xref: /openbmc/linux/kernel/kexec_file.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/elf.h>
26 #include <linux/elfcore.h>
27 #include <linux/kernel.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31 
32 static int kexec_calculate_store_digests(struct kimage *image);
33 
34 /*
35  * Currently this is the only default function that is exported as some
36  * architectures need it to do additional handlings.
37  * In the future, other default functions may be exported too if required.
38  */
39 int kexec_image_probe_default(struct kimage *image, void *buf,
40 			      unsigned long buf_len)
41 {
42 	const struct kexec_file_ops * const *fops;
43 	int ret = -ENOEXEC;
44 
45 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
46 		ret = (*fops)->probe(buf, buf_len);
47 		if (!ret) {
48 			image->fops = *fops;
49 			return ret;
50 		}
51 	}
52 
53 	return ret;
54 }
55 
56 /* Architectures can provide this probe function */
57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
58 					 unsigned long buf_len)
59 {
60 	return kexec_image_probe_default(image, buf, buf_len);
61 }
62 
63 static void *kexec_image_load_default(struct kimage *image)
64 {
65 	if (!image->fops || !image->fops->load)
66 		return ERR_PTR(-ENOEXEC);
67 
68 	return image->fops->load(image, image->kernel_buf,
69 				 image->kernel_buf_len, image->initrd_buf,
70 				 image->initrd_buf_len, image->cmdline_buf,
71 				 image->cmdline_buf_len);
72 }
73 
74 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
75 {
76 	return kexec_image_load_default(image);
77 }
78 
79 static int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 	if (!image->fops || !image->fops->cleanup)
82 		return 0;
83 
84 	return image->fops->cleanup(image->image_loader_data);
85 }
86 
87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
88 {
89 	return kexec_image_post_load_cleanup_default(image);
90 }
91 
92 #ifdef CONFIG_KEXEC_VERIFY_SIG
93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
94 					  unsigned long buf_len)
95 {
96 	if (!image->fops || !image->fops->verify_sig) {
97 		pr_debug("kernel loader does not support signature verification.\n");
98 		return -EKEYREJECTED;
99 	}
100 
101 	return image->fops->verify_sig(buf, buf_len);
102 }
103 
104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
105 					unsigned long buf_len)
106 {
107 	return kexec_image_verify_sig_default(image, buf, buf_len);
108 }
109 #endif
110 
111 /*
112  * arch_kexec_apply_relocations_add - apply relocations of type RELA
113  * @pi:		Purgatory to be relocated.
114  * @section:	Section relocations applying to.
115  * @relsec:	Section containing RELAs.
116  * @symtab:	Corresponding symtab.
117  *
118  * Return: 0 on success, negative errno on error.
119  */
120 int __weak
121 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
122 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
123 {
124 	pr_err("RELA relocation unsupported.\n");
125 	return -ENOEXEC;
126 }
127 
128 /*
129  * arch_kexec_apply_relocations - apply relocations of type REL
130  * @pi:		Purgatory to be relocated.
131  * @section:	Section relocations applying to.
132  * @relsec:	Section containing RELs.
133  * @symtab:	Corresponding symtab.
134  *
135  * Return: 0 on success, negative errno on error.
136  */
137 int __weak
138 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
139 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
140 {
141 	pr_err("REL relocation unsupported.\n");
142 	return -ENOEXEC;
143 }
144 
145 /*
146  * Free up memory used by kernel, initrd, and command line. This is temporary
147  * memory allocation which is not needed any more after these buffers have
148  * been loaded into separate segments and have been copied elsewhere.
