1 /* 2 * kexec: kexec_file_load system call 3 * 4 * Copyright (C) 2014 Red Hat Inc. 5 * Authors: 6 * Vivek Goyal <vgoyal@redhat.com> 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. See the file COPYING for more details. 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/capability.h> 15 #include <linux/mm.h> 16 #include <linux/file.h> 17 #include <linux/slab.h> 18 #include <linux/kexec.h> 19 #include <linux/mutex.h> 20 #include <linux/list.h> 21 #include <linux/fs.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha.h> 24 #include <linux/syscalls.h> 25 #include <linux/vmalloc.h> 26 #include "kexec_internal.h" 27 28 /* 29 * Declare these symbols weak so that if architecture provides a purgatory, 30 * these will be overridden. 31 */ 32 char __weak kexec_purgatory[0]; 33 size_t __weak kexec_purgatory_size = 0; 34 35 static int kexec_calculate_store_digests(struct kimage *image); 36 37 /* Architectures can provide this probe function */ 38 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 39 unsigned long buf_len) 40 { 41 return -ENOEXEC; 42 } 43 44 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 45 { 46 return ERR_PTR(-ENOEXEC); 47 } 48 49 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 50 { 51 return -EINVAL; 52 } 53 54 #ifdef CONFIG_KEXEC_VERIFY_SIG 55 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 56 unsigned long buf_len) 57 { 58 return -EKEYREJECTED; 59 } 60 #endif 61 62 /* Apply relocations of type RELA */ 63 int __weak 64 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 65 unsigned int relsec) 66 { 67 pr_err("RELA relocation unsupported.\n"); 68 return -ENOEXEC; 69 } 70 71 /* Apply relocations of type REL */ 72 int __weak 73 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 74 unsigned int relsec) 75 { 76 pr_err("REL relocation unsupported.\n"); 77 return -ENOEXEC; 78 } 79 80 /* 81 * Free up memory used by kernel, initrd, and command line. This is temporary 82 * memory allocation which is not needed any more after these buffers have 83 * been loaded into separate segments and have been copied elsewhere. 84 */ 85 void kimage_file_post_load_cleanup(struct kimage *image) 86 { 87 struct purgatory_info *pi = &image->purgatory_info; 88 89 vfree(image->kernel_buf); 90 image->kernel_buf = NULL; 91 92 vfree(image->initrd_buf); 93 image->initrd_buf = NULL; 94 95 kfree(image->cmdline_buf); 96 image->cmdline_buf = NULL; 97 98 vfree(pi->purgatory_buf); 99 pi->purgatory_buf = NULL; 100 101 vfree(pi->sechdrs); 102 pi->sechdrs = NULL; 103 104 /* See if architecture has anything to cleanup post load */ 105 arch_kimage_file_post_load_cleanup(image); 106 107 /* 108 * Above call should have called into bootloader to free up 109 * any data stored in kimage->image_loader_data. It should 110 * be ok now to free it up. 111 */ 112 kfree(image->image_loader_data); 113 image->image_loader_data = NULL; 114 } 115 116 /* 117 * In file mode list of segments is prepared by kernel. Copy relevant 118 * data from user space, do error checking, prepare segment list 119 */ 120 static int 121 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 122 const char __user *cmdline_ptr, 123 unsigned long cmdline_len, unsigned flags) 124 { 125 int ret = 0; 126 void *ldata; 127 loff_t size; 128 129 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, 130 &size, INT_MAX, READING_KEXEC_IMAGE); 131 if (ret) 132 return ret; 133 image->kernel_buf_len = size; 134 135 /* Call arch image probe handlers */ 136 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 137 image->kernel_buf_len); 138 if (ret) 139 goto out; 140 141 #ifdef CONFIG_KEXEC_VERIFY_SIG 142 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 143 image->kernel_buf_len); 144 if (ret) { 145 pr_debug("kernel signature verification failed.\n"); 146 goto out; 147 } 148 pr_debug("kernel signature verification successful.