xref: /openbmc/linux/kernel/kexec_file.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34 
35 void set_kexec_sig_enforced(void)
36 {
37 	sig_enforce = true;
38 }
39 #endif
40 
41 static int kexec_calculate_store_digests(struct kimage *image);
42 
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45 
46 /*
47  * Currently this is the only default function that is exported as some
48  * architectures need it to do additional handlings.
49  * In the future, other default functions may be exported too if required.
50  */
51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 			      unsigned long buf_len)
53 {
54 	const struct kexec_file_ops * const *fops;
55 	int ret = -ENOEXEC;
56 
57 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 		ret = (*fops)->probe(buf, buf_len);
59 		if (!ret) {
60 			image->fops = *fops;
61 			return ret;
62 		}
63 	}
64 
65 	return ret;
66 }
67 
68 void *kexec_image_load_default(struct kimage *image)
69 {
70 	if (!image->fops || !image->fops->load)
71 		return ERR_PTR(-ENOEXEC);
72 
73 	return image->fops->load(image, image->kernel_buf,
74 				 image->kernel_buf_len, image->initrd_buf,
75 				 image->initrd_buf_len, image->cmdline_buf,
76 				 image->cmdline_buf_len);
77 }
78 
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 /*
88  * Free up memory used by kernel, initrd, and command line. This is temporary
89  * memory allocation which is not needed any more after these buffers have
90  * been loaded into separate segments and have been copied elsewhere.
91  */
92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 	struct purgatory_info *pi = &image->purgatory_info;
95 
96 	vfree(image->kernel_buf);
97 	image->kernel_buf = NULL;
98 
99 	vfree(image->initrd_buf);
100 	image->initrd_buf = NULL;
101 
102 	kfree(image->cmdline_buf);
103 	image->cmdline_buf = NULL;
104 
105 	vfree(pi->purgatory_buf);
106 	pi->purgatory_buf = NULL;
107 
108 	vfree(pi->sechdrs);
109 	pi->sechdrs = NULL;
110 
111 #ifdef CONFIG_IMA_KEXEC
112 	vfree(image->ima_buffer);
113 	image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115 
116 	/* See if architecture has anything to cleanup post load */
117 	arch_kimage_file_post_load_cleanup(image);
118 
119 	/*
120 	 * Above call should have called into bootloader to free up
121 	 * any data stored in kimage->image_loader_data. It should
122 	 * be ok now to free it up.
123 	 */
124 	kfree(image->image_loader_data);
125 	image->image_loader_data = NULL;
126 }
127 
128 #ifdef CONFIG_KEXEC_SIG
129 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
130 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
131 {
132 	int ret;
133 
134 	ret = verify_pefile_signature(kernel, kernel_len,
135 				      VERIFY_USE_SECONDARY_KEYRING,
136 				      VERIFYING_KEXEC_PE_SIGNATURE);
137 	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
138 		ret = verify_pefile_signature(kernel, kernel_len,
139 					      VERIFY_USE_PLATFORM_KEYRING,
140 					      VERIFYING_KEXEC_PE_SIGNATURE);
141 	}
142 	return ret;
143 }
144 #endif
145 
146 static int kexec_image_verify_sig(struct kimage *image, void *buf,
147 				  unsigned long buf_len)
148 {
149 	if (!image->fops || !image->fops->verify_sig) {
150 		pr_debug("kernel loader does not support signature verification.\n");
151 		return -EKEYREJECTED;
152 	}
153 
154 	return image->fops->verify_sig(buf, buf_len);
155 }
156 
157 static int
158 kimage_validate_signature(struct kimage *image)
159 {
160 	int ret;
161 
162 	ret = kexec_image_verify_sig(image, image->kernel_buf,
163 				     image->kernel_buf_len);
164 	if (ret) {
165 
166 		if (sig_enforce) {
167 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
168 			return ret;
169 		}
170 
171 		/*
172 		 * If IMA is guaranteed to appraise a signature on the kexec
173 		 * image, permit it even if the kernel is otherwise locked
174 		 * down.
