xref: /openbmc/linux/kernel/kexec_file.c (revision 3e26a691)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/syscalls.h>
25 #include <linux/vmalloc.h>
26 #include "kexec_internal.h"
27 
28 /*
29  * Declare these symbols weak so that if architecture provides a purgatory,
30  * these will be overridden.
31  */
32 char __weak kexec_purgatory[0];
33 size_t __weak kexec_purgatory_size = 0;
34 
35 static int kexec_calculate_store_digests(struct kimage *image);
36 
37 /* Architectures can provide this probe function */
38 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39 					 unsigned long buf_len)
40 {
41 	return -ENOEXEC;
42 }
43 
44 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45 {
46 	return ERR_PTR(-ENOEXEC);
47 }
48 
49 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50 {
51 	return -EINVAL;
52 }
53 
54 #ifdef CONFIG_KEXEC_VERIFY_SIG
55 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56 					unsigned long buf_len)
57 {
58 	return -EKEYREJECTED;
59 }
60 #endif
61 
62 /* Apply relocations of type RELA */
63 int __weak
64 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65 				 unsigned int relsec)
66 {
67 	pr_err("RELA relocation unsupported.\n");
68 	return -ENOEXEC;
69 }
70 
71 /* Apply relocations of type REL */
72 int __weak
73 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74 			     unsigned int relsec)
75 {
76 	pr_err("REL relocation unsupported.\n");
77 	return -ENOEXEC;
78 }
79 
80 /*
81  * Free up memory used by kernel, initrd, and command line. This is temporary
82  * memory allocation which is not needed any more after these buffers have
83  * been loaded into separate segments and have been copied elsewhere.
84  */
85 void kimage_file_post_load_cleanup(struct kimage *image)
86 {
87 	struct purgatory_info *pi = &image->purgatory_info;
88 
89 	vfree(image->kernel_buf);
90 	image->kernel_buf = NULL;
91 
92 	vfree(image->initrd_buf);
93 	image->initrd_buf = NULL;
94 
95 	kfree(image->cmdline_buf);
96 	image->cmdline_buf = NULL;
97 
98 	vfree(pi->purgatory_buf);
99 	pi->purgatory_buf = NULL;
100 
101 	vfree(pi->sechdrs);
102 	pi->sechdrs = NULL;
103 
104 	/* See if architecture has anything to cleanup post load */
105 	arch_kimage_file_post_load_cleanup(image);
106 
107 	/*
108 	 * Above call should have called into bootloader to free up
109 	 * any data stored in kimage->image_loader_data. It should
110 	 * be ok now to free it up.
111 	 */
112 	kfree(image->image_loader_data);
113 	image->image_loader_data = NULL;
114 }
115 
116 /*
117  * In file mode list of segments is prepared by kernel. Copy relevant
118  * data from user space, do error checking, prepare segment list
119  */
120 static int
121 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122 			     const char __user *cmdline_ptr,
123 			     unsigned long cmdline_len, unsigned flags)
124 {
125 	int ret = 0;
126 	void *ldata;
127 	loff_t size;
128 
129 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130 				       &size, INT_MAX, READING_KEXEC_IMAGE);
131 	if (ret)
132 		return ret;
133 	image->kernel_buf_len = size;
134 
135 	/* Call arch image probe handlers */
136 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137 					    image->kernel_buf_len);
138 	if (ret)
139 		goto out;
140 
141 #ifdef CONFIG_KEXEC_VERIFY_SIG
142 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143 					   image->kernel_buf_len);
144 	if (ret) {
145 		pr_debug("kernel signature verification failed.\n");
146 		goto out;
147 	}
148 	pr_debug("kernel signature verification successful.\n");
149 #endif
150 	/* It is possible that there no initramfs is being loaded */
