xref: /openbmc/linux/kernel/kexec_file.c (revision 4a3fad70)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28 
29 static int kexec_calculate_store_digests(struct kimage *image);
30 
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33 					 unsigned long buf_len)
34 {
35 	return -ENOEXEC;
36 }
37 
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
39 {
40 	return ERR_PTR(-ENOEXEC);
41 }
42 
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
44 {
45 	return -EINVAL;
46 }
47 
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50 					unsigned long buf_len)
51 {
52 	return -EKEYREJECTED;
53 }
54 #endif
55 
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59 				 unsigned int relsec)
60 {
61 	pr_err("RELA relocation unsupported.\n");
62 	return -ENOEXEC;
63 }
64 
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68 			     unsigned int relsec)
69 {
70 	pr_err("REL relocation unsupported.\n");
71 	return -ENOEXEC;
72 }
73 
74 /*
75  * Free up memory used by kernel, initrd, and command line. This is temporary
76  * memory allocation which is not needed any more after these buffers have
77  * been loaded into separate segments and have been copied elsewhere.
78  */
79 void kimage_file_post_load_cleanup(struct kimage *image)
80 {
81 	struct purgatory_info *pi = &image->purgatory_info;
82 
83 	vfree(image->kernel_buf);
84 	image->kernel_buf = NULL;
85 
86 	vfree(image->initrd_buf);
87 	image->initrd_buf = NULL;
88 
89 	kfree(image->cmdline_buf);
90 	image->cmdline_buf = NULL;
91 
92 	vfree(pi->purgatory_buf);
93 	pi->purgatory_buf = NULL;
94 
95 	vfree(pi->sechdrs);
96 	pi->sechdrs = NULL;
97 
98 	/* See if architecture has anything to cleanup post load */
99 	arch_kimage_file_post_load_cleanup(image);
100 
101 	/*
102 	 * Above call should have called into bootloader to free up
103 	 * any data stored in kimage->image_loader_data. It should
104 	 * be ok now to free it up.
105 	 */
106 	kfree(image->image_loader_data);
107 	image->image_loader_data = NULL;
108 }
109 
110 /*
111  * In file mode list of segments is prepared by kernel. Copy relevant
112  * data from user space, do error checking, prepare segment list
113  */
114 static int
115 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
116 			     const char __user *cmdline_ptr,
117 			     unsigned long cmdline_len, unsigned flags)
118 {
119 	int ret = 0;
120 	void *ldata;
121 	loff_t size;
122 
123 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
124 				       &size, INT_MAX, READING_KEXEC_IMAGE);
125 	if (ret)
126 		return ret;
127 	image->kernel_buf_len = size;
128 
129 	/* IMA needs to pass the measurement list to the next kernel. */
130 	ima_add_kexec_buffer(image);
131 
132 	/* Call arch image probe handlers */
133 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
134 					    image->kernel_buf_len);
135 	if (ret)
136 		goto out;
137 
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
140 					   image->kernel_buf_len);
141 	if (ret) {
142 		pr_debug("kernel signature verification failed.\n");
143 		goto out;
144 	}
145 	pr_debug("kernel signature verification successful.\n");
146 #endif
147 	/* It is possible that there no initramfs is being loaded */
148 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
149 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
150 					       &size, INT_MAX,
151 					       READING_KEXEC_INITRAMFS);
152 		if (ret)
153 			goto out;
154 		image->initrd_buf_len = size;
155 	}
156 
157 	if (cmdline_len) {
158 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
159 		if (IS_ERR(image->cmdline_buf)) {
160 			ret = PTR_ERR(image->cmdline_buf);
161 			image->cmdline_buf = NULL;
162 			goto out;
163 		}
164 
165 		image->cmdline_buf_len = cmdline_len;
166 
167 		/* command line should be a string with last byte null */
168 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
169 			ret = -EINVAL;
170 			goto out;
171 		}
172 	}
173 
174 	/* Call arch image load handlers */
175 	ldata = arch_kexec_kernel_image_load(image);
176 
177 	if (IS_ERR(ldata)) {
178 		ret = PTR_ERR(ldata);
179 		goto out;
180 	}
181 
182 	image->image_loader_data = ldata;
183 out:
