1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include "kexec_internal.h" 30 31 static int kexec_calculate_store_digests(struct kimage *image); 32 33 /* 34 * Currently this is the only default function that is exported as some 35 * architectures need it to do additional handlings. 36 * In the future, other default functions may be exported too if required. 37 */ 38 int kexec_image_probe_default(struct kimage *image, void *buf, 39 unsigned long buf_len) 40 { 41 const struct kexec_file_ops * const *fops; 42 int ret = -ENOEXEC; 43 44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 45 ret = (*fops)->probe(buf, buf_len); 46 if (!ret) { 47 image->fops = *fops; 48 return ret; 49 } 50 } 51 52 return ret; 53 } 54 55 /* Architectures can provide this probe function */ 56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 57 unsigned long buf_len) 58 { 59 return kexec_image_probe_default(image, buf, buf_len); 60 } 61 62 static void *kexec_image_load_default(struct kimage *image) 63 { 64 if (!image->fops || !image->fops->load) 65 return ERR_PTR(-ENOEXEC); 66 67 return image->fops->load(image, image->kernel_buf, 68 image->kernel_buf_len, image->initrd_buf, 69 image->initrd_buf_len, image->cmdline_buf, 70 image->cmdline_buf_len); 71 } 72 73 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 74 { 75 return kexec_image_load_default(image); 76 } 77 78 int kexec_image_post_load_cleanup_default(struct kimage *image) 79 { 80 if (!image->fops || !image->fops->cleanup) 81 return 0; 82 83 return image->fops->cleanup(image->image_loader_data); 84 } 85 86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 87 { 88 return kexec_image_post_load_cleanup_default(image); 89 } 90 91 #ifdef CONFIG_KEXEC_VERIFY_SIG 92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf, 93 unsigned long buf_len) 94 { 95 if (!image->fops || !image->fops->verify_sig) { 96 pr_debug("kernel loader does not support signature verification.\n"); 97 return -EKEYREJECTED; 98 } 99 100 return image->fops->verify_sig(buf, buf_len); 101 } 102 103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 104 unsigned long buf_len) 105 { 106 return kexec_image_verify_sig_default(image, buf, buf_len); 107 } 108 #endif 109 110 /* 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA 112 * @pi: Purgatory to be relocated. 113 * @section: Section relocations applying to. 114 * @relsec: Section containing RELAs. 115 * @symtab: Corresponding symtab. 116 * 117 * Return: 0 on success, negative errno on error. 118 */ 119 int __weak 120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, 121 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 122 { 123 pr_err("RELA relocation unsupported.\n"); 124 return -ENOEXEC; 125 } 126 127 /* 128 * arch_kexec_apply_relocations - apply relocations of type REL 129 * @pi: Purgatory to be relocated. 130 * @section: Section relocations applying to. 131 * @relsec: Section containing RELs. 132 * @symtab: Corresponding symtab. 133 * 134 * Return: 0 on success, negative errno on error. 135 */ 136 int __weak 137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, 138 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 139 { 140 pr_err("REL relocation unsupported.\n"); 141 return -ENOEXEC; 142 } 143 144 /* 145 * Free up memory used by kernel, initrd, and command line. This is temporary 146 * memory allocation which is not needed any more after these buffers have 147 * been loaded into separate segments and have been copied elsewhere. 148 */ 149 void kimage_file_post_load_cleanup(struct kimage *image) 150 { 151 struct purgatory_info *pi = &image->purgatory_info; 152 153 vfree(image->kernel_buf); 154 image->kernel_buf = NULL; 155 156 vfree(image->initrd_buf); 157 image->initrd_buf = NULL; 158 159 kfree(image->cmdline_buf); 160 image->cmdline_buf = NULL; 161 162 vfree(pi->purgatory_buf); 163 pi->purgatory_buf = NULL; 164 165 vfree(pi->sechdrs); 166 pi->sechdrs = NULL; 167 168 /* See if architecture has anything to cleanup post load */ 169 arch_kimage_file_post_load_cleanup(image); 170 171 /* 172 * Above call should have called into bootloader to free up 173 * any data stored in kimage->image_loader_data. It should 174 * be ok now to free it up. 175 */ 176 kfree(image->image_loader_data); 177 image->image_loader_data = NULL; 178 } 179 180 /* 181 * In file mode list of segments is prepared by kernel. Copy