149  */
150 void kimage_file_post_load_cleanup(struct kimage *image)
151 {
152 	struct purgatory_info *pi = &image->purgatory_info;
153 
154 	vfree(image->kernel_buf);
155 	image->kernel_buf = NULL;
156 
157 	vfree(image->initrd_buf);
158 	image->initrd_buf = NULL;
159 
160 	kfree(image->cmdline_buf);
161 	image->cmdline_buf = NULL;
162 
163 	vfree(pi->purgatory_buf);
164 	pi->purgatory_buf = NULL;
165 
166 	vfree(pi->sechdrs);
167 	pi->sechdrs = NULL;
168 
169 	/* See if architecture has anything to cleanup post load */
170 	arch_kimage_file_post_load_cleanup(image);
171 
172 	/*
173 	 * Above call should have called into bootloader to free up
174 	 * any data stored in kimage->image_loader_data. It should
175 	 * be ok now to free it up.
176 	 */
177 	kfree(image->image_loader_data);
178 	image->image_loader_data = NULL;
179 }
180 
181 /*
182  * In file mode list of segments is prepared by kernel. Copy relevant
183  * data from user space, do error checking, prepare segment list
184  */
185 static int
186 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
187 			     const char __user *cmdline_ptr,
188 			     unsigned long cmdline_len, unsigned flags)
189 {
190 	int ret = 0;
191 	void *ldata;
192 	loff_t size;
193 
194 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
195 				       &size, INT_MAX, READING_KEXEC_IMAGE);
196 	if (ret)
197 		return ret;
198 	image->kernel_buf_len = size;
199 
200 	/* IMA needs to pass the measurement list to the next kernel. */
201 	ima_add_kexec_buffer(image);
202 
203 	/* Call arch image probe handlers */
204 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
205 					    image->kernel_buf_len);
206 	if (ret)
207 		goto out;
208 
209 #ifdef CONFIG_KEXEC_VERIFY_SIG
210 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
211 					   image->kernel_buf_len);
212 	if (ret) {
213 		pr_debug("kernel signature verification failed.\n");
214 		goto out;
215 	}
216 	pr_debug("kernel signature verification successful.\n");
217 #endif
218 	/* It is possible that there no initramfs is being loaded */
219 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
220 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
221 					       &size, INT_MAX,
222 					       READING_KEXEC_INITRAMFS);
223 		if (ret)
224 			goto out;
225 		image->initrd_buf_len = size;
226 	}
227 
228 	if (cmdline_len) {
229 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
230 		if (IS_ERR(image->cmdline_buf)) {
231 			ret = PTR_ERR(image->cmdline_buf);
232 			image->cmdline_buf = NULL;
233 			goto out;
234 		}
235 
236 		image->cmdline_buf_len = cmdline_len;
237 
238 		/* command line should be a string with last byte null */
239 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
240 			ret = -EINVAL;
241 			goto out;
242 		}
243 	}
244 
245 	/* Call arch image load handlers */
246 	ldata = arch_kexec_kernel_image_load(image);
247 
248 	if (IS_ERR(ldata)) {
249 		ret = PTR_ERR(ldata);
250 		goto out;
251 	}
252 
253 	image->image_loader_data = ldata;
254 out:
255 	/* In case of error, free up all allocated memory in this function */
256 	if (ret)
257 		kimage_file_post_load_cleanup(image);
258 	return ret;
259 }
260 
261 static int
262 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
263 		       int initrd_fd, const char __user *cmdline_ptr,
264 		       unsigned long cmdline_len, unsigned long flags)
265 {
266 	int ret;
267 	struct kimage *image;
268 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
269 
270 	image = do_kimage_alloc_init();
271 	if (!image)
272 		return -ENOMEM;
273 
274 	image->file_mode = 1;
275 
276 	if (kexec_on_panic) {
277 		/* Enable special crash kernel control page alloc policy. */
278 		image->control_page = crashk_res.start;
279 		image->type = KEXEC_TYPE_CRASH;
280 	}
281 
282 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
283 					   cmdline_ptr, cmdline_len, flags);
284 	if (ret)
285 		goto out_free_image;