175 		 */
176 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
177 		    security_locked_down(LOCKDOWN_KEXEC))
178 			return -EPERM;
179 
180 		pr_debug("kernel signature verification failed (%d).\n", ret);
181 	}
182 
183 	return 0;
184 }
185 #endif
186 
187 /*
188  * In file mode list of segments is prepared by kernel. Copy relevant
189  * data from user space, do error checking, prepare segment list
190  */
191 static int
192 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
193 			     const char __user *cmdline_ptr,
194 			     unsigned long cmdline_len, unsigned flags)
195 {
196 	ssize_t ret;
197 	void *ldata;
198 
199 	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
200 				       KEXEC_FILE_SIZE_MAX, NULL,
201 				       READING_KEXEC_IMAGE);
202 	if (ret < 0)
203 		return ret;
204 	image->kernel_buf_len = ret;
205 
206 	/* Call arch image probe handlers */
207 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
208 					    image->kernel_buf_len);
209 	if (ret)
210 		goto out;
211 
212 #ifdef CONFIG_KEXEC_SIG
213 	ret = kimage_validate_signature(image);
214 
215 	if (ret)
216 		goto out;
217 #endif
218 	/* It is possible that there no initramfs is being loaded */
219 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
220 		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
221 					       KEXEC_FILE_SIZE_MAX, NULL,
222 					       READING_KEXEC_INITRAMFS);
223 		if (ret < 0)
224 			goto out;
225 		image->initrd_buf_len = ret;
226 		ret = 0;
227 	}
228 
229 	if (cmdline_len) {
230 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
231 		if (IS_ERR(image->cmdline_buf)) {
232 			ret = PTR_ERR(image->cmdline_buf);
233 			image->cmdline_buf = NULL;
234 			goto out;
235 		}
236 
237 		image->cmdline_buf_len = cmdline_len;
238 
239 		/* command line should be a string with last byte null */
240 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
241 			ret = -EINVAL;
242 			goto out;
243 		}
244 
245 		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
246 				  image->cmdline_buf_len - 1);
247 	}
248 
249 	/* IMA needs to pass the measurement list to the next kernel. */
250 	ima_add_kexec_buffer(image);
251 
252 	/* Call arch image load handlers */
253 	ldata = arch_kexec_kernel_image_load(image);
254 
255 	if (IS_ERR(ldata)) {
256 		ret = PTR_ERR(ldata);
257 		goto out;
258 	}
259 
260 	image->image_loader_data = ldata;
261 out:
262 	/* In case of error, free up all allocated memory in this function */
263 	if (ret)
264 		kimage_file_post_load_cleanup(image);
265 	return ret;
266 }
267 
268 static int
269 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
270 		       int initrd_fd, const char __user *cmdline_ptr,
271 		       unsigned long cmdline_len, unsigned long flags)
272 {
273 	int ret;
274 	struct kimage *image;
275 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
276 
277 	image = do_kimage_alloc_init();
278 	if (!image)
279 		return -ENOMEM;
280 
281 	image->file_mode = 1;
282 
283 	if (kexec_on_panic) {
284 		/* Enable special crash kernel control page alloc policy. */
285 		image->control_page = crashk_res.start;
286 		image->type = KEXEC_TYPE_CRASH;
287 	}
288 
289 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
290 					   cmdline_ptr, cmdline_len, flags);
291 	if (ret)
292 		goto out_free_image;
293 
294 	ret = sanity_check_segment_list(image);
295 	if (ret)
296 		goto out_free_post_load_bufs;
297 
298 	ret = -ENOMEM;
299 	image->control_code_page = kimage_alloc_control_pages(image,
300 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
301 	if (!image->control_code_page) {
302 		pr_err("Could not allocate control_code_buffer\n");
303 		goto out_free_post_load_bufs;
304 	}
305 
306 	if (!kexec_on_panic) {
307 		image->swap_page = kimage_alloc_control_pages(image, 0);
308 		if (!image->swap_page) {
309 			pr_err("Could not allocate swap buffer\n");
310 			goto out_free_control_pages;
311 		}
312 	}
313 
314 	*rimage = image;
315 	return 0;
316 out_free_control_pages:
317 	kimage_free_page_list(&image->control_pages);
318 out_free_post_load_bufs:
319 	kimage_file_post_load_cleanup(image);
320 out_free_image:
321 	kfree(image);
322 	return ret;
323 }
324 
325 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
326 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
327 		unsigned long, flags)
328 {
329 	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
330 			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
331 	struct kimage **dest_image, *image;
332 	int ret = 0, i;
333 
334 	/* We only trust the superuser with rebooting the system. */
335 	if (!kexec_load_permitted(image_type))
336 		return -EPERM;
337 
338 	/* Make sure we have a legal set of flags */
339 	if (flags != (flags & KEXEC_FILE_FLAGS))
340 		return -EINVAL;
341 
342 	image = NULL;
343 
344 	if (!kexec_trylock())
345 		return -EBUSY;
346 
347 	if (image_type == KEXEC_TYPE_CRASH) {
348 		dest_image = &kexec_crash_image;
349 		if (kexec_crash_image)
350 			arch_kexec_unprotect_crashkres();
351 	} else {
352 		dest_image = &kexec_image;
353 	}
354 
355 	if (flags & KEXEC_FILE_UNLOAD)
356 		goto exchange;
357 
358 	/*
359 	 * In case of crash, new kernel gets loaded in reserved region. It is
360 	 * same memory where old crash kernel might be loaded. Free any
361 	 * current crash dump kernel before we corrupt it.