relevant 182 * data from user space, do error checking, prepare segment list 183 */ 184 static int 185 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 186 const char __user *cmdline_ptr, 187 unsigned long cmdline_len, unsigned flags) 188 { 189 int ret = 0; 190 void *ldata; 191 loff_t size; 192 193 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, 194 &size, INT_MAX, READING_KEXEC_IMAGE); 195 if (ret) 196 return ret; 197 image->kernel_buf_len = size; 198 199 /* Call arch image probe handlers */ 200 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 201 image->kernel_buf_len); 202 if (ret) 203 goto out; 204 205 #ifdef CONFIG_KEXEC_VERIFY_SIG 206 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 207 image->kernel_buf_len); 208 if (ret) { 209 pr_debug("kernel signature verification failed.\n"); 210 goto out; 211 } 212 pr_debug("kernel signature verification successful.\n"); 213 #endif 214 /* It is possible that there no initramfs is being loaded */ 215 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 216 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, 217 &size, INT_MAX, 218 READING_KEXEC_INITRAMFS); 219 if (ret) 220 goto out; 221 image->initrd_buf_len = size; 222 } 223 224 if (cmdline_len) { 225 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 226 if (IS_ERR(image->cmdline_buf)) { 227 ret = PTR_ERR(image->cmdline_buf); 228 image->cmdline_buf = NULL; 229 goto out; 230 } 231 232 image->cmdline_buf_len = cmdline_len; 233 234 /* command line should be a string with last byte null */ 235 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 236 ret = -EINVAL; 237 goto out; 238 } 239 240 ima_kexec_cmdline(image->cmdline_buf, 241 image->cmdline_buf_len - 1); 242 } 243 244 /* IMA needs to pass the measurement list to the next kernel. */ 245 ima_add_kexec_buffer(image); 246 247 /* Call arch image load handlers */ 248 ldata = arch_kexec_kernel_image_load(image); 249 250 if (IS_ERR(ldata)) { 251 ret = PTR_ERR(ldata); 252 goto out; 253 } 254 255 image->image_loader_data = ldata; 256 out: 257 /* In case of error, free up all allocated memory in this function */ 258 if (ret) 259 kimage_file_post_load_cleanup(image); 260 return ret; 261 } 262 263 static int 264 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 265 int initrd_fd, const char __user *cmdline_ptr, 266 unsigned long cmdline_len, unsigned long flags) 267 { 268 int ret; 269 struct kimage *image; 270 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 271 272 image = do_kimage_alloc_init(); 273 if (!image) 274 return -ENOMEM; 275 276 image->file_mode = 1; 277 278 if (kexec_on_panic) { 279 /* Enable special crash kernel control page alloc policy. */ 280 image->control_page = crashk_res.start; 281 image->type = KEXEC_TYPE_CRASH; 282 } 283 284 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 285 cmdline_ptr, cmdline_len, flags); 286 if (ret) 287 goto out_free_image; 288 289 ret = sanity_check_segment_list(image); 290 if (ret) 291 goto out_free_post_load_bufs; 292 293 ret = -ENOMEM; 294 image->control_code_page = kimage_alloc_control_pages(image, 295 get_order(KEXEC_CONTROL_PAGE_SIZE)); 296 if (!image->control_code_page) { 297 pr_err("Could not allocate control_code_buffer\n"); 298 goto out_free_post_load_bufs; 299 } 300 301 if (!kexec_on_panic) { 302 image->swap_page = kimage_alloc_control_pages(image, 0); 303 if (!image->swap_page) { 304 pr_err("Could not allocate swap buffer\n"); 305 goto out_free_control_pages; 306 } 307 } 308 309 *rimage = image; 310 return 0; 311 out_free_control_pages: 312 kimage_free_page_list(&image->control_pages); 313 out_free_post_load_bufs: 314 kimage_file_post_load_cleanup(image); 315 out_free_image: 316 kfree(image); 317 return ret; 318 } 319 320 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 321 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 322 unsigned long, flags) 323 { 324 int ret = 0, i; 325 struct kimage **dest_image, *image; 326 327 /* We only trust the superuser with rebooting the system. */ 328 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 329 return -EPERM; 330 331 /* Make sure we have a legal set of flags */ 332 if (flags != (flags & KEXEC_FILE_FLAGS)) 333 return -EINVAL; 334 335 image = NULL; 336 337 if (!mutex_trylock(&kexec_mutex)) 338 return -EBUSY; 339 340 dest_image = &kexec_image; 341 if (flags & KEXEC_FILE_ON_CRASH) { 