184 	/* In case of error, free up all allocated memory in this function */
185 	if (ret)
186 		kimage_file_post_load_cleanup(image);
187 	return ret;
188 }
189 
190 static int
191 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
192 		       int initrd_fd, const char __user *cmdline_ptr,
193 		       unsigned long cmdline_len, unsigned long flags)
194 {
195 	int ret;
196 	struct kimage *image;
197 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
198 
199 	image = do_kimage_alloc_init();
200 	if (!image)
201 		return -ENOMEM;
202 
203 	image->file_mode = 1;
204 
205 	if (kexec_on_panic) {
206 		/* Enable special crash kernel control page alloc policy. */
207 		image->control_page = crashk_res.start;
208 		image->type = KEXEC_TYPE_CRASH;
209 	}
210 
211 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
212 					   cmdline_ptr, cmdline_len, flags);
213 	if (ret)
214 		goto out_free_image;
215 
216 	ret = sanity_check_segment_list(image);
217 	if (ret)
218 		goto out_free_post_load_bufs;
219 
220 	ret = -ENOMEM;
221 	image->control_code_page = kimage_alloc_control_pages(image,
222 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
223 	if (!image->control_code_page) {
224 		pr_err("Could not allocate control_code_buffer\n");
225 		goto out_free_post_load_bufs;
226 	}
227 
228 	if (!kexec_on_panic) {
229 		image->swap_page = kimage_alloc_control_pages(image, 0);
230 		if (!image->swap_page) {
231 			pr_err("Could not allocate swap buffer\n");
232 			goto out_free_control_pages;
233 		}
234 	}
235 
236 	*rimage = image;
237 	return 0;
238 out_free_control_pages:
239 	kimage_free_page_list(&image->control_pages);
240 out_free_post_load_bufs:
241 	kimage_file_post_load_cleanup(image);
242 out_free_image:
243 	kfree(image);
244 	return ret;
245 }
246 
247 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
248 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
249 		unsigned long, flags)
250 {
251 	int ret = 0, i;
252 	struct kimage **dest_image, *image;
253 
254 	/* We only trust the superuser with rebooting the system. */
255 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
256 		return -EPERM;
257 
258 	/* Make sure we have a legal set of flags */
259 	if (flags != (flags & KEXEC_FILE_FLAGS))
260 		return -EINVAL;
261 
262 	image = NULL;
263 
264 	if (!mutex_trylock(&kexec_mutex))
265 		return -EBUSY;
266 
267 	dest_image = &kexec_image;
268 	if (flags & KEXEC_FILE_ON_CRASH) {
269 		dest_image = &kexec_crash_image;
270 		if (kexec_crash_image)
271 			arch_kexec_unprotect_crashkres();
272 	}
273 
274 	if (flags & KEXEC_FILE_UNLOAD)
275 		goto exchange;
276 
277 	/*
278 	 * In case of crash, new kernel gets loaded in reserved region. It is
279 	 * same memory where old crash kernel might be loaded. Free any
280 	 * current crash dump kernel before we corrupt it.
281 	 */
282 	if (flags & KEXEC_FILE_ON_CRASH)
283 		kimage_free(xchg(&kexec_crash_image, NULL));
284 
285 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
286 				     cmdline_len, flags);
287 	if (ret)
288 		goto out;
289 
290 	ret = machine_kexec_prepare(image);
291 	if (ret)
292 		goto out;
293 
294 	/*
295 	 * Some architecture(like S390) may touch the crash memory before
296 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
297 	 */
298 	ret = kimage_crash_copy_vmcoreinfo(image);
299 	if (ret)
300 		goto out;
301 
302 	ret = kexec_calculate_store_digests(image);
303 	if (ret)
304 		goto out;
305 
306 	for (i = 0; i < image->nr_segments; i++) {
307 		struct kexec_segment *ksegment;
308 
309 		ksegment = &image->segment[i];
310 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
311 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
312 			 ksegment->memsz);
313 
314 		ret = kimage_load_segment(image, &image->segment[i]);
315 		if (ret)
316 			goto out;
317 	}
318 
319 	kimage_terminate(image);
320 
321 	/*
322 	 * Free up any temporary buffers allocated which are not needed
323 	 * after image has been loaded
324 	 */
325 	kimage_file_post_load_cleanup(image);
326 exchange:
327 	image = xchg(dest_image, image);
328 out:
329 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
330 		arch_kexec_protect_crashkres();
331 
332 	mutex_unlock(&kexec_mutex);