151 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153 					       &size, INT_MAX,
154 					       READING_KEXEC_INITRAMFS);
155 		if (ret)
156 			goto out;
157 		image->initrd_buf_len = size;
158 	}
159 
160 	if (cmdline_len) {
161 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162 		if (!image->cmdline_buf) {
163 			ret = -ENOMEM;
164 			goto out;
165 		}
166 
167 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168 				     cmdline_len);
169 		if (ret) {
170 			ret = -EFAULT;
171 			goto out;
172 		}
173 
174 		image->cmdline_buf_len = cmdline_len;
175 
176 		/* command line should be a string with last byte null */
177 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178 			ret = -EINVAL;
179 			goto out;
180 		}
181 	}
182 
183 	/* Call arch image load handlers */
184 	ldata = arch_kexec_kernel_image_load(image);
185 
186 	if (IS_ERR(ldata)) {
187 		ret = PTR_ERR(ldata);
188 		goto out;
189 	}
190 
191 	image->image_loader_data = ldata;
192 out:
193 	/* In case of error, free up all allocated memory in this function */
194 	if (ret)
195 		kimage_file_post_load_cleanup(image);
196 	return ret;
197 }
198 
199 static int
200 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201 		       int initrd_fd, const char __user *cmdline_ptr,
202 		       unsigned long cmdline_len, unsigned long flags)
203 {
204 	int ret;
205 	struct kimage *image;
206 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207 
208 	image = do_kimage_alloc_init();
209 	if (!image)
210 		return -ENOMEM;
211 
212 	image->file_mode = 1;
213 
214 	if (kexec_on_panic) {
215 		/* Enable special crash kernel control page alloc policy. */
216 		image->control_page = crashk_res.start;
217 		image->type = KEXEC_TYPE_CRASH;
218 	}
219 
220 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221 					   cmdline_ptr, cmdline_len, flags);
222 	if (ret)
223 		goto out_free_image;
224 
225 	ret = sanity_check_segment_list(image);
226 	if (ret)
227 		goto out_free_post_load_bufs;
228 
229 	ret = -ENOMEM;
230 	image->control_code_page = kimage_alloc_control_pages(image,
231 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
232 	if (!image->control_code_page) {
233 		pr_err("Could not allocate control_code_buffer\n");
234 		goto out_free_post_load_bufs;
235 	}
236 
237 	if (!kexec_on_panic) {
238 		image->swap_page = kimage_alloc_control_pages(image, 0);
239 		if (!image->swap_page) {
240 			pr_err("Could not allocate swap buffer\n");
241 			goto out_free_control_pages;
242 		}
243 	}
244 
245 	*rimage = image;
246 	return 0;
247 out_free_control_pages:
248 	kimage_free_page_list(&image->control_pages);
249 out_free_post_load_bufs:
250 	kimage_file_post_load_cleanup(image);
251 out_free_image:
252 	kfree(image);
253 	return ret;
254 }
255 
256 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258 		unsigned long, flags)
259 {
260 	int ret = 0, i;
261 	struct kimage **dest_image, *image;
262 
263 	/* We only trust the superuser with rebooting the system. */
264 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265 		return -EPERM;
266 
267 	/* Make sure we have a legal set of flags */
268 	if (flags != (flags & KEXEC_FILE_FLAGS))
269 		return -EINVAL;
270 
271 	image = NULL;
272 
273 	if (!mutex_trylock(&kexec_mutex))
274 		return -EBUSY;
275 
276 	dest_image = &kexec_image;
277 	if (flags & KEXEC_FILE_ON_CRASH)
278 		dest_image = &kexec_crash_image;
279 
280 	if (flags & KEXEC_FILE_UNLOAD)
281 		goto exchange;
282 
283 	/*
284 	 * In case of crash, new kernel gets loaded in reserved region. It is
285 	 * same memory where old crash kernel might be loaded. Free any
286 	 * current crash dump kernel before we corrupt it.