362 	 */
363 	if (flags & KEXEC_FILE_ON_CRASH)
364 		kimage_free(xchg(&kexec_crash_image, NULL));
365 
366 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
367 				     cmdline_len, flags);
368 	if (ret)
369 		goto out;
370 
371 	ret = machine_kexec_prepare(image);
372 	if (ret)
373 		goto out;
374 
375 	/*
376 	 * Some architecture(like S390) may touch the crash memory before
377 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
378 	 */
379 	ret = kimage_crash_copy_vmcoreinfo(image);
380 	if (ret)
381 		goto out;
382 
383 	ret = kexec_calculate_store_digests(image);
384 	if (ret)
385 		goto out;
386 
387 	for (i = 0; i < image->nr_segments; i++) {
388 		struct kexec_segment *ksegment;
389 
390 		ksegment = &image->segment[i];
391 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
392 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
393 			 ksegment->memsz);
394 
395 		ret = kimage_load_segment(image, &image->segment[i]);
396 		if (ret)
397 			goto out;
398 	}
399 
400 	kimage_terminate(image);
401 
402 	ret = machine_kexec_post_load(image);
403 	if (ret)
404 		goto out;
405 
406 	/*
407 	 * Free up any temporary buffers allocated which are not needed
408 	 * after image has been loaded
409 	 */
410 	kimage_file_post_load_cleanup(image);
411 exchange:
412 	image = xchg(dest_image, image);
413 out:
414 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
415 		arch_kexec_protect_crashkres();
416 
417 	kexec_unlock();
418 	kimage_free(image);
419 	return ret;
420 }
421 
422 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
423 				    struct kexec_buf *kbuf)
424 {
425 	struct kimage *image = kbuf->image;
426 	unsigned long temp_start, temp_end;
427 
428 	temp_end = min(end, kbuf->buf_max);
429 	temp_start = temp_end - kbuf->memsz;
430 
431 	do {
432 		/* align down start */
433 		temp_start = temp_start & (~(kbuf->buf_align - 1));
434 
435 		if (temp_start < start || temp_start < kbuf->buf_min)
436 			return 0;
437 
438 		temp_end = temp_start + kbuf->memsz - 1;
439 
440 		/*
441 		 * Make sure this does not conflict with any of existing
442 		 * segments
443 		 */
444 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
445 			temp_start = temp_start - PAGE_SIZE;
446 			continue;
447 		}
448 
449 		/* We found a suitable memory range */
450 		break;
451 	} while (1);
452 
453 	/* If we are here, we found a suitable memory range */
454 	kbuf->mem = temp_start;
455 
456 	/* Success, stop navigating through remaining System RAM ranges */
457 	return 1;
458 }
459 
460 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
461 				     struct kexec_buf *kbuf)
462 {
463 	struct kimage *image = kbuf->image;
464 	unsigned long temp_start, temp_end;
465 
466 	temp_start = max(start, kbuf->buf_min);
467 
468 	do {
469 		temp_start = ALIGN(temp_start, kbuf->buf_align);
470 		temp_end = temp_start + kbuf->memsz - 1;
471 
472 		if (temp_end > end || temp_end > kbuf->buf_max)
473 			return 0;
474 		/*
475 		 * Make sure this does not conflict with any of existing
476 		 * segments
477 		 */
478 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
479 			temp_start = temp_start + PAGE_SIZE;
480 			continue;
481 		}
482 
483 		/* We found a suitable memory range */
484 		break;
485 	} while (1);
486 
487 	/* If we are here, we found a suitable memory range */
488 	kbuf->mem = temp_start;
489 
490 	/* Success, stop navigating through remaining System RAM ranges */
491 	return 1;
492 }
493 
494 static int locate_mem_hole_callback(struct resource *res, void *arg)
495 {
496 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
497 	u64 start = res->start, end = res->end;
498 	unsigned long sz = end - start + 1;
499 
500 	/* Returning 0 will take to next memory range */
501 
502 	/* Don't use memory that will be detected and handled by a driver. */
503 	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
504 		return 0;
505 
506 	if (sz < kbuf->memsz)
507 		return 0;
508 
509 	if (end < kbuf->buf_min || start > kbuf->buf_max)
510 		return 0;
511 
512 	/*
513 	 * Allocate memory top down with-in ram range. Otherwise bottom up
514 	 * allocation.
515 	 */
516 	if (kbuf->top_down)
517 		return locate_mem_hole_top_down(start, end, kbuf);
518 	return locate_mem_hole_bottom_up(start, end, kbuf);
519 }
520 
521 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
522 static int kexec_walk_memblock(struct kexec_buf *kbuf,
523 			       int (*func)(struct resource *, void *))
524 {
525 	int ret = 0;
526 	u64 i;
527 	phys_addr_t mstart, mend;
528 	struct resource res = { };
529 
530 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
531 		return func(&crashk_res, kbuf);
532 
533 	/*
534 	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
535 	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
536 	 * locate_mem_hole_callback().