\n"); 149 #endif 150 /* It is possible that there no initramfs is being loaded */ 151 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 152 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, 153 &size, INT_MAX, 154 READING_KEXEC_INITRAMFS); 155 if (ret) 156 goto out; 157 image->initrd_buf_len = size; 158 } 159 160 if (cmdline_len) { 161 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); 162 if (!image->cmdline_buf) { 163 ret = -ENOMEM; 164 goto out; 165 } 166 167 ret = copy_from_user(image->cmdline_buf, cmdline_ptr, 168 cmdline_len); 169 if (ret) { 170 ret = -EFAULT; 171 goto out; 172 } 173 174 image->cmdline_buf_len = cmdline_len; 175 176 /* command line should be a string with last byte null */ 177 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 178 ret = -EINVAL; 179 goto out; 180 } 181 } 182 183 /* Call arch image load handlers */ 184 ldata = arch_kexec_kernel_image_load(image); 185 186 if (IS_ERR(ldata)) { 187 ret = PTR_ERR(ldata); 188 goto out; 189 } 190 191 image->image_loader_data = ldata; 192 out: 193 /* In case of error, free up all allocated memory in this function */ 194 if (ret) 195 kimage_file_post_load_cleanup(image); 196 return ret; 197 } 198 199 static int 200 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 201 int initrd_fd, const char __user *cmdline_ptr, 202 unsigned long cmdline_len, unsigned long flags) 203 { 204 int ret; 205 struct kimage *image; 206 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 207 208 image = do_kimage_alloc_init(); 209 if (!image) 210 return -ENOMEM; 211 212 image->file_mode = 1; 213 214 if (kexec_on_panic) { 215 /* Enable special crash kernel control page alloc policy. */ 216 image->control_page = crashk_res.start; 217 image->type = KEXEC_TYPE_CRASH; 218 } 219 220 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 221 cmdline_ptr, cmdline_len, flags); 222 if (ret) 223 goto out_free_image; 224 225 ret = sanity_check_segment_list(image); 226 if (ret) 227 goto out_free_post_load_bufs; 228 229 ret = -ENOMEM; 230 image->control_code_page = kimage_alloc_control_pages(image, 231 get_order(KEXEC_CONTROL_PAGE_SIZE)); 232 if (!image->control_code_page) { 233 pr_err("Could not allocate control_code_buffer\n"); 234 goto out_free_post_load_bufs; 235 } 236 237 if (!kexec_on_panic) { 238 image->swap_page = kimage_alloc_control_pages(image, 0); 239 if (!image->swap_page) { 240 pr_err("Could not allocate swap buffer\n"); 241 goto out_free_control_pages; 242 } 243 } 244 245 *rimage = image; 246 return 0; 247 out_free_control_pages: 248 kimage_free_page_list(&image->control_pages); 249 out_free_post_load_bufs: 250 kimage_file_post_load_cleanup(image); 251 out_free_image: 252 kfree(image); 253 return ret; 254 } 255 256 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 257 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 258 unsigned long, flags) 259 { 260 int ret = 0, i; 261 struct kimage **dest_image, *image; 262 263 /* We only trust the superuser with rebooting the system. */ 264 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 265 return -EPERM; 266 267 /* Make sure we have a legal set of flags */ 268 if (flags != (flags & KEXEC_FILE_FLAGS)) 269 return -EINVAL; 270 271 image = NULL; 272 273 if (!mutex_trylock(&kexec_mutex)) 274 return -EBUSY; 275 276 dest_image = &kexec_image; 277 if (flags & KEXEC_FILE_ON_CRASH) 278 dest_image = &kexec_crash_image; 279 280 if (flags & KEXEC_FILE_UNLOAD) 281 goto exchange; 282 283 /* 284 * In case of crash, new kernel gets loaded in reserved region. It is 285 * same memory where old crash kernel might be loaded. Free any 286 * current crash dump kernel before we corrupt it. 287 */ 288 if (flags & KEXEC_FILE_ON_CRASH) 289 kimage_free(xchg(&kexec_crash_image, NULL)); 290 291 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 