333 	kimage_free(image);
334 	return ret;
335 }
336 
337 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
338 				    struct kexec_buf *kbuf)
339 {
340 	struct kimage *image = kbuf->image;
341 	unsigned long temp_start, temp_end;
342 
343 	temp_end = min(end, kbuf->buf_max);
344 	temp_start = temp_end - kbuf->memsz;
345 
346 	do {
347 		/* align down start */
348 		temp_start = temp_start & (~(kbuf->buf_align - 1));
349 
350 		if (temp_start < start || temp_start < kbuf->buf_min)
351 			return 0;
352 
353 		temp_end = temp_start + kbuf->memsz - 1;
354 
355 		/*
356 		 * Make sure this does not conflict with any of existing
357 		 * segments
358 		 */
359 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
360 			temp_start = temp_start - PAGE_SIZE;
361 			continue;
362 		}
363 
364 		/* We found a suitable memory range */
365 		break;
366 	} while (1);
367 
368 	/* If we are here, we found a suitable memory range */
369 	kbuf->mem = temp_start;
370 
371 	/* Success, stop navigating through remaining System RAM ranges */
372 	return 1;
373 }
374 
375 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
376 				     struct kexec_buf *kbuf)
377 {
378 	struct kimage *image = kbuf->image;
379 	unsigned long temp_start, temp_end;
380 
381 	temp_start = max(start, kbuf->buf_min);
382 
383 	do {
384 		temp_start = ALIGN(temp_start, kbuf->buf_align);
385 		temp_end = temp_start + kbuf->memsz - 1;
386 
387 		if (temp_end > end || temp_end > kbuf->buf_max)
388 			return 0;
389 		/*
390 		 * Make sure this does not conflict with any of existing
391 		 * segments
392 		 */
393 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
394 			temp_start = temp_start + PAGE_SIZE;
395 			continue;
396 		}
397 
398 		/* We found a suitable memory range */
399 		break;
400 	} while (1);
401 
402 	/* If we are here, we found a suitable memory range */
403 	kbuf->mem = temp_start;
404 
405 	/* Success, stop navigating through remaining System RAM ranges */
406 	return 1;
407 }
408 
409 static int locate_mem_hole_callback(struct resource *res, void *arg)
410 {
411 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
412 	u64 start = res->start, end = res->end;
413 	unsigned long sz = end - start + 1;
414 
415 	/* Returning 0 will take to next memory range */
416 	if (sz < kbuf->memsz)
417 		return 0;
418 
419 	if (end < kbuf->buf_min || start > kbuf->buf_max)
420 		return 0;
421 
422 	/*
423 	 * Allocate memory top down with-in ram range. Otherwise bottom up
424 	 * allocation.
425 	 */
426 	if (kbuf->top_down)
427 		return locate_mem_hole_top_down(start, end, kbuf);
428 	return locate_mem_hole_bottom_up(start, end, kbuf);
429 }
430 
431 /**
432  * arch_kexec_walk_mem - call func(data) on free memory regions
433  * @kbuf:	Context info for the search. Also passed to @func.
434  * @func:	Function to call for each memory region.
435  *
436  * Return: The memory walk will stop when func returns a non-zero value
437  * and that value will be returned. If all free regions are visited without
438  * func returning non-zero, then zero will be returned.
439  */
440 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
441 			       int (*func)(struct resource *, void *))
442 {
443 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
444 		return walk_iomem_res_desc(crashk_res.desc,
445 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
446 					   crashk_res.start, crashk_res.end,
447 					   kbuf, func);
448 	else
449 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
450 }
451 
452 /**
453  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
454  * @kbuf:	Parameters for the memory search.
455  *
456  * On success, kbuf->mem will have the start address of the memory region found.
457  *
458  * Return: 0 on success, negative errno on error.
459  */
460 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
461 {
462 	int ret;
463 
464 	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
465 
466 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
467 }
468 
469 /**
470  * kexec_add_buffer - place a buffer in a kexec segment
471  * @kbuf:	Buffer contents and memory parameters.
472  *
473  * This function assumes that kexec_mutex is held.