342 dest_image = &kexec_crash_image; 343 if (kexec_crash_image) 344 arch_kexec_unprotect_crashkres(); 345 } 346 347 if (flags & KEXEC_FILE_UNLOAD) 348 goto exchange; 349 350 /* 351 * In case of crash, new kernel gets loaded in reserved region. It is 352 * same memory where old crash kernel might be loaded. Free any 353 * current crash dump kernel before we corrupt it. 354 */ 355 if (flags & KEXEC_FILE_ON_CRASH) 356 kimage_free(xchg(&kexec_crash_image, NULL)); 357 358 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 359 cmdline_len, flags); 360 if (ret) 361 goto out; 362 363 ret = machine_kexec_prepare(image); 364 if (ret) 365 goto out; 366 367 /* 368 * Some architecture(like S390) may touch the crash memory before 369 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 370 */ 371 ret = kimage_crash_copy_vmcoreinfo(image); 372 if (ret) 373 goto out; 374 375 ret = kexec_calculate_store_digests(image); 376 if (ret) 377 goto out; 378 379 for (i = 0; i < image->nr_segments; i++) { 380 struct kexec_segment *ksegment; 381 382 ksegment = &image->segment[i]; 383 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 384 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 385 ksegment->memsz); 386 387 ret = kimage_load_segment(image, &image->segment[i]); 388 if (ret) 389 goto out; 390 } 391 392 kimage_terminate(image); 393 394 /* 395 * Free up any temporary buffers allocated which are not needed 396 * after image has been loaded 397 */ 398 kimage_file_post_load_cleanup(image); 399 exchange: 400 image = xchg(dest_image, image); 401 out: 402 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 403 arch_kexec_protect_crashkres(); 404 405 mutex_unlock(&kexec_mutex); 406 kimage_free(image); 407 return ret; 408 } 409 410 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 411 struct kexec_buf *kbuf) 412 { 413 struct kimage *image = kbuf->image; 414 unsigned long temp_start, temp_end; 415 416 temp_end = min(end, kbuf->buf_max); 417 temp_start = temp_end - kbuf->memsz; 418 419 do { 420 /* align down start */ 421 temp_start = temp_start & (~(kbuf->buf_align - 1)); 422 423 if (temp_start < start || temp_start < kbuf->buf_min) 424 return 0; 425 426 temp_end = temp_start + kbuf->memsz - 1; 427 428 /* 429 * Make sure this does not conflict with any of existing 430 * segments 431 */ 432 if (kimage_is_destination_range(image, temp_start, temp_end)) { 433 temp_start = temp_start - PAGE_SIZE; 434 continue; 435 } 436 437 /* We found a suitable memory range */ 438 break; 439 } while (1); 440 441 /* If we are here, we found a suitable memory range */ 442 kbuf->mem = temp_start; 443 444 /* Success, stop navigating through remaining System RAM ranges */ 445 return 1; 446 } 447 448 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 449 struct kexec_buf *kbuf) 450 { 451 struct kimage *image = kbuf->image; 452 unsigned long temp_start, temp_end; 453 454 temp_start = max(start, kbuf->buf_min); 455 456 do { 457 temp_start = ALIGN(temp_start, kbuf->buf_align); 458 temp_end = temp_start + kbuf->memsz - 1; 459 460 if (temp_end > end || temp_end > kbuf->buf_max) 461 return 0; 462 /* 463 * Make sure this does not conflict with any of existing 464 * segments 465 */ 466 if (kimage_is_destination_range(image, temp_start, temp_end)) { 467 temp_start = temp_start + PAGE_SIZE; 468 continue; 469 } 470 471 /* We found a suitable memory range */ 472 break; 473 } while (1); 474 475 /* If we are here, we found a suitable memory range */ 476 kbuf->mem = temp_start; 477 478 /* Success, stop navigating through remaining System RAM ranges */ 479 return 1; 480 } 481 482 static int locate_mem_hole_callback(struct resource *res, void *arg) 483 { 484 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 485 u64 start = res->start, end = res->end; 486 unsigned long sz = end - start + 1; 487 488 /* Returning 0 will take to next memory range */ 489 if (sz < kbuf->memsz) 490 return 0; 491 492 if (end < kbuf->buf_min || start > kbuf->buf_max) 493 return 0; 494 495 /* 496 * Allocate memory top down with-in ram range. Otherwise bottom up 497 * allocation. 