287 	 */
288 	if (flags & KEXEC_FILE_ON_CRASH)
289 		kimage_free(xchg(&kexec_crash_image, NULL));
290 
291 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292 				     cmdline_len, flags);
293 	if (ret)
294 		goto out;
295 
296 	ret = machine_kexec_prepare(image);
297 	if (ret)
298 		goto out;
299 
300 	ret = kexec_calculate_store_digests(image);
301 	if (ret)
302 		goto out;
303 
304 	for (i = 0; i < image->nr_segments; i++) {
305 		struct kexec_segment *ksegment;
306 
307 		ksegment = &image->segment[i];
308 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310 			 ksegment->memsz);
311 
312 		ret = kimage_load_segment(image, &image->segment[i]);
313 		if (ret)
314 			goto out;
315 	}
316 
317 	kimage_terminate(image);
318 
319 	/*
320 	 * Free up any temporary buffers allocated which are not needed
321 	 * after image has been loaded
322 	 */
323 	kimage_file_post_load_cleanup(image);
324 exchange:
325 	image = xchg(dest_image, image);
326 out:
327 	mutex_unlock(&kexec_mutex);
328 	kimage_free(image);
329 	return ret;
330 }
331 
332 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333 				    struct kexec_buf *kbuf)
334 {
335 	struct kimage *image = kbuf->image;
336 	unsigned long temp_start, temp_end;
337 
338 	temp_end = min(end, kbuf->buf_max);
339 	temp_start = temp_end - kbuf->memsz;
340 
341 	do {
342 		/* align down start */
343 		temp_start = temp_start & (~(kbuf->buf_align - 1));
344 
345 		if (temp_start < start || temp_start < kbuf->buf_min)
346 			return 0;
347 
348 		temp_end = temp_start + kbuf->memsz - 1;
349 
350 		/*
351 		 * Make sure this does not conflict with any of existing
352 		 * segments
353 		 */
354 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
355 			temp_start = temp_start - PAGE_SIZE;
356 			continue;
357 		}
358 
359 		/* We found a suitable memory range */
360 		break;
361 	} while (1);
362 
363 	/* If we are here, we found a suitable memory range */
364 	kbuf->mem = temp_start;
365 
366 	/* Success, stop navigating through remaining System RAM ranges */
367 	return 1;
368 }
369 
370 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371 				     struct kexec_buf *kbuf)
372 {
373 	struct kimage *image = kbuf->image;
374 	unsigned long temp_start, temp_end;
375 
376 	temp_start = max(start, kbuf->buf_min);
377 
378 	do {
379 		temp_start = ALIGN(temp_start, kbuf->buf_align);
380 		temp_end = temp_start + kbuf->memsz - 1;
381 
382 		if (temp_end > end || temp_end > kbuf->buf_max)
383 			return 0;
384 		/*
385 		 * Make sure this does not conflict with any of existing
386 		 * segments
387 		 */
388 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
389 			temp_start = temp_start + PAGE_SIZE;
390 			continue;
391 		}
392 
393 		/* We found a suitable memory range */
394 		break;
395 	} while (1);
396 
397 	/* If we are here, we found a suitable memory range */
398 	kbuf->mem = temp_start;
399 
400 	/* Success, stop navigating through remaining System RAM ranges */
401 	return 1;
402 }
403 
404 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405 {
406 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
407 	unsigned long sz = end - start + 1;
408 
409 	/* Returning 0 will take to next memory range */
410 	if (sz < kbuf->memsz)
411 		return 0;
412 
413 	if (end < kbuf->buf_min || start > kbuf->buf_max)
414 		return 0;
415 
416 	/*
417 	 * Allocate memory top down with-in ram range. Otherwise bottom up
418 	 * allocation.
419 	 */
420 	if (kbuf->top_down)
421 		return locate_mem_hole_top_down(start, end, kbuf);
422 	return locate_mem_hole_bottom_up(start, end, kbuf);
423 }
424 
425 /*
426  * Helper function for placing a buffer in a kexec segment. This assumes
427  * that kexec_mutex is held.
428  */
429 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430 		     unsigned long memsz, unsigned long buf_align,
431 		     unsigned long buf_min, unsigned long buf_max,
432 		     bool top_down, unsigned long *load_addr)
433 {
434 
435 	struct kexec_segment *ksegment;
436 	struct kexec_buf buf, *kbuf;
437 	int ret;
438 
439 	/* Currently adding segment this way is allowed only in file mode */
440 	if (!image->file_mode)
441 		return -EINVAL;
442 
443 	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444 		return -EINVAL;
445 
446 	/*
447 	 * Make sure we are not trying to add buffer after allocating
448 	 * control pages. All segments need to be placed first before
449 	 * any control pages are allocated. As control page allocation
450 	 * logic goes through list of segments to make sure there are
451 	 * no destination overlaps.
