying 1003 * relocations of type SHT_RELA/SHT_REL. 1004 */ 1005 if (relsec->sh_type == SHT_RELA) 1006 ret = arch_kexec_apply_relocations_add(pi, section, 1007 relsec, symtab); 1008 else if (relsec->sh_type == SHT_REL) 1009 ret = arch_kexec_apply_relocations(pi, section, 1010 relsec, symtab); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 return 0; 1016 } 1017 1018 /* 1019 * kexec_load_purgatory - Load and relocate the purgatory object. 1020 * @image: Image to add the purgatory to. 1021 * @kbuf: Memory parameters to use. 1022 * 1023 * Allocates the memory needed for image->purgatory_info.sechdrs and 1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1025 * to free the memory after use. 1026 * 1027 * Return: 0 on success, negative errno on error. 1028 */ 1029 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1030 { 1031 struct purgatory_info *pi = &image->purgatory_info; 1032 int ret; 1033 1034 if (kexec_purgatory_size <= 0) 1035 return -EINVAL; 1036 1037 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1038 1039 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1040 if (ret) 1041 return ret; 1042 1043 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1044 if (ret) 1045 goto out_free_kbuf; 1046 1047 ret = kexec_apply_relocations(image); 1048 if (ret) 1049 goto out; 1050 1051 return 0; 1052 out: 1053 vfree(pi->sechdrs); 1054 pi->sechdrs = NULL; 1055 out_free_kbuf: 1056 vfree(pi->purgatory_buf); 1057 pi->purgatory_buf = NULL; 1058 return ret; 1059 } 1060 1061 /* 1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1063 * @pi: Purgatory to search in. 1064 * @name: Name of the symbol. 1065 * 1066 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1067 */ 1068 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1069 const char *name) 1070 { 1071 const Elf_Shdr *sechdrs; 1072 const Elf_Ehdr *ehdr; 1073 const Elf_Sym *syms; 1074 const char *strtab; 1075 int i, k; 1076 1077 if (!pi->ehdr) 1078 return NULL; 1079 1080 ehdr = pi->ehdr; 1081 sechdrs = (void *)ehdr + ehdr->e_shoff; 1082 1083 for (i = 0; i < ehdr->e_shnum; i++) { 1084 if (sechdrs[i].sh_type != SHT_SYMTAB) 1085 continue; 1086 1087 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1088 /* Invalid strtab section number */ 1089 continue; 1090 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1091 syms = (void *)ehdr + sechdrs[i].sh_offset; 1092 1093 /* Go through symbols for a match */ 1094 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1095 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1096 continue; 1097 1098 if (strcmp(strtab + syms[k].st_name, name) != 0) 1099 continue; 1100 1101 if (syms[k].st_shndx == SHN_UNDEF || 1102 syms[k].st_shndx >= ehdr->e_shnum) { 1103 pr_debug("Symbol: %s has bad section index %d.\n", 1104 name, syms[k].st_shndx); 1105 return NULL; 1106 } 1107 1108 /* Found the symbol we are looking for */ 1109 return &syms[k]; 1110 } 1111 } 1112 1113 return NULL; 1114 } 1115 1116 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1117 { 1118 struct purgatory_info *pi = &image->purgatory_info; 1119 const Elf_Sym *sym; 1120 Elf_Shdr *sechdr; 1121 1122 sym = kexec_purgatory_find_symbol(pi, name); 1123 if (!sym) 1124 return ERR_PTR(-EINVAL); 1125 1126 sechdr = &pi->sechdrs[sym->st_shndx]; 1127 1128 /* 1129 * Returns the address where symbol will finally be loaded after 1130 * kexec_load_segment() 1131 */ 1132 return (void *)(sechdr->sh_addr + sym->st_value); 1133 } 1134 1135 /* 1136 * Get or set value of a symbol. If "get_value" is true, symbol value is 1137 * returned in buf otherwise symbol value is set based on value in buf. 1138 */ 1139 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1140 void *buf, unsigned int size, bool get_value) 1141 { 1142 struct purgatory_info *pi = &image->purgatory_info; 1143 const Elf_Sym *sym; 1144 Elf_Shdr *sec; 1145 char *sym_buf; 1146 1147 sym = kexec_purgatory_find_symbol(pi, name); 1148 if (!sym) 1149 return -EINVAL; 1150 1151 if (sym->st_size != size) { 1152 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1153 name, (unsigned long)sym->st_size, size); 1154 return -EINVAL; 1155 } 1156 1157 sec = pi->sechdrs + sym->st_shndx; 1158 1159 if (sec->sh_type == SHT_NOBITS) { 1160 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1161 get_value ? "get" : "set"); 1162 return -EINVAL; 1163 } 1164 1165 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1166 1167 if (get_value) 1168 memcpy((void *)buf, sym_buf, size); 1169 else 1170 memcpy((void *)sym_buf, buf, size); 1171 1172 return 0; 1173 } 1174 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ 1175 1176 int crash_exclude_mem_range(struct crash_mem *mem, 1177 unsigned long long mstart, unsigned long long mend) 1178 { 1179 int i, j; 1180 unsigned long long start, end, p_start, p_end; 1181 struct crash_mem_range temp_range = {0, 0}; 1182 1183 for (i = 0; i < mem->nr_ranges; i++) { 1184 start = mem->ranges[i].start; 1185 end = mem->ranges[i].end; 1186 p_start = mstart; 1187 p_end = mend; 1188 1189 if (mstart > end || mend < start) 1190 continue; 1191 1192 /* Truncate any area outside of range */ 1193 if (mstart < start) 1194 p_start = start; 1195 if (mend > end) 1196 p_end = end; 1197 1198 /* Found completely overlapping range */ 1199 if (p_start == start && p_end == end) { 1200 mem->ranges[i].start = 0; 1201 mem->ranges[i].end = 0; 1202 if (i < mem->nr_ranges - 1) { 1203 /* Shift rest of the ranges to left */ 1204 for (j = i; j < mem->nr_ranges - 1; j++) { 1205 mem->ranges[j].start = 1206 mem->ranges[j+1].start; 1207 mem->ranges[j].end = 1208 mem->ranges[j+1].end; 1209 } 1210 1211 /* 1212 * Continue to check if there are another overlapping ranges 1213 * from the current position because of shifting the above 1214 * mem ranges. 