498 */ 499 if (kbuf->top_down) 500 return locate_mem_hole_top_down(start, end, kbuf); 501 return locate_mem_hole_bottom_up(start, end, kbuf); 502 } 503 504 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 505 static int kexec_walk_memblock(struct kexec_buf *kbuf, 506 int (*func)(struct resource *, void *)) 507 { 508 int ret = 0; 509 u64 i; 510 phys_addr_t mstart, mend; 511 struct resource res = { }; 512 513 if (kbuf->image->type == KEXEC_TYPE_CRASH) 514 return func(&crashk_res, kbuf); 515 516 if (kbuf->top_down) { 517 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 518 &mstart, &mend, NULL) { 519 /* 520 * In memblock, end points to the first byte after the 521 * range while in kexec, end points to the last byte 522 * in the range. 523 */ 524 res.start = mstart; 525 res.end = mend - 1; 526 ret = func(&res, kbuf); 527 if (ret) 528 break; 529 } 530 } else { 531 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 532 &mstart, &mend, NULL) { 533 /* 534 * In memblock, end points to the first byte after the 535 * range while in kexec, end points to the last byte 536 * in the range. 537 */ 538 res.start = mstart; 539 res.end = mend - 1; 540 ret = func(&res, kbuf); 541 if (ret) 542 break; 543 } 544 } 545 546 return ret; 547 } 548 #else 549 static int kexec_walk_memblock(struct kexec_buf *kbuf, 550 int (*func)(struct resource *, void *)) 551 { 552 return 0; 553 } 554 #endif 555 556 /** 557 * kexec_walk_resources - call func(data) on free memory regions 558 * @kbuf: Context info for the search. Also passed to @func. 559 * @func: Function to call for each memory region. 560 * 561 * Return: The memory walk will stop when func returns a non-zero value 562 * and that value will be returned. If all free regions are visited without 563 * func returning non-zero, then zero will be returned. 564 */ 565 static int kexec_walk_resources(struct kexec_buf *kbuf, 566 int (*func)(struct resource *, void *)) 567 { 568 if (kbuf->image->type == KEXEC_TYPE_CRASH) 569 return walk_iomem_res_desc(crashk_res.desc, 570 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 571 crashk_res.start, crashk_res.end, 572 kbuf, func); 573 else 574 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 575 } 576 577 /** 578 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 579 * @kbuf: Parameters for the memory search. 580 * 581 * On success, kbuf->mem will have the start address of the memory region found. 582 * 583 * Return: 0 on success, negative errno on error. 584 */ 585 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 586 { 587 int ret; 588 589 /* Arch knows where to place */ 590 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 591 return 0; 592 593 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 594 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 595 else 596 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 597 598 return ret == 1 ? 0 : -EADDRNOTAVAIL; 599 } 600 601 /** 602 * kexec_add_buffer - place a buffer in a kexec segment 603 * @kbuf: Buffer contents and memory parameters. 604 * 605 * This function assumes that kexec_mutex is held. 606 * On successful return, @kbuf->mem will have the physical address of 607 * the buffer in memory. 608 * 609 * Return: 0 on success, negative errno on error. 610 */ 611 int kexec_add_buffer(struct kexec_buf *kbuf) 612 { 613 614 struct kexec_segment *ksegment; 615 int ret; 616 617 /* Currently adding segment this way is allowed only in file mode */ 618 if (!kbuf->image->file_mode) 619 return -EINVAL; 620 621 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 622 return -EINVAL; 623 624 /* 625 * Make sure we are not trying to add buffer after allocating 626 * control pages. All segments need to be placed first before 627 * any control pages are allocated. As control page allocation 628 * logic goes through list of segments to make sure there are 629 * no destination overlaps. 630 */ 631 if (!list_empty(&kbuf->image->control_pages)) { 632 WARN_ON(1); 633 return -EINVAL; 634 } 635 636 /* Ensure minimum alignment needed for segments. */ 637 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 638 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 639 640 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 641 ret = kexec_locate_mem_hole(kbuf); 642 if (ret) 643 return ret; 644 645 /* Found a suitable memory range */ 646 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 647 ksegment->kbuf = kbuf->buffer; 648 ksegment->bufsz = kbuf->bufsz; 649 ksegment->mem = kbuf->mem; 650 ksegment->memsz = kbuf->memsz; 651 kbuf->image->nr_segments++; 652 return 0; 653 } 654 655 /* Calculate and store the digest