452 	 */
453 	if (!list_empty(&image->control_pages)) {
454 		WARN_ON(1);
455 		return -EINVAL;
456 	}
457 
458 	memset(&buf, 0, sizeof(struct kexec_buf));
459 	kbuf = &buf;
460 	kbuf->image = image;
461 	kbuf->buffer = buffer;
462 	kbuf->bufsz = bufsz;
463 
464 	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465 	kbuf->buf_align = max(buf_align, PAGE_SIZE);
466 	kbuf->buf_min = buf_min;
467 	kbuf->buf_max = buf_max;
468 	kbuf->top_down = top_down;
469 
470 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
471 	if (image->type == KEXEC_TYPE_CRASH)
472 		ret = walk_iomem_res_desc(crashk_res.desc,
473 				IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474 				crashk_res.start, crashk_res.end, kbuf,
475 				locate_mem_hole_callback);
476 	else
477 		ret = walk_system_ram_res(0, -1, kbuf,
478 					  locate_mem_hole_callback);
479 	if (ret != 1) {
480 		/* A suitable memory range could not be found for buffer */
481 		return -EADDRNOTAVAIL;
482 	}
483 
484 	/* Found a suitable memory range */
485 	ksegment = &image->segment[image->nr_segments];
486 	ksegment->kbuf = kbuf->buffer;
487 	ksegment->bufsz = kbuf->bufsz;
488 	ksegment->mem = kbuf->mem;
489 	ksegment->memsz = kbuf->memsz;
490 	image->nr_segments++;
491 	*load_addr = ksegment->mem;
492 	return 0;
493 }
494 
495 /* Calculate and store the digest of segments */
496 static int kexec_calculate_store_digests(struct kimage *image)
497 {
498 	struct crypto_shash *tfm;
499 	struct shash_desc *desc;
500 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501 	size_t desc_size, nullsz;
502 	char *digest;
503 	void *zero_buf;
504 	struct kexec_sha_region *sha_regions;
505 	struct purgatory_info *pi = &image->purgatory_info;
506 
507 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508 	zero_buf_sz = PAGE_SIZE;
509 
510 	tfm = crypto_alloc_shash("sha256", 0, 0);
511 	if (IS_ERR(tfm)) {
512 		ret = PTR_ERR(tfm);
513 		goto out;
514 	}
515 
516 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517 	desc = kzalloc(desc_size, GFP_KERNEL);
518 	if (!desc) {
519 		ret = -ENOMEM;
520 		goto out_free_tfm;
521 	}
522 
523 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524 	sha_regions = vzalloc(sha_region_sz);
525 	if (!sha_regions)
526 		goto out_free_desc;
527 
528 	desc->tfm   = tfm;
529 	desc->flags = 0;
530 
531 	ret = crypto_shash_init(desc);
532 	if (ret < 0)
533 		goto out_free_sha_regions;
534 
535 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536 	if (!digest) {
537 		ret = -ENOMEM;
538 		goto out_free_sha_regions;
539 	}
540 
541 	for (j = i = 0; i < image->nr_segments; i++) {
542 		struct kexec_segment *ksegment;
543 
544 		ksegment = &image->segment[i];
545 		/*
546 		 * Skip purgatory as it will be modified once we put digest
547 		 * info in purgatory.
548 		 */
549 		if (ksegment->kbuf == pi->purgatory_buf)
550 			continue;
551 
552 		ret = crypto_shash_update(desc, ksegment->kbuf,
553 					  ksegment->bufsz);
554 		if (ret)
555 			break;
556 
557 		/*
558 		 * Assume rest of the buffer is filled with zero and
559 		 * update digest accordingly.