474  * On successful return, @kbuf->mem will have the physical address of
475  * the buffer in memory.
476  *
477  * Return: 0 on success, negative errno on error.
478  */
479 int kexec_add_buffer(struct kexec_buf *kbuf)
480 {
481 
482 	struct kexec_segment *ksegment;
483 	int ret;
484 
485 	/* Currently adding segment this way is allowed only in file mode */
486 	if (!kbuf->image->file_mode)
487 		return -EINVAL;
488 
489 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
490 		return -EINVAL;
491 
492 	/*
493 	 * Make sure we are not trying to add buffer after allocating
494 	 * control pages. All segments need to be placed first before
495 	 * any control pages are allocated. As control page allocation
496 	 * logic goes through list of segments to make sure there are
497 	 * no destination overlaps.
498 	 */
499 	if (!list_empty(&kbuf->image->control_pages)) {
500 		WARN_ON(1);
501 		return -EINVAL;
502 	}
503 
504 	/* Ensure minimum alignment needed for segments. */
505 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
506 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
507 
508 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
509 	ret = kexec_locate_mem_hole(kbuf);
510 	if (ret)
511 		return ret;
512 
513 	/* Found a suitable memory range */
514 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
515 	ksegment->kbuf = kbuf->buffer;
516 	ksegment->bufsz = kbuf->bufsz;
517 	ksegment->mem = kbuf->mem;
518 	ksegment->memsz = kbuf->memsz;
519 	kbuf->image->nr_segments++;
520 	return 0;
521 }
522 
523 /* Calculate and store the digest of segments */
524 static int kexec_calculate_store_digests(struct kimage *image)
525 {
526 	struct crypto_shash *tfm;
527 	struct shash_desc *desc;
528 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
529 	size_t desc_size, nullsz;
530 	char *digest;
531 	void *zero_buf;
532 	struct kexec_sha_region *sha_regions;
533 	struct purgatory_info *pi = &image->purgatory_info;
534 
535 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
536 	zero_buf_sz = PAGE_SIZE;
537 
538 	tfm = crypto_alloc_shash("sha256", 0, 0);
539 	if (IS_ERR(tfm)) {
540 		ret = PTR_ERR(tfm);
541 		goto out;
542 	}
543 
544 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
545 	desc = kzalloc(desc_size, GFP_KERNEL);
546 	if (!desc) {
547 		ret = -ENOMEM;
548 		goto out_free_tfm;
549 	}
550 
551 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
552 	sha_regions = vzalloc(sha_region_sz);
553 	if (!sha_regions)
554 		goto out_free_desc;
555 
556 	desc->tfm   = tfm;
557 	desc->flags = 0;
558 
559 	ret = crypto_shash_init(desc);
560 	if (ret < 0)
561 		goto out_free_sha_regions;
562 
563 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
564 	if (!digest) {
565 		ret = -ENOMEM;
566 		goto out_free_sha_regions;
567 	}
568 
569 	for (j = i = 0; i < image->nr_segments; i++) {
570 		struct kexec_segment *ksegment;
571 
572 		ksegment = &image->segment[i];
573 		/*
574 		 * Skip purgatory as it will be modified once we put digest
575 		 * info in purgatory.
576 		 */
577 		if (ksegment->kbuf == pi->purgatory_buf)
578 			continue;
579 
580 		ret = crypto_shash_update(desc, ksegment->kbuf,
581 					  ksegment->bufsz);
582 		if (ret)
583 			break;
584 
585 		/*
586 		 * Assume rest of the buffer is filled with zero and
587 		 * update digest accordingly.