537 	 */
538 	if (kbuf->top_down) {
539 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
540 						&mstart, &mend, NULL) {
541 			/*
542 			 * In memblock, end points to the first byte after the
543 			 * range while in kexec, end points to the last byte
544 			 * in the range.
545 			 */
546 			res.start = mstart;
547 			res.end = mend - 1;
548 			ret = func(&res, kbuf);
549 			if (ret)
550 				break;
551 		}
552 	} else {
553 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
554 					&mstart, &mend, NULL) {
555 			/*
556 			 * In memblock, end points to the first byte after the
557 			 * range while in kexec, end points to the last byte
558 			 * in the range.
559 			 */
560 			res.start = mstart;
561 			res.end = mend - 1;
562 			ret = func(&res, kbuf);
563 			if (ret)
564 				break;
565 		}
566 	}
567 
568 	return ret;
569 }
570 #else
571 static int kexec_walk_memblock(struct kexec_buf *kbuf,
572 			       int (*func)(struct resource *, void *))
573 {
574 	return 0;
575 }
576 #endif
577 
578 /**
579  * kexec_walk_resources - call func(data) on free memory regions
580  * @kbuf:	Context info for the search. Also passed to @func.
581  * @func:	Function to call for each memory region.
582  *
583  * Return: The memory walk will stop when func returns a non-zero value
584  * and that value will be returned. If all free regions are visited without
585  * func returning non-zero, then zero will be returned.
586  */
587 static int kexec_walk_resources(struct kexec_buf *kbuf,
588 				int (*func)(struct resource *, void *))
589 {
590 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
591 		return walk_iomem_res_desc(crashk_res.desc,
592 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
593 					   crashk_res.start, crashk_res.end,
594 					   kbuf, func);
595 	else
596 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
597 }
598 
599 /**
600  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
601  * @kbuf:	Parameters for the memory search.
602  *
603  * On success, kbuf->mem will have the start address of the memory region found.
604  *
605  * Return: 0 on success, negative errno on error.
606  */
607 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
608 {
609 	int ret;
610 
611 	/* Arch knows where to place */
612 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
613 		return 0;
614 
615 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
616 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
617 	else
618 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
619 
620 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
621 }
622 
623 /**
624  * kexec_add_buffer - place a buffer in a kexec segment
625  * @kbuf:	Buffer contents and memory parameters.
626  *
627  * This function assumes that kexec_mutex is held.
628  * On successful return, @kbuf->mem will have the physical address of
629  * the buffer in memory.
630  *
631  * Return: 0 on success, negative errno on error.
632  */
633 int kexec_add_buffer(struct kexec_buf *kbuf)
634 {
635 	struct kexec_segment *ksegment;
636 	int ret;
637 
638 	/* Currently adding segment this way is allowed only in file mode */
639 	if (!kbuf->image->file_mode)
640 		return -EINVAL;
641 
642 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
643 		return -EINVAL;
644 
645 	/*
646 	 * Make sure we are not trying to add buffer after allocating
647 	 * control pages. All segments need to be placed first before
648 	 * any control pages are allocated. As control page allocation
649 	 * logic goes through list of segments to make sure there are
650 	 * no destination overlaps.
651 	 */
652 	if (!list_empty(&kbuf->image->control_pages)) {
653 		WARN_ON(1);
654 		return -EINVAL;
655 	}
656 
657 	/* Ensure minimum alignment needed for segments. */
658 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
659 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
660 
661 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
662 	ret = arch_kexec_locate_mem_hole(kbuf);
663 	if (ret)
664 		return ret;
665 
666 	/* Found a suitable memory range */
667 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
668 	ksegment->kbuf = kbuf->buffer;
669 	ksegment->bufsz = kbuf->bufsz;
670 	ksegment->mem = kbuf->mem;
671 	ksegment->memsz = kbuf->memsz;
672 	kbuf->image->nr_segments++;
673 	return 0;
674 }
675 
676 /* Calculate and store the digest of segments */
677 static int kexec_calculate_store_digests(struct kimage *image)
678 {
679 	struct crypto_shash *tfm;
680 	struct shash_desc *desc;
681 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
682 	size_t desc_size, nullsz;
683 	char *digest;
684 	void *zero_buf;
685 	struct kexec_sha_region *sha_regions;
686 	struct purgatory_info *pi = &image->purgatory_info;
687 
688 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
689 		return 0;
690 
691 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
692 	zero_buf_sz = PAGE_SIZE;
693 
694 	tfm = crypto_alloc_shash("sha256", 0, 0);
695 	if (IS_ERR(tfm)) {
696 		ret = PTR_ERR(tfm);
697 		goto out;
698 	}
699 
700 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
701 	desc = kzalloc(desc_size, GFP_KERNEL);
702 	if (!desc) {
703 		ret = -ENOMEM;
704 		goto out_free_tfm;
705 	}
706 
707 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
708 	sha_regions = vzalloc(sha_region_sz);
709 	if (!sha_regions) {
710 		ret = -ENOMEM;
711 		goto out_free_desc;
712 	}
713 
714 	desc->tfm   = tfm;
715 
716 	ret = crypto_shash_init(desc);
717 	if (ret < 0)
718 		goto out_free_sha_regions;
719 
720 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
721 	if (!digest) {
722 		ret = -ENOMEM;
723 		goto out_free_sha_regions;
724 	}
725 
726 	for (j = i = 0; i < image->nr_segments; i++) {
727 		struct kexec_segment *ksegment;
728 
729 		ksegment = &image->segment[i];
730 		/*
731 		 * Skip purgatory as it will be modified once we put digest
732 		 * info in purgatory.