292 cmdline_len, flags); 293 if (ret) 294 goto out; 295 296 ret = machine_kexec_prepare(image); 297 if (ret) 298 goto out; 299 300 ret = kexec_calculate_store_digests(image); 301 if (ret) 302 goto out; 303 304 for (i = 0; i < image->nr_segments; i++) { 305 struct kexec_segment *ksegment; 306 307 ksegment = &image->segment[i]; 308 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 309 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 310 ksegment->memsz); 311 312 ret = kimage_load_segment(image, &image->segment[i]); 313 if (ret) 314 goto out; 315 } 316 317 kimage_terminate(image); 318 319 /* 320 * Free up any temporary buffers allocated which are not needed 321 * after image has been loaded 322 */ 323 kimage_file_post_load_cleanup(image); 324 exchange: 325 image = xchg(dest_image, image); 326 out: 327 mutex_unlock(&kexec_mutex); 328 kimage_free(image); 329 return ret; 330 } 331 332 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 333 struct kexec_buf *kbuf) 334 { 335 struct kimage *image = kbuf->image; 336 unsigned long temp_start, temp_end; 337 338 temp_end = min(end, kbuf->buf_max); 339 temp_start = temp_end - kbuf->memsz; 340 341 do { 342 /* align down start */ 343 temp_start = temp_start & (~(kbuf->buf_align - 1)); 344 345 if (temp_start < start || temp_start < kbuf->buf_min) 346 return 0; 347 348 temp_end = temp_start + kbuf->memsz - 1; 349 350 /* 351 * Make sure this does not conflict with any of existing 352 * segments 353 */ 354 if (kimage_is_destination_range(image, temp_start, temp_end)) { 355 temp_start = temp_start - PAGE_SIZE; 356 continue; 357 } 358 359 /* We found a suitable memory range */ 360 break; 361 } while (1); 362 363 /* If we are here, we found a suitable memory range */ 364 kbuf->mem = temp_start; 365 366 /* Success, stop navigating through remaining System RAM ranges */ 367 return 1; 368 } 369 370 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 371 struct kexec_buf *kbuf) 372 { 373 struct kimage *image = kbuf->image; 374 unsigned long temp_start, temp_end; 375 376 temp_start = max(start, kbuf->buf_min); 377 378 do { 379 temp_start = ALIGN(temp_start, kbuf->buf_align); 380 temp_end = temp_start + kbuf->memsz - 1; 381 382 if (temp_end > end || temp_end > kbuf->buf_max) 383 return 0; 384 /* 385 * Make sure this does not conflict with any of existing 386 * segments 387 */ 388 if (kimage_is_destination_range(image, temp_start, temp_end)) { 389 temp_start = temp_start + PAGE_SIZE; 390 continue; 391 } 392 393 /* We found a suitable memory range */ 394 break; 395 } while (1); 396 397 /* If we are here, we found a suitable memory range */ 398 kbuf->mem = temp_start; 399 400 /* Success, stop navigating through remaining System RAM ranges */ 401 return 1; 402 } 403 404 static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 405 { 406 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 407 unsigned long sz = end - start + 1; 408 409 /* Returning 0 will take to next memory range */ 410 if (sz < kbuf->memsz) 411 return 0; 412 413 if (end < kbuf->buf_min || start > kbuf->buf_max) 414 return 0; 415 416 /* 417 * Allocate memory top down with-in ram range. Otherwise bottom up 418 * allocation. 419 */ 420 if (kbuf->top_down) 421 return locate_mem_hole_top_down(start, end, kbuf); 422 return locate_mem_hole_bottom_up(start, end, kbuf); 423 } 424 425 /* 426 * Helper function for placing a buffer in a kexec segment. This assumes 427 * that kexec_mutex is held. 428 */ 429 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, 430 unsigned long memsz, unsigned long buf_align, 431 unsigned long buf_min, unsigned long buf_max, 432 bool top_down, unsigned long *load_addr) 433 { 434 435 struct kexec_segment *ksegment; 436 struct kexec_buf buf, *kbuf; 437 int ret; 438 439 /* Currently adding segment this way is allowed only in file mode */ 440 if (!image->file_mode) 441 return -EINVAL; 442 443 if (image->nr_segments >= KEXEC_SEGMENT_MAX) 444 return -EINVAL; 445 446 /* 447 * Make sure we are not trying to add buffer after allocating 448 * control pages. All segments need to be placed first before 449 * any control pages are allocated. As control page allocation 450 * logic goes through list of segments to make sure there are 451 * no destination overlaps. 