560 		 */
561 		nullsz = ksegment->memsz - ksegment->bufsz;
562 		while (nullsz) {
563 			unsigned long bytes = nullsz;
564 
565 			if (bytes > zero_buf_sz)
566 				bytes = zero_buf_sz;
567 			ret = crypto_shash_update(desc, zero_buf, bytes);
568 			if (ret)
569 				break;
570 			nullsz -= bytes;
571 		}
572 
573 		if (ret)
574 			break;
575 
576 		sha_regions[j].start = ksegment->mem;
577 		sha_regions[j].len = ksegment->memsz;
578 		j++;
579 	}
580 
581 	if (!ret) {
582 		ret = crypto_shash_final(desc, digest);
583 		if (ret)
584 			goto out_free_digest;
585 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586 						sha_regions, sha_region_sz, 0);
587 		if (ret)
588 			goto out_free_digest;
589 
590 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591 						digest, SHA256_DIGEST_SIZE, 0);
592 		if (ret)
593 			goto out_free_digest;
594 	}
595 
596 out_free_digest:
597 	kfree(digest);
598 out_free_sha_regions:
599 	vfree(sha_regions);
600 out_free_desc:
601 	kfree(desc);
602 out_free_tfm:
603 	kfree(tfm);
604 out:
605 	return ret;
606 }
607 
608 /* Actually load purgatory. Lot of code taken from kexec-tools */
609 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610 				  unsigned long max, int top_down)
611 {
612 	struct purgatory_info *pi = &image->purgatory_info;
613 	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614 	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615 	unsigned char *buf_addr, *src;
616 	int i, ret = 0, entry_sidx = -1;
617 	const Elf_Shdr *sechdrs_c;
618 	Elf_Shdr *sechdrs = NULL;
619 	void *purgatory_buf = NULL;
620 
621 	/*
622 	 * sechdrs_c points to section headers in purgatory and are read
623 	 * only. No modifications allowed.
624 	 */
625 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626 
627 	/*
628 	 * We can not modify sechdrs_c[] and its fields. It is read only.
629 	 * Copy it over to a local copy where one can store some temporary
630 	 * data and free it at the end. We need to modify ->sh_addr and
631 	 * ->sh_offset fields to keep track of permanent and temporary
632 	 * locations of sections.
633 	 */
634 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635 	if (!sechdrs)
636 		return -ENOMEM;
637 
638 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639 
640 	/*
641 	 * We seem to have multiple copies of sections. First copy is which
642 	 * is embedded in kernel in read only section. Some of these sections
643 	 * will be copied to a temporary buffer and relocated. And these
644 	 * sections will finally be copied to their final destination at
645 	 * segment load time.
646 	 *
647 	 * Use ->sh_offset to reflect section address in memory. It will
648 	 * point to original read only copy if section is not allocatable.
649 	 * Otherwise it will point to temporary copy which will be relocated.
650 	 *
651 	 * Use ->sh_addr to contain final address of the section where it
652 	 * will go during execution time.
653 	 */
654 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
655 		if (sechdrs[i].sh_type == SHT_NOBITS)
656 			continue;
657 
658 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659 						sechdrs[i].sh_offset;
660 	}
661 
662 	/*
663 	 * Identify entry point section and make entry relative to section
664 	 * start.
665 	 */
666 	entry = pi->ehdr->e_entry;
667 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
668 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669 			continue;
670 
671 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672 			continue;
673 
674 		/* Make entry section relative */
675 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677 		     pi->ehdr->e_entry)) {
678 			entry_sidx = i;
679 			entry -= sechdrs[i].sh_addr;
680 			break;
681 		}
682 	}
683 
684 	/* Determine how much memory is needed to load relocatable object. */
685 	buf_align = 1;
686 	bss_align = 1;
687 	buf_sz = 0;
688 	bss_sz = 0;
689 
690 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692 			continue;
693 
694 		align = sechdrs[i].sh_addralign;