733 		 */
734 		if (ksegment->kbuf == pi->purgatory_buf)
735 			continue;
736 
737 		ret = crypto_shash_update(desc, ksegment->kbuf,
738 					  ksegment->bufsz);
739 		if (ret)
740 			break;
741 
742 		/*
743 		 * Assume rest of the buffer is filled with zero and
744 		 * update digest accordingly.
745 		 */
746 		nullsz = ksegment->memsz - ksegment->bufsz;
747 		while (nullsz) {
748 			unsigned long bytes = nullsz;
749 
750 			if (bytes > zero_buf_sz)
751 				bytes = zero_buf_sz;
752 			ret = crypto_shash_update(desc, zero_buf, bytes);
753 			if (ret)
754 				break;
755 			nullsz -= bytes;
756 		}
757 
758 		if (ret)
759 			break;
760 
761 		sha_regions[j].start = ksegment->mem;
762 		sha_regions[j].len = ksegment->memsz;
763 		j++;
764 	}
765 
766 	if (!ret) {
767 		ret = crypto_shash_final(desc, digest);
768 		if (ret)
769 			goto out_free_digest;
770 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
771 						     sha_regions, sha_region_sz, 0);
772 		if (ret)
773 			goto out_free_digest;
774 
775 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
776 						     digest, SHA256_DIGEST_SIZE, 0);
777 		if (ret)
778 			goto out_free_digest;
779 	}
780 
781 out_free_digest:
782 	kfree(digest);
783 out_free_sha_regions:
784 	vfree(sha_regions);
785 out_free_desc:
786 	kfree(desc);
787 out_free_tfm:
788 	kfree(tfm);
789 out:
790 	return ret;
791 }
792 
793 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
794 /*
795  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
796  * @pi:		Purgatory to be loaded.
797  * @kbuf:	Buffer to setup.
798  *
799  * Allocates the memory needed for the buffer. Caller is responsible to free
800  * the memory after use.
801  *
802  * Return: 0 on success, negative errno on error.
803  */
804 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
805 				      struct kexec_buf *kbuf)
806 {
807 	const Elf_Shdr *sechdrs;
808 	unsigned long bss_align;
809 	unsigned long bss_sz;
810 	unsigned long align;
811 	int i, ret;
812 
813 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
814 	kbuf->buf_align = bss_align = 1;
815 	kbuf->bufsz = bss_sz = 0;
816 
817 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
818 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
819 			continue;
820 
821 		align = sechdrs[i].sh_addralign;
822 		if (sechdrs[i].sh_type != SHT_NOBITS) {
823 			if (kbuf->buf_align < align)
824 				kbuf->buf_align = align;
825 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
826 			kbuf->bufsz += sechdrs[i].sh_size;
827 		} else {
828 			if (bss_align < align)
829 				bss_align = align;
830 			bss_sz = ALIGN(bss_sz, align);
831 			bss_sz += sechdrs[i].sh_size;
832 		}
833 	}
834 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
835 	kbuf->memsz = kbuf->bufsz + bss_sz;
836 	if (kbuf->buf_align < bss_align)
837 		kbuf->buf_align = bss_align;
838 
839 	kbuf->buffer = vzalloc(kbuf->bufsz);
840 	if (!kbuf->buffer)
841 		return -ENOMEM;
842 	pi->purgatory_buf = kbuf->buffer;
843 
844 	ret = kexec_add_buffer(kbuf);
845 	if (ret)
846 		goto out;
847 
848 	return 0;
849 out:
850 	vfree(pi->purgatory_buf);
851 	pi->purgatory_buf = NULL;
852 	return ret;
853 }
854 
855 /*
856  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
857  * @pi:		Purgatory to be loaded.
858  * @kbuf:	Buffer prepared to store purgatory.
859  *
860  * Allocates the memory needed for the buffer. Caller is responsible to free
861  * the memory after use.
862  *
863  * Return: 0 on success, negative errno on error.