452 */ 453 if (!list_empty(&image->control_pages)) { 454 WARN_ON(1); 455 return -EINVAL; 456 } 457 458 memset(&buf, 0, sizeof(struct kexec_buf)); 459 kbuf = &buf; 460 kbuf->image = image; 461 kbuf->buffer = buffer; 462 kbuf->bufsz = bufsz; 463 464 kbuf->memsz = ALIGN(memsz, PAGE_SIZE); 465 kbuf->buf_align = max(buf_align, PAGE_SIZE); 466 kbuf->buf_min = buf_min; 467 kbuf->buf_max = buf_max; 468 kbuf->top_down = top_down; 469 470 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 471 if (image->type == KEXEC_TYPE_CRASH) 472 ret = walk_iomem_res_desc(crashk_res.desc, 473 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 474 crashk_res.start, crashk_res.end, kbuf, 475 locate_mem_hole_callback); 476 else 477 ret = walk_system_ram_res(0, -1, kbuf, 478 locate_mem_hole_callback); 479 if (ret != 1) { 480 /* A suitable memory range could not be found for buffer */ 481 return -EADDRNOTAVAIL; 482 } 483 484 /* Found a suitable memory range */ 485 ksegment = &image->segment[image->nr_segments]; 486 ksegment->kbuf = kbuf->buffer; 487 ksegment->bufsz = kbuf->bufsz; 488 ksegment->mem = kbuf->mem; 489 ksegment->memsz = kbuf->memsz; 490 image->nr_segments++; 491 *load_addr = ksegment->mem; 492 return 0; 493 } 494 495 /* Calculate and store the digest of segments */ 496 static int kexec_calculate_store_digests(struct kimage *image) 497 { 498 struct crypto_shash *tfm; 499 struct shash_desc *desc; 500 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 501 size_t desc_size, nullsz; 502 char *digest; 503 void *zero_buf; 504 struct kexec_sha_region *sha_regions; 505 struct purgatory_info *pi = &image->purgatory_info; 506 507 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 508 zero_buf_sz = PAGE_SIZE; 509 510 tfm = crypto_alloc_shash("sha256", 0, 0); 511 if (IS_ERR(tfm)) { 512 ret = PTR_ERR(tfm); 513 goto out; 514 } 515 516 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 517 desc = kzalloc(desc_size, GFP_KERNEL); 518 if (!desc) { 519 ret = -ENOMEM; 520 goto out_free_tfm; 521 } 522 523 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 524 sha_regions = vzalloc(sha_region_sz); 525 if (!sha_regions) 526 goto out_free_desc; 527 528 desc->tfm = tfm; 529 desc->flags = 0; 530 531 ret = crypto_shash_init(desc); 532 if (ret < 0) 533 goto out_free_sha_regions; 534 535 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 536 if (!digest) { 537 ret = -ENOMEM; 538 goto out_free_sha_regions; 539 } 540 541 for (j = i = 0; i < image->nr_segments; i++) { 542 struct kexec_segment *ksegment; 543 544 ksegment = &image->segment[i]; 545 /* 546 * Skip purgatory as it will be modified once we put digest 547 * info in purgatory. 548 */ 549 if (ksegment->kbuf == pi->purgatory_buf) 550 continue; 551 552 ret = crypto_shash_update(desc, ksegment->kbuf, 553 ksegment->bufsz); 554 if (ret) 555 break; 556 557 /* 558 * Assume rest of the buffer is filled with zero and 559 * update digest accordingly. 