of segments */ 656 static int kexec_calculate_store_digests(struct kimage *image) 657 { 658 struct crypto_shash *tfm; 659 struct shash_desc *desc; 660 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 661 size_t desc_size, nullsz; 662 char *digest; 663 void *zero_buf; 664 struct kexec_sha_region *sha_regions; 665 struct purgatory_info *pi = &image->purgatory_info; 666 667 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) 668 return 0; 669 670 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 671 zero_buf_sz = PAGE_SIZE; 672 673 tfm = crypto_alloc_shash("sha256", 0, 0); 674 if (IS_ERR(tfm)) { 675 ret = PTR_ERR(tfm); 676 goto out; 677 } 678 679 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 680 desc = kzalloc(desc_size, GFP_KERNEL); 681 if (!desc) { 682 ret = -ENOMEM; 683 goto out_free_tfm; 684 } 685 686 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 687 sha_regions = vzalloc(sha_region_sz); 688 if (!sha_regions) 689 goto out_free_desc; 690 691 desc->tfm = tfm; 692 693 ret = crypto_shash_init(desc); 694 if (ret < 0) 695 goto out_free_sha_regions; 696 697 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 698 if (!digest) { 699 ret = -ENOMEM; 700 goto out_free_sha_regions; 701 } 702 703 for (j = i = 0; i < image->nr_segments; i++) { 704 struct kexec_segment *ksegment; 705 706 ksegment = &image->segment[i]; 707 /* 708 * Skip purgatory as it will be modified once we put digest 709 * info in purgatory. 710 */ 711 if (ksegment->kbuf == pi->purgatory_buf) 712 continue; 713 714 ret = crypto_shash_update(desc, ksegment->kbuf, 715 ksegment->bufsz); 716 if (ret) 717 break; 718 719 /* 720 * Assume rest of the buffer is filled with zero and 721 * update digest accordingly. 722 */ 723 nullsz = ksegment->memsz - ksegment->bufsz; 724 while (nullsz) { 725 unsigned long bytes = nullsz; 726 727 if (bytes > zero_buf_sz) 728 bytes = zero_buf_sz; 729 ret = crypto_shash_update(desc, zero_buf, bytes); 730 if (ret) 731 break; 732 nullsz -= bytes; 733 } 734 735 if (ret) 736 break; 737 738 sha_regions[j].start = ksegment->mem; 739 sha_regions[j].len = ksegment->memsz; 740 j++; 741 } 742 743 if (!ret) { 744 ret = crypto_shash_final(desc, digest); 745 if (ret) 746 goto out_free_digest; 747 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 748 sha_regions, sha_region_sz, 0); 749 if (ret) 750 goto out_free_digest; 751 752 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 753 digest, SHA256_DIGEST_SIZE, 0); 754 if (ret) 755 goto out_free_digest; 756 } 757 758 out_free_digest: 759 kfree(digest); 760 out_free_sha_regions: 761 vfree(sha_regions); 762 out_free_desc: 763 kfree(desc); 764 out_free_tfm: 765 kfree(tfm); 766 out: 767 return ret; 768 } 769 770 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY 771 /* 772 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 773 * @pi: Purgatory to be loaded. 774 * @kbuf: Buffer to setup. 775 * 776 * Allocates the memory needed for the buffer. Caller is responsible to free 777 * the memory after use. 778 * 779 * Return: 0 on success, negative errno on error. 780 */ 781 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 782 struct kexec_buf *kbuf) 783 { 784 const Elf_Shdr *sechdrs; 785 unsigned long bss_align; 786 unsigned long bss_sz; 787 unsigned long align; 788 int i, ret; 789 790 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 791 kbuf->buf_align = bss_align = 1; 792 kbuf->bufsz = bss_sz = 0; 793 794 for (i = 0; i < pi->ehdr->e_shnum; i++) { 795 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 796 continue; 797 798 align = sechdrs[i].sh_addralign; 799 if (sechdrs[i].sh_type != SHT_NOBITS) { 800 if (kbuf->buf_align < align) 801 kbuf->buf_align = align; 802 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 803 kbuf->bufsz += sechdrs[i].sh_size; 804 } else { 805 if (bss_align < align) 806 bss_align = align; 807 bss_sz = ALIGN(bss_sz, align); 808 bss_sz += sechdrs[i].sh_size; 809 } 810 } 811 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 812 kbuf->memsz = kbuf->bufsz + bss_sz; 813 if (kbuf->buf_align < bss_align) 814 kbuf->buf_align = bss_align; 815 816 kbuf->buffer = vzalloc(kbuf->bufsz); 817 if (!kbuf->buffer) 818 return -ENOMEM; 819 pi->purgatory_buf = kbuf->buffer; 820 821 ret = kexec_add_buffer(kbuf); 822 if (ret) 823 goto out; 824 825 return 0; 826 out: 827 vfree(pi->purgatory_buf); 828 pi->purgatory_buf = NULL; 829 return ret; 830 } 831 832 /* 833 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 834 * @pi: Purgatory to be loaded. 