864  */
865 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
866 					 struct kexec_buf *kbuf)
867 {
868 	unsigned long bss_addr;
869 	unsigned long offset;
870 	Elf_Shdr *sechdrs;
871 	int i;
872 
873 	/*
874 	 * The section headers in kexec_purgatory are read-only. In order to
875 	 * have them modifiable make a temporary copy.
876 	 */
877 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
878 	if (!sechdrs)
879 		return -ENOMEM;
880 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
881 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
882 	pi->sechdrs = sechdrs;
883 
884 	offset = 0;
885 	bss_addr = kbuf->mem + kbuf->bufsz;
886 	kbuf->image->start = pi->ehdr->e_entry;
887 
888 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
889 		unsigned long align;
890 		void *src, *dst;
891 
892 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
893 			continue;
894 
895 		align = sechdrs[i].sh_addralign;
896 		if (sechdrs[i].sh_type == SHT_NOBITS) {
897 			bss_addr = ALIGN(bss_addr, align);
898 			sechdrs[i].sh_addr = bss_addr;
899 			bss_addr += sechdrs[i].sh_size;
900 			continue;
901 		}
902 
903 		offset = ALIGN(offset, align);
904 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
905 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
906 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
907 					 + sechdrs[i].sh_size)) {
908 			kbuf->image->start -= sechdrs[i].sh_addr;
909 			kbuf->image->start += kbuf->mem + offset;
910 		}
911 
912 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
913 		dst = pi->purgatory_buf + offset;
914 		memcpy(dst, src, sechdrs[i].sh_size);
915 
916 		sechdrs[i].sh_addr = kbuf->mem + offset;
917 		sechdrs[i].sh_offset = offset;
918 		offset += sechdrs[i].sh_size;
919 	}
920 
921 	return 0;
922 }
923 
924 static int kexec_apply_relocations(struct kimage *image)
925 {
926 	int i, ret;
927 	struct purgatory_info *pi = &image->purgatory_info;
928 	const Elf_Shdr *sechdrs;
929 
930 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
931 
932 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
933 		const Elf_Shdr *relsec;
934 		const Elf_Shdr *symtab;
935 		Elf_Shdr *section;
936 
937 		relsec = sechdrs + i;
938 
939 		if (relsec->sh_type != SHT_RELA &&
940 		    relsec->sh_type != SHT_REL)
941 			continue;
942 
943 		/*
944 		 * For section of type SHT_RELA/SHT_REL,
945 		 * ->sh_link contains section header index of associated
946 		 * symbol table. And ->sh_info contains section header
947 		 * index of section to which relocations apply.
948 		 */
949 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
950 		    relsec->sh_link >= pi->ehdr->e_shnum)
951 			return -ENOEXEC;
952 
953 		section = pi->sechdrs + relsec->sh_info;
954 		symtab = sechdrs + relsec->sh_link;
955 
956 		if (!(section->sh_flags & SHF_ALLOC))
957 			continue;
958 
959 		/*
960 		 * symtab->sh_link contain section header index of associated
961 		 * string table.
962 		 */
963 		if (symtab->sh_link >= pi->ehdr->e_shnum)
964 			/* Invalid section number? */
965 			continue;
966 
967 		/*
968 		 * Respective architecture needs to provide support for applying
969 		 * relocations of type SHT_RELA/SHT_REL.
970 		 */
971 		if (relsec->sh_type == SHT_RELA)
972 			ret = arch_kexec_apply_relocations_add(pi, section,
973 							       relsec, symtab);
974 		else if (relsec->sh_type == SHT_REL)
975 			ret = arch_kexec_apply_relocations(pi, section,
976 							   relsec, symtab);
977 		if (ret)
978 			return ret;
979 	}
980 
981 	return 0;
982 }
983 
984 /*
985  * kexec_load_purgatory - Load and relocate the purgatory object.
986  * @image:	Image to add the purgatory to.
987  * @kbuf:	Memory parameters to use.
988  *
989  * Allocates the memory needed for image->purgatory_info.sechdrs and
990  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
991  * to free the memory after use.
992  *
993  * Return: 0 on success, negative errno on error.
994  */
995 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
996 {
997 	struct purgatory_info *pi = &image->purgatory_info;
998 	int ret;
999 
1000 	if (kexec_purgatory_size <= 0)
1001 		return -EINVAL;
1002 
1003 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1004 
1005 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1006 	if (ret)
1007 		return ret;
1008 
1009 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1010 	if (ret)
1011 		goto out_free_kbuf;
1012 
1013 	ret = kexec_apply_relocations(image);
1014 	if (ret)
1015 		goto out;
1016 
1017 	return 0;
1018 out:
1019 	vfree(pi->sechdrs);
1020 	pi->sechdrs = NULL;
1021 out_free_kbuf:
1022 	vfree(pi->purgatory_buf);
1023 	pi->purgatory_buf = NULL;
1024 	return ret;
1025 }
1026 
1027 /*
1028  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1029  * @pi:		Purgatory to search in.