695 		if (sechdrs[i].sh_type != SHT_NOBITS) {
696 			if (buf_align < align)
697 				buf_align = align;
698 			buf_sz = ALIGN(buf_sz, align);
699 			buf_sz += sechdrs[i].sh_size;
700 		} else {
701 			/* bss section */
702 			if (bss_align < align)
703 				bss_align = align;
704 			bss_sz = ALIGN(bss_sz, align);
705 			bss_sz += sechdrs[i].sh_size;
706 		}
707 	}
708 
709 	/* Determine the bss padding required to align bss properly */
710 	bss_pad = 0;
711 	if (buf_sz & (bss_align - 1))
712 		bss_pad = bss_align - (buf_sz & (bss_align - 1));
713 
714 	memsz = buf_sz + bss_pad + bss_sz;
715 
716 	/* Allocate buffer for purgatory */
717 	purgatory_buf = vzalloc(buf_sz);
718 	if (!purgatory_buf) {
719 		ret = -ENOMEM;
720 		goto out;
721 	}
722 
723 	if (buf_align < bss_align)
724 		buf_align = bss_align;
725 
726 	/* Add buffer to segment list */
727 	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728 				buf_align, min, max, top_down,
729 				&pi->purgatory_load_addr);
730 	if (ret)
731 		goto out;
732 
733 	/* Load SHF_ALLOC sections */
734 	buf_addr = purgatory_buf;
735 	load_addr = curr_load_addr = pi->purgatory_load_addr;
736 	bss_addr = load_addr + buf_sz + bss_pad;
737 
738 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
739 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740 			continue;
741 
742 		align = sechdrs[i].sh_addralign;
743 		if (sechdrs[i].sh_type != SHT_NOBITS) {
744 			curr_load_addr = ALIGN(curr_load_addr, align);
745 			offset = curr_load_addr - load_addr;
746 			/* We already modifed ->sh_offset to keep src addr */
747 			src = (char *) sechdrs[i].sh_offset;
748 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749 
750 			/* Store load address and source address of section */
751 			sechdrs[i].sh_addr = curr_load_addr;
752 
753 			/*
754 			 * This section got copied to temporary buffer. Update
755 			 * ->sh_offset accordingly.
756 			 */
757 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758 
759 			/* Advance to the next address */
760 			curr_load_addr += sechdrs[i].sh_size;
761 		} else {
762 			bss_addr = ALIGN(bss_addr, align);
763 			sechdrs[i].sh_addr = bss_addr;
764 			bss_addr += sechdrs[i].sh_size;
765 		}
766 	}
767 
768 	/* Update entry point based on load address of text section */
769 	if (entry_sidx >= 0)
770 		entry += sechdrs[entry_sidx].sh_addr;
771 
772 	/* Make kernel jump to purgatory after shutdown */
773 	image->start = entry;
774 
775 	/* Used later to get/set symbol values */
776 	pi->sechdrs = sechdrs;
777 
778 	/*
779 	 * Used later to identify which section is purgatory and skip it
780 	 * from checksumming.
781 	 */
782 	pi->purgatory_buf = purgatory_buf;
783 	return ret;
784 out:
785 	vfree(sechdrs);
786 	vfree(purgatory_buf);
787 	return ret;
788 }
789 
790 static int kexec_apply_relocations(struct kimage *image)
791 {
792 	int i, ret;
793 	struct purgatory_info *pi = &image->purgatory_info;
794 	Elf_Shdr *sechdrs = pi->sechdrs;
795 
796 	/* Apply relocations */
797 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
798 		Elf_Shdr *section, *symtab;
799 
800 		if (sechdrs[i].sh_type != SHT_RELA &&
801 		    sechdrs[i].sh_type != SHT_REL)
802 			continue;
803 
804 		/*
805 		 * For section of type SHT_RELA/SHT_REL,
806 		 * ->sh_link contains section header index of associated
807 		 * symbol table. And ->sh_info contains section header
808 		 * index of section to which relocations apply.
809 		 */
810 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812 			return -ENOEXEC;
813 
814 		section = &sechdrs[sechdrs[i].sh_info];
815 		symtab = &sechdrs[sechdrs[i].sh_link];
816 
817 		if (!(section->sh_flags & SHF_ALLOC))
818 			continue;
819 
820 		/*
821 		 * symtab->sh_link contain section header index of associated
822 		 * string table.
823 		 */
824 		if (symtab->sh_link >= pi->ehdr->e_shnum)
825 			/* Invalid section number? */
826 			continue;
827 
828 		/*
829 		 * Respective architecture needs to provide support for applying
830 		 * relocations of type SHT_RELA/SHT_REL.