835 * @kbuf: Buffer prepared to store purgatory. 836 * 837 * Allocates the memory needed for the buffer. Caller is responsible to free 838 * the memory after use. 839 * 840 * Return: 0 on success, negative errno on error. 841 */ 842 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 843 struct kexec_buf *kbuf) 844 { 845 unsigned long bss_addr; 846 unsigned long offset; 847 Elf_Shdr *sechdrs; 848 int i; 849 850 /* 851 * The section headers in kexec_purgatory are read-only. In order to 852 * have them modifiable make a temporary copy. 853 */ 854 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); 855 if (!sechdrs) 856 return -ENOMEM; 857 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, 858 pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 859 pi->sechdrs = sechdrs; 860 861 offset = 0; 862 bss_addr = kbuf->mem + kbuf->bufsz; 863 kbuf->image->start = pi->ehdr->e_entry; 864 865 for (i = 0; i < pi->ehdr->e_shnum; i++) { 866 unsigned long align; 867 void *src, *dst; 868 869 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 870 continue; 871 872 align = sechdrs[i].sh_addralign; 873 if (sechdrs[i].sh_type == SHT_NOBITS) { 874 bss_addr = ALIGN(bss_addr, align); 875 sechdrs[i].sh_addr = bss_addr; 876 bss_addr += sechdrs[i].sh_size; 877 continue; 878 } 879 880 offset = ALIGN(offset, align); 881 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 882 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 883 pi->ehdr->e_entry < (sechdrs[i].sh_addr 884 + sechdrs[i].sh_size)) { 885 kbuf->image->start -= sechdrs[i].sh_addr; 886 kbuf->image->start += kbuf->mem + offset; 887 } 888 889 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 890 dst = pi->purgatory_buf + offset; 891 memcpy(dst, src, sechdrs[i].sh_size); 892 893 sechdrs[i].sh_addr = kbuf->mem + offset; 894 sechdrs[i].sh_offset = offset; 895 offset += sechdrs[i].sh_size; 896 } 897 898 return 0; 899 } 900 901 static int kexec_apply_relocations(struct kimage *image) 902 { 903 int i, ret; 904 struct purgatory_info *pi = &image->purgatory_info; 905 const Elf_Shdr *sechdrs; 906 907 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 908 909 for (i = 0; i < pi->ehdr->e_shnum; i++) { 910 const Elf_Shdr *relsec; 911 const Elf_Shdr *symtab; 912 Elf_Shdr *section; 913 914 relsec = sechdrs + i; 915 916 if (relsec->sh_type != SHT_RELA && 917 relsec->sh_type != SHT_REL) 918 continue; 919 920 /* 921 * For section of type SHT_RELA/SHT_REL, 922 * ->sh_link contains section header index of associated 923 * symbol table. And ->sh_info contains section header 924 * index of section to which relocations apply. 925 */ 926 if (relsec->sh_info >= pi->ehdr->e_shnum || 927 relsec->sh_link >= pi->ehdr->e_shnum) 928 return -ENOEXEC; 929 930 section = pi->sechdrs + relsec->sh_info; 931 symtab = sechdrs + relsec->sh_link; 932 933 if (!(section->sh_flags & SHF_ALLOC)) 934 continue; 935 936 /* 937 * symtab->sh_link contain section header index of associated 938 * string table. 939 */ 940 if (symtab->sh_link >= pi->ehdr->e_shnum) 941 /* Invalid section number? */ 942 continue; 943 944 /* 945 * Respective architecture needs to provide support for applying 946 * relocations of type SHT_RELA/SHT_REL. 947 */ 948 if (relsec->sh_type == SHT_RELA) 949 ret = arch_kexec_apply_relocations_add(pi, section, 950 relsec, symtab); 951 else if (relsec->sh_type == SHT_REL) 952 ret = arch_kexec_apply_relocations(pi, section, 953 relsec, symtab); 954 if (ret) 955 return ret; 956 } 957 958 return 0; 959 } 960 961 /* 962 * kexec_load_purgatory - Load and relocate the purgatory object. 963 * @image: Image to add the purgatory to. 964 * @kbuf: Memory parameters to use. 965 * 966 * Allocates the memory needed for image->purgatory_info.sechdrs and 967 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 968 * to free the memory after use. 969 * 970 * Return: 0 on success, negative errno on error. 