1030  * @name:	Name of the symbol.
1031  *
1032  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1033  */
1034 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1035 						  const char *name)
1036 {
1037 	const Elf_Shdr *sechdrs;
1038 	const Elf_Ehdr *ehdr;
1039 	const Elf_Sym *syms;
1040 	const char *strtab;
1041 	int i, k;
1042 
1043 	if (!pi->ehdr)
1044 		return NULL;
1045 
1046 	ehdr = pi->ehdr;
1047 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1048 
1049 	for (i = 0; i < ehdr->e_shnum; i++) {
1050 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1051 			continue;
1052 
1053 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1054 			/* Invalid strtab section number */
1055 			continue;
1056 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1057 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1058 
1059 		/* Go through symbols for a match */
1060 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1061 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1062 				continue;
1063 
1064 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1065 				continue;
1066 
1067 			if (syms[k].st_shndx == SHN_UNDEF ||
1068 			    syms[k].st_shndx >= ehdr->e_shnum) {
1069 				pr_debug("Symbol: %s has bad section index %d.\n",
1070 						name, syms[k].st_shndx);
1071 				return NULL;
1072 			}
1073 
1074 			/* Found the symbol we are looking for */
1075 			return &syms[k];
1076 		}
1077 	}
1078 
1079 	return NULL;
1080 }
1081 
1082 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1083 {
1084 	struct purgatory_info *pi = &image->purgatory_info;
1085 	const Elf_Sym *sym;
1086 	Elf_Shdr *sechdr;
1087 
1088 	sym = kexec_purgatory_find_symbol(pi, name);
1089 	if (!sym)
1090 		return ERR_PTR(-EINVAL);
1091 
1092 	sechdr = &pi->sechdrs[sym->st_shndx];
1093 
1094 	/*
1095 	 * Returns the address where symbol will finally be loaded after
1096 	 * kexec_load_segment()
1097 	 */
1098 	return (void *)(sechdr->sh_addr + sym->st_value);
1099 }
1100 
1101 /*
1102  * Get or set value of a symbol. If "get_value" is true, symbol value is
1103  * returned in buf otherwise symbol value is set based on value in buf.
1104  */
1105 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1106 				   void *buf, unsigned int size, bool get_value)
1107 {
1108 	struct purgatory_info *pi = &image->purgatory_info;
1109 	const Elf_Sym *sym;
1110 	Elf_Shdr *sec;
1111 	char *sym_buf;
1112 
1113 	sym = kexec_purgatory_find_symbol(pi, name);
1114 	if (!sym)
1115 		return -EINVAL;
1116 
1117 	if (sym->st_size != size) {
1118 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1119 		       name, (unsigned long)sym->st_size, size);
1120 		return -EINVAL;
1121 	}
1122 
1123 	sec = pi->sechdrs + sym->st_shndx;
1124 
1125 	if (sec->sh_type == SHT_NOBITS) {
1126 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1127 		       get_value ? "get" : "set");
1128 		return -EINVAL;
1129 	}
1130 
1131 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1132 
1133 	if (get_value)
1134 		memcpy((void *)buf, sym_buf, size);
1135 	else
1136 		memcpy((void *)sym_buf, buf, size);
1137 
1138 	return 0;
1139 }
1140 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1141 
1142 int crash_exclude_mem_range(struct crash_mem *mem,
1143 			    unsigned long long mstart, unsigned long long mend)
1144 {
1145 	int i, j;
1146 	unsigned long long start, end, p_start, p_end;
1147 	struct range temp_range = {0, 0};
1148 
1149 	for (i = 0; i < mem->nr_ranges; i++) {
1150 		start = mem->ranges[i].start;
1151 		end = mem->ranges[i].end;
1152 		p_start = mstart;
1153 		p_end = mend;
1154 
1155 		if (mstart > end || mend < start)
1156 			continue;
1157 
1158 		/* Truncate any area outside of range */
1159 		if (mstart < start)
1160 			p_start = start;
1161 		if (mend > end)
1162 			p_end = end;
1163 
1164 		/* Found completely overlapping range */
1165 		if (p_start == start && p_end == end) {
1166 			mem->ranges[i].start = 0;
1167 			mem->ranges[i].end = 0;
1168 			if (i < mem->nr_ranges - 1) {
1169 				/* Shift rest of the ranges to left */
1170 				for (j = i; j < mem->nr_ranges - 1; j++) {
1171 					mem->ranges[j].start =
1172 						mem->ranges[j+1].start;
1173 					mem->ranges[j].end =
1174 							mem->ranges[j+1].end;
1175 				}
1176 
1177 				/*
1178 				 * Continue to check if there are another overlapping ranges
1179 				 * from the current position because of shifting the above
1180 				 * mem ranges.