831 		 */
832 		if (sechdrs[i].sh_type == SHT_RELA)
833 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
834 							       sechdrs, i);
835 		else if (sechdrs[i].sh_type == SHT_REL)
836 			ret = arch_kexec_apply_relocations(pi->ehdr,
837 							   sechdrs, i);
838 		if (ret)
839 			return ret;
840 	}
841 
842 	return 0;
843 }
844 
845 /* Load relocatable purgatory object and relocate it appropriately */
846 int kexec_load_purgatory(struct kimage *image, unsigned long min,
847 			 unsigned long max, int top_down,
848 			 unsigned long *load_addr)
849 {
850 	struct purgatory_info *pi = &image->purgatory_info;
851 	int ret;
852 
853 	if (kexec_purgatory_size <= 0)
854 		return -EINVAL;
855 
856 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857 		return -ENOEXEC;
858 
859 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
860 
861 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862 	    || pi->ehdr->e_type != ET_REL
863 	    || !elf_check_arch(pi->ehdr)
864 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865 		return -ENOEXEC;
866 
867 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
868 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869 	    kexec_purgatory_size - pi->ehdr->e_shoff))
870 		return -ENOEXEC;
871 
872 	ret = __kexec_load_purgatory(image, min, max, top_down);
873 	if (ret)
874 		return ret;
875 
876 	ret = kexec_apply_relocations(image);
877 	if (ret)
878 		goto out;
879 
880 	*load_addr = pi->purgatory_load_addr;
881 	return 0;
882 out:
883 	vfree(pi->sechdrs);
884 	vfree(pi->purgatory_buf);
885 	return ret;
886 }
887 
888 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889 					    const char *name)
890 {
891 	Elf_Sym *syms;
892 	Elf_Shdr *sechdrs;
893 	Elf_Ehdr *ehdr;
894 	int i, k;
895 	const char *strtab;
896 
897 	if (!pi->sechdrs || !pi->ehdr)
898 		return NULL;
899 
900 	sechdrs = pi->sechdrs;
901 	ehdr = pi->ehdr;
902 
903 	for (i = 0; i < ehdr->e_shnum; i++) {
904 		if (sechdrs[i].sh_type != SHT_SYMTAB)
905 			continue;
906 
907 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
908 			/* Invalid strtab section number */
909 			continue;
910 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
912 
913 		/* Go through symbols for a match */
914 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916 				continue;
917 
918 			if (strcmp(strtab + syms[k].st_name, name) != 0)
919 				continue;
920 
921 			if (syms[k].st_shndx == SHN_UNDEF ||
922 			    syms[k].st_shndx >= ehdr->e_shnum) {
923 				pr_debug("Symbol: %s has bad section index %d.\n",
924 						name, syms[k].st_shndx);
925 				return NULL;
926 			}
927 
928 			/* Found the symbol we are looking for */
929 			return &syms[k];
930 		}
931 	}
932 
933 	return NULL;
934 }
935 
936 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937 {
938 	struct purgatory_info *pi = &image->purgatory_info;
939 	Elf_Sym *sym;
940 	Elf_Shdr *sechdr;
941 
942 	sym = kexec_purgatory_find_symbol(pi, name);
943 	if (!sym)
944 		return ERR_PTR(-EINVAL);
945 
946 	sechdr = &pi->sechdrs[sym->st_shndx];
947 
948 	/*
949 	 * Returns the address where symbol will finally be loaded after
950 	 * kexec_load_segment()
951 	 */
952 	return (void *)(sechdr->sh_addr + sym->st_value);
953 }
954 
955 /*
956  * Get or set value of a symbol. If "get_value" is true, symbol value is
957  * returned in buf otherwise symbol value is set based on value in buf.
958  */
959 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960 				   void *buf, unsigned int size, bool get_value)
961 {
962 	Elf_Sym *sym;
963 	Elf_Shdr *sechdrs;
964 	struct purgatory_info *pi = &image->purgatory_info;
965 	char *sym_buf;
966 
967 	sym = kexec_purgatory_find_symbol(pi, name);
968 	if (!sym)
969 		return -EINVAL;
970 
971 	if (sym->st_size != size) {
972 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973 		       name, (unsigned long)sym->st_size, size);
974 		return -EINVAL;
975 	}
976 
977 	sechdrs = pi->sechdrs;
978 
979 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981 		       get_value ? "get" : "set");
982 		return -EINVAL;
983 	}
984 
985 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986 					sym->st_value;
987 
988 	if (get_value)
989 		memcpy((void *)buf, sym_buf, size);
990 	else
991 		memcpy((void *)sym_buf, buf, size);
992 
993 	return 0;
994 }
995