286 
287 	ret = sanity_check_segment_list(image);
288 	if (ret)
289 		goto out_free_post_load_bufs;
290 
291 	ret = -ENOMEM;
292 	image->control_code_page = kimage_alloc_control_pages(image,
293 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
294 	if (!image->control_code_page) {
295 		pr_err("Could not allocate control_code_buffer\n");
296 		goto out_free_post_load_bufs;
297 	}
298 
299 	if (!kexec_on_panic) {
300 		image->swap_page = kimage_alloc_control_pages(image, 0);
301 		if (!image->swap_page) {
302 			pr_err("Could not allocate swap buffer\n");
303 			goto out_free_control_pages;
304 		}
305 	}
306 
307 	*rimage = image;
308 	return 0;
309 out_free_control_pages:
310 	kimage_free_page_list(&image->control_pages);
311 out_free_post_load_bufs:
312 	kimage_file_post_load_cleanup(image);
313 out_free_image:
314 	kfree(image);
315 	return ret;
316 }
317 
318 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
319 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
320 		unsigned long, flags)
321 {
322 	int ret = 0, i;
323 	struct kimage **dest_image, *image;
324 
325 	/* We only trust the superuser with rebooting the system. */
326 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
327 		return -EPERM;
328 
329 	/* Make sure we have a legal set of flags */
330 	if (flags != (flags & KEXEC_FILE_FLAGS))
331 		return -EINVAL;
332 
333 	image = NULL;
334 
335 	if (!mutex_trylock(&kexec_mutex))
336 		return -EBUSY;
337 
338 	dest_image = &kexec_image;
339 	if (flags & KEXEC_FILE_ON_CRASH) {
340 		dest_image = &kexec_crash_image;
341 		if (kexec_crash_image)
342 			arch_kexec_unprotect_crashkres();
343 	}
344 
345 	if (flags & KEXEC_FILE_UNLOAD)
346 		goto exchange;
347 
348 	/*
349 	 * In case of crash, new kernel gets loaded in reserved region. It is
350 	 * same memory where old crash kernel might be loaded. Free any
351 	 * current crash dump kernel before we corrupt it.
352 	 */
353 	if (flags & KEXEC_FILE_ON_CRASH)
354 		kimage_free(xchg(&kexec_crash_image, NULL));
355 
356 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
357 				     cmdline_len, flags);
358 	if (ret)
359 		goto out;
360 
361 	ret = machine_kexec_prepare(image);
362 	if (ret)
363 		goto out;
364 
365 	/*
366 	 * Some architecture(like S390) may touch the crash memory before
367 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
368 	 */
369 	ret = kimage_crash_copy_vmcoreinfo(image);
370 	if (ret)
371 		goto out;
372 
373 	ret = kexec_calculate_store_digests(image);
374 	if (ret)
375 		goto out;
376 
377 	for (i = 0; i < image->nr_segments; i++) {
378 		struct kexec_segment *ksegment;
379 
380 		ksegment = &image->segment[i];
381 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
382 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
383 			 ksegment->memsz);
384 
385 		ret = kimage_load_segment(image, &image->segment[i]);
386 		if (ret)
387 			goto out;
388 	}
389 
390 	kimage_terminate(image);
391 
392 	/*
393 	 * Free up any temporary buffers allocated which are not needed
394 	 * after image has been loaded
395 	 */
396 	kimage_file_post_load_cleanup(image);
397 exchange:
398 	image = xchg(dest_image, image);
399 out:
400 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
401 		arch_kexec_protect_crashkres();
402 
403 	mutex_unlock(&kexec_mutex);
404 	kimage_free(image);
405 	return ret;
406 }
407 
408 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
409 				    struct kexec_buf *kbuf)
410 {
411 	struct kimage *image = kbuf->image;
412 	unsigned long temp_start, temp_end;
413 
414 	temp_end = min(end, kbuf->buf_max);
415 	temp_start = temp_end - kbuf->memsz;
416 
417 	do {
418 		/* align down start */
419 		temp_start = temp_start & (~(kbuf->buf_align - 1));
420 
421 		if (temp_start < start || temp_start < kbuf->buf_min)
422 			return 0;
423 
424 		temp_end = temp_start + kbuf->memsz - 1;
425 
426 		/*
427 		 * Make sure this does not conflict with any of existing