588 		 */
589 		nullsz = ksegment->memsz - ksegment->bufsz;
590 		while (nullsz) {
591 			unsigned long bytes = nullsz;
592 
593 			if (bytes > zero_buf_sz)
594 				bytes = zero_buf_sz;
595 			ret = crypto_shash_update(desc, zero_buf, bytes);
596 			if (ret)
597 				break;
598 			nullsz -= bytes;
599 		}
600 
601 		if (ret)
602 			break;
603 
604 		sha_regions[j].start = ksegment->mem;
605 		sha_regions[j].len = ksegment->memsz;
606 		j++;
607 	}
608 
609 	if (!ret) {
610 		ret = crypto_shash_final(desc, digest);
611 		if (ret)
612 			goto out_free_digest;
613 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
614 						     sha_regions, sha_region_sz, 0);
615 		if (ret)
616 			goto out_free_digest;
617 
618 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
619 						     digest, SHA256_DIGEST_SIZE, 0);
620 		if (ret)
621 			goto out_free_digest;
622 	}
623 
624 out_free_digest:
625 	kfree(digest);
626 out_free_sha_regions:
627 	vfree(sha_regions);
628 out_free_desc:
629 	kfree(desc);
630 out_free_tfm:
631 	kfree(tfm);
632 out:
633 	return ret;
634 }
635 
636 /* Actually load purgatory. Lot of code taken from kexec-tools */
637 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
638 				  unsigned long max, int top_down)
639 {
640 	struct purgatory_info *pi = &image->purgatory_info;
641 	unsigned long align, bss_align, bss_sz, bss_pad;
642 	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
643 	unsigned char *buf_addr, *src;
644 	int i, ret = 0, entry_sidx = -1;
645 	const Elf_Shdr *sechdrs_c;
646 	Elf_Shdr *sechdrs = NULL;
647 	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
648 				  .buf_min = min, .buf_max = max,
649 				  .top_down = top_down };
650 
651 	/*
652 	 * sechdrs_c points to section headers in purgatory and are read
653 	 * only. No modifications allowed.
654 	 */
655 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
656 
657 	/*
658 	 * We can not modify sechdrs_c[] and its fields. It is read only.
659 	 * Copy it over to a local copy where one can store some temporary
660 	 * data and free it at the end. We need to modify ->sh_addr and
661 	 * ->sh_offset fields to keep track of permanent and temporary
662 	 * locations of sections.
663 	 */
664 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
665 	if (!sechdrs)
666 		return -ENOMEM;
667 
668 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
669 
670 	/*
671 	 * We seem to have multiple copies of sections. First copy is which
672 	 * is embedded in kernel in read only section. Some of these sections
673 	 * will be copied to a temporary buffer and relocated. And these
674 	 * sections will finally be copied to their final destination at
675 	 * segment load time.
676 	 *
677 	 * Use ->sh_offset to reflect section address in memory. It will
678 	 * point to original read only copy if section is not allocatable.
679 	 * Otherwise it will point to temporary copy which will be relocated.
680 	 *
681 	 * Use ->sh_addr to contain final address of the section where it
682 	 * will go during execution time.
683 	 */
684 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
685 		if (sechdrs[i].sh_type == SHT_NOBITS)
686 			continue;
687 
688 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
689 						sechdrs[i].sh_offset;
690 	}
691 
692 	/*
693 	 * Identify entry point section and make entry relative to section
694 	 * start.
695 	 */
696 	entry = pi->ehdr->e_entry;
697 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
698 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
699 			continue;
700 
701 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
702 			continue;
703 
704 		/* Make entry section relative */
705 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
706 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
707 		     pi->ehdr->e_entry)) {
708 			entry_sidx = i;
709 			entry -= sechdrs[i].sh_addr;
710 			break;
711 		}
712 	}
713 
714 	/* Determine how much memory is needed to load relocatable object. */
715 	bss_align = 1;
716 	bss_sz = 0;
717 
718 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
719 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
720 			continue;
721 
722 		align = sechdrs[i].sh_addralign;
723 		if (sechdrs[i].sh_type != SHT_NOBITS) {
724 			if (kbuf.buf_align < align)
725 				kbuf.buf_align = align;
726 			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
727 			kbuf.bufsz += sechdrs[i].sh_size;
728 		} else {
729 			/* bss section */
730 			if (bss_align < align)
731 				bss_align = align;
732 			bss_sz = ALIGN(bss_sz, align);
733 			bss_sz += sechdrs[i].sh_size;
734 		}
735 	}
736 
737 	/* Determine the bss padding required to align bss properly */
738 	bss_pad = 0;
739 	if (kbuf.bufsz & (bss_align - 1))
740 		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
741 
742 	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
743 
744 	/* Allocate buffer for purgatory */
745 	kbuf.buffer = vzalloc(kbuf.bufsz);
746 	if (!kbuf.buffer) {
747 		ret = -ENOMEM;
748 		goto out;
749 	}
750 
751 	if (kbuf.buf_align < bss_align)
752 		kbuf.buf_align = bss_align;
753 
754 	/* Add buffer to segment list */
755 	ret = kexec_add_buffer(&kbuf);
756 	if (ret)
757 		goto out;
758 	pi->purgatory_load_addr = kbuf.mem;
759 
760 	/* Load SHF_ALLOC sections */
761 	buf_addr = kbuf.buffer;
762 	load_addr = curr_load_addr = pi->purgatory_load_addr;
763 	bss_addr = load_addr + kbuf.bufsz + bss_pad;
764 
765 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
766 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
767 			continue;
768 
769 		align = sechdrs[i].sh_addralign;
770 		if (sechdrs[i].sh_type != SHT_NOBITS) {
771 			curr_load_addr = ALIGN(curr_load_addr, align);
772 			offset = curr_load_addr - load_addr;
773 			/* We already modifed ->sh_offset to keep src addr */
774 			src = (char *) sechdrs[i].sh_offset;
775 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
776 
777 			/* Store load address and source address of section */
778 			sechdrs[i].sh_addr = curr_load_addr;
779 
780 			/*
781 			 * This section got copied to temporary buffer. Update
782 			 * ->sh_offset accordingly.