560 */ 561 nullsz = ksegment->memsz - ksegment->bufsz; 562 while (nullsz) { 563 unsigned long bytes = nullsz; 564 565 if (bytes > zero_buf_sz) 566 bytes = zero_buf_sz; 567 ret = crypto_shash_update(desc, zero_buf, bytes); 568 if (ret) 569 break; 570 nullsz -= bytes; 571 } 572 573 if (ret) 574 break; 575 576 sha_regions[j].start = ksegment->mem; 577 sha_regions[j].len = ksegment->memsz; 578 j++; 579 } 580 581 if (!ret) { 582 ret = crypto_shash_final(desc, digest); 583 if (ret) 584 goto out_free_digest; 585 ret = kexec_purgatory_get_set_symbol(image, "sha_regions", 586 sha_regions, sha_region_sz, 0); 587 if (ret) 588 goto out_free_digest; 589 590 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", 591 digest, SHA256_DIGEST_SIZE, 0); 592 if (ret) 593 goto out_free_digest; 594 } 595 596 out_free_digest: 597 kfree(digest); 598 out_free_sha_regions: 599 vfree(sha_regions); 600 out_free_desc: 601 kfree(desc); 602 out_free_tfm: 603 kfree(tfm); 604 out: 605 return ret; 606 } 607 608 /* Actually load purgatory. Lot of code taken from kexec-tools */ 609 static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 610 unsigned long max, int top_down) 611 { 612 struct purgatory_info *pi = &image->purgatory_info; 613 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; 614 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; 615 unsigned char *buf_addr, *src; 616 int i, ret = 0, entry_sidx = -1; 617 const Elf_Shdr *sechdrs_c; 618 Elf_Shdr *sechdrs = NULL; 619 void *purgatory_buf = NULL; 620 621 /* 622 * sechdrs_c points to section headers in purgatory and are read 623 * only. No modifications allowed. 624 */ 625 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 626 627 /* 628 * We can not modify sechdrs_c[] and its fields. It is read only. 629 * Copy it over to a local copy where one can store some temporary 630 * data and free it at the end. We need to modify ->sh_addr and 631 * ->sh_offset fields to keep track of permanent and temporary 632 * locations of sections. 633 */ 634 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 635 if (!sechdrs) 636 return -ENOMEM; 637 638 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 639 640 /* 641 * We seem to have multiple copies of sections. First copy is which 642 * is embedded in kernel in read only section. Some of these sections 643 * will be copied to a temporary buffer and relocated. And these 644 * sections will finally be copied to their final destination at 645 * segment load time. 646 * 647 * Use ->sh_offset to reflect section address in memory. It will 648 * point to original read only copy if section is not allocatable. 649 * Otherwise it will point to temporary copy which will be relocated. 650 * 651 * Use ->sh_addr to contain final address of the section where it 652 * will go during execution time. 653 */ 654 for (i = 0; i < pi->ehdr->e_shnum; i++) { 655 if (sechdrs[i].sh_type == SHT_NOBITS) 656 continue; 657 658 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 659 sechdrs[i].sh_offset; 660 } 661 662 /* 663 * Identify entry point section and make entry relative to section 664 * start. 665 */ 666 entry = pi->ehdr->e_entry; 667 for (i = 0; i < pi->ehdr->e_shnum; i++) { 668 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 669 continue; 670 671 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 672 continue; 673 674 /* Make entry section relative */ 675 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 676 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 677 pi->ehdr->e_entry)) { 678 entry_sidx = i; 679 entry -= sechdrs[i].sh_addr; 680 break; 681 } 682 } 683 684 /* Determine how much memory is needed to load relocatable object. */ 685 buf_align = 1; 686 bss_align = 1; 687 buf_sz = 0; 688 bss_sz = 0; 689 690 for (i = 0; i < pi->ehdr->e_shnum; i++) { 691 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 692 continue; 693 694 align = sechdrs[i].sh_addralign; 695 if (sechdrs[i].sh_type != SHT_NOBITS) { 696 if (buf_align < align) 697 buf_align = align; 698 buf_sz = ALIGN(buf_sz, align); 699 buf_sz += sechdrs[i].sh_size; 700 } else { 701 /* bss section */ 702 if (bss_align < align) 703 bss_align = align; 704 bss_sz = ALIGN(bss_sz, align); 705 bss_sz += sechdrs[i].sh_size; 706 } 707 } 708 709 /* Determine the bss padding required to