971 */ 972 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 973 { 974 struct purgatory_info *pi = &image->purgatory_info; 975 int ret; 976 977 if (kexec_purgatory_size <= 0) 978 return -EINVAL; 979 980 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 981 982 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 983 if (ret) 984 return ret; 985 986 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 987 if (ret) 988 goto out_free_kbuf; 989 990 ret = kexec_apply_relocations(image); 991 if (ret) 992 goto out; 993 994 return 0; 995 out: 996 vfree(pi->sechdrs); 997 pi->sechdrs = NULL; 998 out_free_kbuf: 999 vfree(pi->purgatory_buf); 1000 pi->purgatory_buf = NULL; 1001 return ret; 1002 } 1003 1004 /* 1005 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1006 * @pi: Purgatory to search in. 1007 * @name: Name of the symbol. 1008 * 1009 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1010 */ 1011 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1012 const char *name) 1013 { 1014 const Elf_Shdr *sechdrs; 1015 const Elf_Ehdr *ehdr; 1016 const Elf_Sym *syms; 1017 const char *strtab; 1018 int i, k; 1019 1020 if (!pi->ehdr) 1021 return NULL; 1022 1023 ehdr = pi->ehdr; 1024 sechdrs = (void *)ehdr + ehdr->e_shoff; 1025 1026 for (i = 0; i < ehdr->e_shnum; i++) { 1027 if (sechdrs[i].sh_type != SHT_SYMTAB) 1028 continue; 1029 1030 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1031 /* Invalid strtab section number */ 1032 continue; 1033 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1034 syms = (void *)ehdr + sechdrs[i].sh_offset; 1035 1036 /* Go through symbols for a match */ 1037 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1038 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1039 continue; 1040 1041 if (strcmp(strtab + syms[k].st_name, name) != 0) 1042 continue; 1043 1044 if (syms[k].st_shndx == SHN_UNDEF || 1045 syms[k].st_shndx >= ehdr->e_shnum) { 1046 pr_debug("Symbol: %s has bad section index %d.\n", 1047 name, syms[k].st_shndx); 1048 return NULL; 1049 } 1050 1051 /* Found the symbol we are looking for */ 1052 return &syms[k]; 1053 } 1054 } 1055 1056 return NULL; 1057 } 1058 1059 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1060 { 1061 struct purgatory_info *pi = &image->purgatory_info; 1062 const Elf_Sym *sym; 1063 Elf_Shdr *sechdr; 1064 1065 sym = kexec_purgatory_find_symbol(pi, name); 1066 if (!sym) 1067 return ERR_PTR(-EINVAL); 1068 1069 sechdr = &pi->sechdrs[sym->st_shndx]; 1070 1071 /* 1072 * Returns the address where symbol will finally be loaded after 1073 * kexec_load_segment() 1074 */ 1075 return (void *)(sechdr->sh_addr + sym->st_value); 1076 } 1077 1078 /* 1079 * Get or set value of a symbol. If "get_value" is true, symbol value is 1080 * returned in buf otherwise symbol value is set based on value in buf. 1081 */ 1082 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1083 void *buf, unsigned int size, bool get_value) 1084 { 1085 struct purgatory_info *pi = &image->purgatory_info; 1086 const Elf_Sym *sym; 1087 Elf_Shdr *sec; 1088 char *sym_buf; 1089 1090 sym = kexec_purgatory_find_symbol(pi, name); 1091 if (!sym) 1092 return -EINVAL; 1093 1094 if (sym->st_size != size) { 1095 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1096 name, (unsigned long)sym->st_size, size); 1097 return -EINVAL; 1098 } 1099 1100 sec = pi->sechdrs + sym->st_shndx; 1101 1102 if (sec->sh_type == SHT_NOBITS) { 1103 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1104 get_value ? "get" : "set"); 1105 return -EINVAL; 1106 } 1107 1108 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1109 1110 if (get_value) 1111 memcpy((void *)buf, sym_buf, size); 1112 else 1113 memcpy((void *)sym_buf, buf, size); 1114 1115 return 0; 1116 } 1117 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ 1118 1119 int crash_exclude_mem_range(struct crash_mem *mem, 1120 unsigned long long mstart, unsigned long long mend) 1121 { 1122 int i, j; 1123 unsigned long long start, end; 1124 struct crash_mem_range temp_range = {0, 0}; 1125 1126 for (i = 0; i < mem->nr_ranges; i++) { 1127 start = mem->ranges[i].start; 1128 end = mem->ranges[i].end; 1129 1130 if (mstart > end || mend < start) 1131 continue; 1132 1133 /* Truncate any area outside of range */ 1134 if (mstart < start) 1135 mstart = start; 1136 if (mend > end) 1137 mend = end; 1138 1139 /* Found completely overlapping range */ 1140 if (mstart == start && mend == end) { 1141 mem->ranges[i].start = 0; 1142 mem->ranges[i].end = 0; 1143 if (i < mem->nr_ranges - 1) { 1144 /* Shift rest of the ranges to left */ 1145 for (j = i; j < mem->nr_ranges - 1; j++) { 1146 mem->ranges[j].start = 1147 mem->ranges[j+1].start; 1148 mem->ranges[j].end = 1149 mem->ranges[j+1].end; 1150 } 1151 } 1152 mem->nr_ranges--; 1153 return 0; 1154 } 1155 1156 if (mstart > start && mend < end) { 1157 /* Split original range */ 1158 mem->ranges[i].end = mstart - 1; 1159 temp_range.start = mend + 1; 1160 temp_range.end = end; 1161 } else if (mstart != start) 1162 mem->ranges[i].end = mstart - 1; 1163 else 1164 mem->ranges[i].start = mend + 1; 1165 break; 1166 } 1167 1168 /* If a split happened, add the split to array */ 1169 if (!temp_range.end) 1170 return 0; 1171 1172 /* Split happened */ 1173 if (i == mem->max_nr_ranges - 1) 1174 return -ENOMEM; 1175 1176 /* Location where new range should go */ 1177 j = i + 1; 1178 if (j < mem->nr_ranges) { 1179 /* Move over all ranges one slot towards the end */ 1180 for (i = mem->nr_ranges - 1; i >= j; i--) 1181 mem->ranges[i + 1] = mem->ranges[i]; 1182 } 1183 1184 mem->ranges[j].start = temp_range.start; 1185 mem->ranges[j].end = temp_range.end; 1186 mem->nr_ranges++; 1187 return 0; 1188 } 1189 1190 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, 1191 void **addr, unsigned long *sz) 1192 { 1193 Elf64_Ehdr *ehdr; 1194 Elf64_Phdr *phdr; 1195 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 1196 unsigned char *buf; 1197 unsigned int cpu, i; 1198 unsigned long long notes_addr; 1199 unsigned long mstart, mend; 1200 1201 /* extra phdr for vmcoreinfo elf note */ 1202 nr_phdr = nr_cpus + 1; 1203 nr_phdr += mem->nr_ranges; 1204 1205 /* 1206 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 1207 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 1208 * I think this is required by tools like gdb. So same physical 1209 * memory will be mapped in two elf headers. One will contain kernel 1210 * text virtual addresses and other will have __va(physical) addresses. 1211 */ 1212 1213 nr_phdr++; 1214 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 1215 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 1216 1217 buf = vzalloc(elf_sz); 1218 if (!buf) 1219 return -ENOMEM; 1220 1221 ehdr = (Elf64_Ehdr *)buf; 1222 phdr = (Elf64_Phdr *)(ehdr + 1); 1223 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1224 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 1225 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1226 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1227 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 1228 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 1229 ehdr->e_type = ET_CORE; 1230 ehdr->e_machine = ELF_ARCH; 1231 ehdr->e_version = EV_CURRENT; 1232 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1233 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1234 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1235 1236 /* Prepare one phdr of type PT_NOTE for each present cpu */ 1237 for_each_present_cpu(cpu) { 1238 phdr->p_type = PT_NOTE; 1239 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 1240 phdr->p_offset = phdr->p_paddr = notes_addr; 1241 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 1242 (ehdr->e_phnum)++; 1243 phdr++; 1244 } 1245 1246 /* Prepare one PT_NOTE header for vmcoreinfo */ 1247 phdr->p_type = PT_NOTE; 1248 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 1249 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 1250 (ehdr->e_phnum)++; 1251 phdr++; 1252 1253 /* Prepare PT_LOAD type program header for kernel text region */ 1254 if (kernel_map) { 1255 phdr->p_type = PT_LOAD; 1256 phdr->p_flags = PF_R|PF_W|PF_X; 1257 phdr->p_vaddr = (Elf64_Addr)_text; 1258 phdr->p_filesz = phdr->p_memsz = _end - _text; 1259 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 1260 ehdr->e_phnum++; 1261 phdr++; 1262 } 1263 1264 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 1265 for (i = 0; i < mem->nr_ranges; i++) { 1266 mstart = mem->ranges[i].start; 1267 mend = mem->ranges[i].end; 1268 1269 phdr->p_type = PT_LOAD; 1270 phdr->p_flags = PF_R|PF_W|PF_X; 1271 phdr->p_offset = mstart; 1272 1273 phdr->p_paddr = mstart; 1274 phdr->p_vaddr = (unsigned long long) __va(mstart); 1275 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 1276 phdr->p_align = 0; 1277 ehdr->e_phnum++; 1278 phdr++; 1279 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 1280 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 1281 ehdr->e_phnum, phdr->p_offset); 1282 } 1283 1284 *addr = buf; 1285 *sz = elf_sz; 1286 return 0; 1287 } 1288