783 			 */
784 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
785 
786 			/* Advance to the next address */
787 			curr_load_addr += sechdrs[i].sh_size;
788 		} else {
789 			bss_addr = ALIGN(bss_addr, align);
790 			sechdrs[i].sh_addr = bss_addr;
791 			bss_addr += sechdrs[i].sh_size;
792 		}
793 	}
794 
795 	/* Update entry point based on load address of text section */
796 	if (entry_sidx >= 0)
797 		entry += sechdrs[entry_sidx].sh_addr;
798 
799 	/* Make kernel jump to purgatory after shutdown */
800 	image->start = entry;
801 
802 	/* Used later to get/set symbol values */
803 	pi->sechdrs = sechdrs;
804 
805 	/*
806 	 * Used later to identify which section is purgatory and skip it
807 	 * from checksumming.
808 	 */
809 	pi->purgatory_buf = kbuf.buffer;
810 	return ret;
811 out:
812 	vfree(sechdrs);
813 	vfree(kbuf.buffer);
814 	return ret;
815 }
816 
817 static int kexec_apply_relocations(struct kimage *image)
818 {
819 	int i, ret;
820 	struct purgatory_info *pi = &image->purgatory_info;
821 	Elf_Shdr *sechdrs = pi->sechdrs;
822 
823 	/* Apply relocations */
824 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
825 		Elf_Shdr *section, *symtab;
826 
827 		if (sechdrs[i].sh_type != SHT_RELA &&
828 		    sechdrs[i].sh_type != SHT_REL)
829 			continue;
830 
831 		/*
832 		 * For section of type SHT_RELA/SHT_REL,
833 		 * ->sh_link contains section header index of associated
834 		 * symbol table. And ->sh_info contains section header
835 		 * index of section to which relocations apply.
836 		 */
837 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
838 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
839 			return -ENOEXEC;
840 
841 		section = &sechdrs[sechdrs[i].sh_info];
842 		symtab = &sechdrs[sechdrs[i].sh_link];
843 
844 		if (!(section->sh_flags & SHF_ALLOC))
845 			continue;
846 
847 		/*
848 		 * symtab->sh_link contain section header index of associated
849 		 * string table.
850 		 */
851 		if (symtab->sh_link >= pi->ehdr->e_shnum)
852 			/* Invalid section number? */
853 			continue;
854 
855 		/*
856 		 * Respective architecture needs to provide support for applying
857 		 * relocations of type SHT_RELA/SHT_REL.