align bss properly */ 710 bss_pad = 0; 711 if (buf_sz & (bss_align - 1)) 712 bss_pad = bss_align - (buf_sz & (bss_align - 1)); 713 714 memsz = buf_sz + bss_pad + bss_sz; 715 716 /* Allocate buffer for purgatory */ 717 purgatory_buf = vzalloc(buf_sz); 718 if (!purgatory_buf) { 719 ret = -ENOMEM; 720 goto out; 721 } 722 723 if (buf_align < bss_align) 724 buf_align = bss_align; 725 726 /* Add buffer to segment list */ 727 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, 728 buf_align, min, max, top_down, 729 &pi->purgatory_load_addr); 730 if (ret) 731 goto out; 732 733 /* Load SHF_ALLOC sections */ 734 buf_addr = purgatory_buf; 735 load_addr = curr_load_addr = pi->purgatory_load_addr; 736 bss_addr = load_addr + buf_sz + bss_pad; 737 738 for (i = 0; i < pi->ehdr->e_shnum; i++) { 739 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 740 continue; 741 742 align = sechdrs[i].sh_addralign; 743 if (sechdrs[i].sh_type != SHT_NOBITS) { 744 curr_load_addr = ALIGN(curr_load_addr, align); 745 offset = curr_load_addr - load_addr; 746 /* We already modifed ->sh_offset to keep src addr */ 747 src = (char *) sechdrs[i].sh_offset; 748 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 749 750 /* Store load address and source address of section */ 751 sechdrs[i].sh_addr = curr_load_addr; 752 753 /* 754 * This section got copied to temporary buffer. Update 755 * ->sh_offset accordingly. 756 */ 757 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 758 759 /* Advance to the next address */ 760 curr_load_addr += sechdrs[i].sh_size; 761 } else { 762 bss_addr = ALIGN(bss_addr, align); 763 sechdrs[i].sh_addr = bss_addr; 764 bss_addr += sechdrs[i].sh_size; 765 } 766 } 767 768 /* Update entry point based on load address of text section */ 769 if (entry_sidx >= 0) 770 entry += sechdrs[entry_sidx].sh_addr; 771 772 /* Make kernel jump to purgatory after shutdown */ 773 image->start = entry; 774 775 /* Used later to get/set symbol values */ 776 pi->sechdrs = sechdrs; 777 778 /* 779 * Used later to identify which section is purgatory and skip it 780 * from checksumming. 781 */ 782 pi->purgatory_buf = purgatory_buf; 783 return ret; 784 out: 785 vfree(sechdrs); 786 vfree(purgatory_buf); 787 return ret; 788 } 789 790 static int kexec_apply_relocations(struct kimage *image) 791 { 792 int i, ret; 793 struct purgatory_info *pi = &image->purgatory_info; 794 Elf_Shdr *sechdrs = pi->sechdrs; 795 796 /* Apply relocations */ 797 for (i = 0; i < pi->ehdr->e_shnum; i++) { 798 Elf_Shdr *section, *symtab; 799 800 if (sechdrs[i].sh_type != SHT_RELA && 801 sechdrs[i].sh_type != SHT_REL) 802 continue; 803 804 /* 805 * For section of type SHT_RELA/SHT_REL, 806 * ->sh_link contains section header index of associated 807 * symbol table. And ->sh_info contains section header 808 * index of section to which relocations apply. 809 */ 810 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 811 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 812 return -ENOEXEC; 813 814 section = &sechdrs[sechdrs[i].sh_info]; 815 symtab = &sechdrs[sechdrs[i].sh_link]; 816 817 if (!(section->sh_flags & SHF_ALLOC)) 818 continue; 819 820 /* 821 * symtab->sh_link contain section header index of associated 822 * string table. 823 */ 824 if (symtab->sh_link >= pi->ehdr->e_shnum) 825 /* Invalid section number? */ 826 continue; 827 828 /* 829 * Respective architecture needs to provide support for applying 830 * relocations of type SHT_RELA/SHT_REL. 831 */ 832 if (sechdrs[i].sh_type == SHT_RELA) 833 ret = arch_kexec_apply_relocations_add(pi->ehdr, 834 sechdrs, i); 835 else if (sechdrs[i].sh_type == SHT_REL) 836 ret = arch_kexec_apply_relocations(pi->ehdr, 837 sechdrs, i); 838 if (ret) 839 return ret; 840 } 841 842 return 0; 843 } 844 845 /* Load relocatable purgatory object and relocate it appropriately */ 846 int