1215 */ 1216 i--; 1217 mem->nr_ranges--; 1218 continue; 1219 } 1220 mem->nr_ranges--; 1221 return 0; 1222 } 1223 1224 if (p_start > start && p_end < end) { 1225 /* Split original range */ 1226 mem->ranges[i].end = p_start - 1; 1227 temp_range.start = p_end + 1; 1228 temp_range.end = end; 1229 } else if (p_start != start) 1230 mem->ranges[i].end = p_start - 1; 1231 else 1232 mem->ranges[i].start = p_end + 1; 1233 break; 1234 } 1235 1236 /* If a split happened, add the split to array */ 1237 if (!temp_range.end) 1238 return 0; 1239 1240 /* Split happened */ 1241 if (i == mem->max_nr_ranges - 1) 1242 return -ENOMEM; 1243 1244 /* Location where new range should go */ 1245 j = i + 1; 1246 if (j < mem->nr_ranges) { 1247 /* Move over all ranges one slot towards the end */ 1248 for (i = mem->nr_ranges - 1; i >= j; i--) 1249 mem->ranges[i + 1] = mem->ranges[i]; 1250 } 1251 1252 mem->ranges[j].start = temp_range.start; 1253 mem->ranges[j].end = temp_range.end; 1254 mem->nr_ranges++; 1255 return 0; 1256 } 1257 1258 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, 1259 void **addr, unsigned long *sz) 1260 { 1261 Elf64_Ehdr *ehdr; 1262 Elf64_Phdr *phdr; 1263 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 1264 unsigned char *buf; 1265 unsigned int cpu, i; 1266 unsigned long long notes_addr; 1267 unsigned long mstart, mend; 1268 1269 /* extra phdr for vmcoreinfo ELF note */ 1270 nr_phdr = nr_cpus + 1; 1271 nr_phdr += mem->nr_ranges; 1272 1273 /* 1274 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 1275 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 1276 * I think this is required by tools like gdb. So same physical 1277 * memory will be mapped in two ELF headers. One will contain kernel 1278 * text virtual addresses and other will have __va(physical) addresses. 1279 */ 1280 1281 nr_phdr++; 1282 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 1283 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 1284 1285 buf = vzalloc(elf_sz); 1286 if (!buf) 1287 return -ENOMEM; 1288 1289 ehdr = (Elf64_Ehdr *)buf; 1290 phdr = (Elf64_Phdr *)(ehdr + 1); 1291 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1292 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 1293 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1294 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1295 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 1296 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 1297 ehdr->e_type = ET_CORE; 1298 ehdr->e_machine = ELF_ARCH; 1299 ehdr->e_version = EV_CURRENT; 1300 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1301 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1302 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1303 1304 /* Prepare one phdr of type PT_NOTE for each present CPU */ 1305 for_each_present_cpu(cpu) { 1306 phdr->p_type = PT_NOTE; 1307 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 1308 phdr->p_offset = phdr->p_paddr = notes_addr; 1309 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 1310 (ehdr->e_phnum)++; 1311 phdr++; 1312 } 1313 1314 /* Prepare one PT_NOTE header for vmcoreinfo */ 1315 phdr->p_type = PT_NOTE; 1316 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 1317 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 1318 (ehdr->e_phnum)++; 1319 phdr++; 1320 1321 /* Prepare PT_LOAD type program header for kernel text region */ 1322 if (kernel_map) { 1323 phdr->p_type = PT_LOAD; 1324 phdr->p_flags = PF_R|PF_W|PF_X; 1325 phdr->p_vaddr = (unsigned long) _text; 1326 phdr->p_filesz = phdr->p_memsz = _end - _text; 1327 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 1328 ehdr->e_phnum++; 1329 phdr++; 1330 } 1331 1332 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 1333 for (i = 0; i < mem->nr_ranges; i++) { 1334 mstart = mem->ranges[i].start; 1335 mend = mem->ranges[i].end; 1336 1337 phdr->p_type = PT_LOAD; 1338 phdr->p_flags = PF_R|PF_W|PF_X; 1339 phdr->p_offset = mstart; 1340 1341 phdr->p_paddr = mstart; 1342 phdr->p_vaddr = (unsigned long) __va(mstart); 1343 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 1344 phdr->p_align = 0; 1345 ehdr->e_phnum++; 1346 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 1347 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 1348 ehdr->e_phnum, phdr->p_offset); 1349 phdr++; 1350 } 1351 1352 *addr = buf; 1353 *sz = elf_sz; 1354 return 0; 1355 } 1356