1181 				 */
1182 				i--;
1183 				mem->nr_ranges--;
1184 				continue;
1185 			}
1186 			mem->nr_ranges--;
1187 			return 0;
1188 		}
1189 
1190 		if (p_start > start && p_end < end) {
1191 			/* Split original range */
1192 			mem->ranges[i].end = p_start - 1;
1193 			temp_range.start = p_end + 1;
1194 			temp_range.end = end;
1195 		} else if (p_start != start)
1196 			mem->ranges[i].end = p_start - 1;
1197 		else
1198 			mem->ranges[i].start = p_end + 1;
1199 		break;
1200 	}
1201 
1202 	/* If a split happened, add the split to array */
1203 	if (!temp_range.end)
1204 		return 0;
1205 
1206 	/* Split happened */
1207 	if (i == mem->max_nr_ranges - 1)
1208 		return -ENOMEM;
1209 
1210 	/* Location where new range should go */
1211 	j = i + 1;
1212 	if (j < mem->nr_ranges) {
1213 		/* Move over all ranges one slot towards the end */
1214 		for (i = mem->nr_ranges - 1; i >= j; i--)
1215 			mem->ranges[i + 1] = mem->ranges[i];
1216 	}
1217 
1218 	mem->ranges[j].start = temp_range.start;
1219 	mem->ranges[j].end = temp_range.end;
1220 	mem->nr_ranges++;
1221 	return 0;
1222 }
1223 
1224 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1225 			  void **addr, unsigned long *sz)
1226 {
1227 	Elf64_Ehdr *ehdr;
1228 	Elf64_Phdr *phdr;
1229 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1230 	unsigned char *buf;
1231 	unsigned int cpu, i;
1232 	unsigned long long notes_addr;
1233 	unsigned long mstart, mend;
1234 
1235 	/* extra phdr for vmcoreinfo ELF note */
1236 	nr_phdr = nr_cpus + 1;
1237 	nr_phdr += mem->nr_ranges;
1238 
1239 	/*
1240 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1241 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1242 	 * I think this is required by tools like gdb. So same physical
1243 	 * memory will be mapped in two ELF headers. One will contain kernel
1244 	 * text virtual addresses and other will have __va(physical) addresses.
1245 	 */
1246 
1247 	nr_phdr++;
1248 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1249 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1250 
1251 	buf = vzalloc(elf_sz);
1252 	if (!buf)
1253 		return -ENOMEM;
1254 
1255 	ehdr = (Elf64_Ehdr *)buf;
1256 	phdr = (Elf64_Phdr *)(ehdr + 1);
1257 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1258 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1259 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1260 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1261 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1262 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1263 	ehdr->e_type = ET_CORE;
1264 	ehdr->e_machine = ELF_ARCH;
1265 	ehdr->e_version = EV_CURRENT;
1266 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1267 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1268 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1269 
1270 	/* Prepare one phdr of type PT_NOTE for each present CPU */
1271 	for_each_present_cpu(cpu) {
1272 		phdr->p_type = PT_NOTE;
1273 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1274 		phdr->p_offset = phdr->p_paddr = notes_addr;
1275 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1276 		(ehdr->e_phnum)++;
1277 		phdr++;
1278 	}
1279 
1280 	/* Prepare one PT_NOTE header for vmcoreinfo */
1281 	phdr->p_type = PT_NOTE;
1282 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1283 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1284 	(ehdr->e_phnum)++;
1285 	phdr++;
1286 
1287 	/* Prepare PT_LOAD type program header for kernel text region */
1288 	if (need_kernel_map) {
1289 		phdr->p_type = PT_LOAD;
1290 		phdr->p_flags = PF_R|PF_W|PF_X;
1291 		phdr->p_vaddr = (unsigned long) _text;
1292 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1293 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1294 		ehdr->e_phnum++;
1295 		phdr++;
1296 	}
1297 
1298 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1299 	for (i = 0; i < mem->nr_ranges; i++) {
1300 		mstart = mem->ranges[i].start;
1301 		mend = mem->ranges[i].end;
1302 
1303 		phdr->p_type = PT_LOAD;
1304 		phdr->p_flags = PF_R|PF_W|PF_X;
1305 		phdr->p_offset  = mstart;
1306 
1307 		phdr->p_paddr = mstart;
1308 		phdr->p_vaddr = (unsigned long) __va(mstart);
1309 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1310 		phdr->p_align = 0;
1311 		ehdr->e_phnum++;
1312 		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1313 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1314 			ehdr->e_phnum, phdr->p_offset);
1315 		phdr++;
1316 	}
1317 
1318 	*addr = buf;
1319 	*sz = elf_sz;
1320 	return 0;
1321 }
1322