858 		 */
859 		if (sechdrs[i].sh_type == SHT_RELA)
860 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
861 							       sechdrs, i);
862 		else if (sechdrs[i].sh_type == SHT_REL)
863 			ret = arch_kexec_apply_relocations(pi->ehdr,
864 							   sechdrs, i);
865 		if (ret)
866 			return ret;
867 	}
868 
869 	return 0;
870 }
871 
872 /* Load relocatable purgatory object and relocate it appropriately */
873 int kexec_load_purgatory(struct kimage *image, unsigned long min,
874 			 unsigned long max, int top_down,
875 			 unsigned long *load_addr)
876 {
877 	struct purgatory_info *pi = &image->purgatory_info;
878 	int ret;
879 
880 	if (kexec_purgatory_size <= 0)
881 		return -EINVAL;
882 
883 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
884 		return -ENOEXEC;
885 
886 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
887 
888 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
889 	    || pi->ehdr->e_type != ET_REL
890 	    || !elf_check_arch(pi->ehdr)
891 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
892 		return -ENOEXEC;
893 
894 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
895 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
896 	    kexec_purgatory_size - pi->ehdr->e_shoff))
897 		return -ENOEXEC;
898 
899 	ret = __kexec_load_purgatory(image, min, max, top_down);
900 	if (ret)
901 		return ret;
902 
903 	ret = kexec_apply_relocations(image);
904 	if (ret)
905 		goto out;
906 
907 	*load_addr = pi->purgatory_load_addr;
908 	return 0;
909 out:
910 	vfree(pi->sechdrs);
911 	pi->sechdrs = NULL;
912 
913 	vfree(pi->purgatory_buf);
914 	pi->purgatory_buf = NULL;
915 	return ret;
916 }
917 
918 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
919 					    const char *name)
920 {
921 	Elf_Sym *syms;
922 	Elf_Shdr *sechdrs;
923 	Elf_Ehdr *ehdr;
924 	int i, k;
925 	const char *strtab;
926 
927 	if (!pi->sechdrs || !pi->ehdr)
928 		return NULL;
929 
930 	sechdrs = pi->sechdrs;
931 	ehdr = pi->ehdr;
932 
933 	for (i = 0; i < ehdr->e_shnum; i++) {
934 		if (sechdrs[i].sh_type != SHT_SYMTAB)
935 			continue;
936 
937 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
938 			/* Invalid strtab section number */
939 			continue;
940 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
941 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
942 
943 		/* Go through symbols for a match */
944 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
945 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
946 				continue;
947 
948 			if (strcmp(strtab + syms[k].st_name, name) != 0)
949 				continue;
950 
951 			if (syms[k].st_shndx == SHN_UNDEF ||
952 			    syms[k].st_shndx >= ehdr->e_shnum) {
953 				pr_debug("Symbol: %s has bad section index %d.\n",
954 						name, syms[k].st_shndx);
955 				return NULL;
956 			}
957 
958 			/* Found the symbol we are looking for */
959 			return &syms[k];
960 		}
961 	}
962 
963 	return NULL;
964 }
965 
966 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
967 {
968 	struct purgatory_info *pi = &image->purgatory_info;
969 	Elf_Sym *sym;
970 	Elf_Shdr *sechdr;
971 
972 	sym = kexec_purgatory_find_symbol(pi, name);
973 	if (!sym)
974 		return ERR_PTR(-EINVAL);
975 
976 	sechdr = &pi->sechdrs[sym->st_shndx];
977 
978 	/*
979 	 * Returns the address where symbol will finally be loaded after
980 	 * kexec_load_segment()
981 	 */
982 	return (void *)(sechdr->sh_addr + sym->st_value);
983 }
984 
985 /*
986  * Get or set value of a symbol. If "get_value" is true, symbol value is
987  * returned in buf otherwise symbol value is set based on value in buf.
988  */
989 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
990 				   void *buf, unsigned int size, bool get_value)
991 {
992 	Elf_Sym *sym;
993 	Elf_Shdr *sechdrs;
994 	struct purgatory_info *pi = &image->purgatory_info;
995 	char *sym_buf;
996 
997 	sym = kexec_purgatory_find_symbol(pi, name);
998 	if (!sym)
999 		return -EINVAL;
1000 
1001 	if (sym->st_size != size) {
1002 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1003 		       name, (unsigned long)sym->st_size, size);
1004 		return -EINVAL;
1005 	}
1006 
1007 	sechdrs = pi->sechdrs;
1008 
1009 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1010 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1011 		       get_value ? "get" : "set");
1012 		return -EINVAL;
1013 	}
1014 
1015 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1016 					sym->st_value;
1017 
1018 	if (get_value)
1019 		memcpy((void *)buf, sym_buf, size);
1020 	else
1021 		memcpy((void *)sym_buf, buf, size);
1022 
1023 	return 0;
1024 }
1025