kexec_load_purgatory(struct kimage *image, unsigned long min, 847 unsigned long max, int top_down, 848 unsigned long *load_addr) 849 { 850 struct purgatory_info *pi = &image->purgatory_info; 851 int ret; 852 853 if (kexec_purgatory_size <= 0) 854 return -EINVAL; 855 856 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 857 return -ENOEXEC; 858 859 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 860 861 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 862 || pi->ehdr->e_type != ET_REL 863 || !elf_check_arch(pi->ehdr) 864 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 865 return -ENOEXEC; 866 867 if (pi->ehdr->e_shoff >= kexec_purgatory_size 868 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 869 kexec_purgatory_size - pi->ehdr->e_shoff)) 870 return -ENOEXEC; 871 872 ret = __kexec_load_purgatory(image, min, max, top_down); 873 if (ret) 874 return ret; 875 876 ret = kexec_apply_relocations(image); 877 if (ret) 878 goto out; 879 880 *load_addr = pi->purgatory_load_addr; 881 return 0; 882 out: 883 vfree(pi->sechdrs); 884 vfree(pi->purgatory_buf); 885 return ret; 886 } 887 888 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 889 const char *name) 890 { 891 Elf_Sym *syms; 892 Elf_Shdr *sechdrs; 893 Elf_Ehdr *ehdr; 894 int i, k; 895 const char *strtab; 896 897 if (!pi->sechdrs || !pi->ehdr) 898 return NULL; 899 900 sechdrs = pi->sechdrs; 901 ehdr = pi->ehdr; 902 903 for (i = 0; i < ehdr->e_shnum; i++) { 904 if (sechdrs[i].sh_type != SHT_SYMTAB) 905 continue; 906 907 if (sechdrs[i].sh_link >= ehdr->e_shnum) 908 /* Invalid strtab section number */ 909 continue; 910 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 911 syms = (Elf_Sym *)sechdrs[i].sh_offset; 912 913 /* Go through symbols for a match */ 914 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 915 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 916 continue; 917 918 if (strcmp(strtab + syms[k].st_name, name) != 0) 919 continue; 920 921 if (syms[k].st_shndx == SHN_UNDEF || 922 syms[k].st_shndx >= ehdr->e_shnum) { 923 pr_debug("Symbol: %s has bad section index %d.\n", 924 name, syms[k].st_shndx); 925 return NULL; 926 } 927 928 /* Found the symbol we are looking for */ 929 return &syms[k]; 930 } 931 } 932 933 return NULL; 934 } 935 936 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 937 { 938 struct purgatory_info *pi = &image->purgatory_info; 939 Elf_Sym *sym; 940 Elf_Shdr *sechdr; 941 942 sym = kexec_purgatory_find_symbol(pi, name); 943 if (!sym) 944 return ERR_PTR(-EINVAL); 945 946 sechdr = &pi->sechdrs[sym->st_shndx]; 947 948 /* 949 * Returns the address where symbol will finally be loaded after 950 * kexec_load_segment() 951 */ 952 return (void *)(sechdr->sh_addr + sym->st_value); 953 } 954 955 /* 956 * Get or set value of a symbol. If "get_value" is true, symbol value is 957 * returned in buf otherwise symbol value is set based on value in buf. 958 */ 959 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 960 void *buf, unsigned int size, bool get_value) 961 { 962 Elf_Sym *sym; 963 Elf_Shdr *sechdrs; 964 struct purgatory_info *pi = &image->purgatory_info; 965 char *sym_buf; 966 967 sym = kexec_purgatory_find_symbol(pi, name); 968 if (!sym) 969 return -EINVAL; 970 971 if (sym->st_size != size) { 972 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 973 name, (unsigned long)sym->st_size, size); 974 return -EINVAL; 975 } 976 977 sechdrs = pi->sechdrs; 978 979 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 980 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 981 get_value ? "get" : "set"); 982 return -EINVAL; 983 } 984 985 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 986 sym->st_value; 987 988 if (get_value) 989 memcpy((void *)buf, sym_buf, size); 990 else 991 memcpy((void *)sym_buf, buf, size); 992 993 return 0; 994 } 995