428 		 * segments
429 		 */
430 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
431 			temp_start = temp_start - PAGE_SIZE;
432 			continue;
433 		}
434 
435 		/* We found a suitable memory range */
436 		break;
437 	} while (1);
438 
439 	/* If we are here, we found a suitable memory range */
440 	kbuf->mem = temp_start;
441 
442 	/* Success, stop navigating through remaining System RAM ranges */
443 	return 1;
444 }
445 
446 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
447 				     struct kexec_buf *kbuf)
448 {
449 	struct kimage *image = kbuf->image;
450 	unsigned long temp_start, temp_end;
451 
452 	temp_start = max(start, kbuf->buf_min);
453 
454 	do {
455 		temp_start = ALIGN(temp_start, kbuf->buf_align);
456 		temp_end = temp_start + kbuf->memsz - 1;
457 
458 		if (temp_end > end || temp_end > kbuf->buf_max)
459 			return 0;
460 		/*
461 		 * Make sure this does not conflict with any of existing
462 		 * segments
463 		 */
464 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 			temp_start = temp_start + PAGE_SIZE;
466 			continue;
467 		}
468 
469 		/* We found a suitable memory range */
470 		break;
471 	} while (1);
472 
473 	/* If we are here, we found a suitable memory range */
474 	kbuf->mem = temp_start;
475 
476 	/* Success, stop navigating through remaining System RAM ranges */
477 	return 1;
478 }
479 
480 static int locate_mem_hole_callback(struct resource *res, void *arg)
481 {
482 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
483 	u64 start = res->start, end = res->end;
484 	unsigned long sz = end - start + 1;
485 
486 	/* Returning 0 will take to next memory range */
487 	if (sz < kbuf->memsz)
488 		return 0;
489 
490 	if (end < kbuf->buf_min || start > kbuf->buf_max)
491 		return 0;
492 
493 	/*
494 	 * Allocate memory top down with-in ram range. Otherwise bottom up
495 	 * allocation.
496 	 */
497 	if (kbuf->top_down)
498 		return locate_mem_hole_top_down(start, end, kbuf);
499 	return locate_mem_hole_bottom_up(start, end, kbuf);
500 }
501 
502 /**
503  * arch_kexec_walk_mem - call func(data) on free memory regions
504  * @kbuf:	Context info for the search. Also passed to @func.
505  * @func:	Function to call for each memory region.
506  *
507  * Return: The memory walk will stop when func returns a non-zero value
508  * and that value will be returned. If all free regions are visited without
509  * func returning non-zero, then zero will be returned.
510  */
511 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
512 			       int (*func)(struct resource *, void *))
513 {
514 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
515 		return walk_iomem_res_desc(crashk_res.desc,
516 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
517 					   crashk_res.start, crashk_res.end,
518 					   kbuf, func);
519 	else
520 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
521 }
522 
523 /**
524  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
525  * @kbuf:	Parameters for the memory search.
526  *
527  * On success, kbuf->mem will have the start address of the memory region found.
528  *
529  * Return: 0 on success, negative errno on error.
530  */
531 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
532 {
533 	int ret;
534 
535 	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
536 
537 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
538 }
539 
540 /**
541  * kexec_add_buffer - place a buffer in a kexec segment
542  * @kbuf:	Buffer contents and memory parameters.
543  *
544  * This function assumes that kexec_mutex is held.
545  * On successful return, @kbuf->mem will have the physical address of
546  * the buffer in memory.
547  *
548  * Return: 0 on success, negative errno on error.
549  */
550 int kexec_add_buffer(struct kexec_buf *kbuf)
551 {
552 
553 	struct kexec_segment *ksegment;
554 	int ret;
555 
556 	/* Currently adding segment this way is allowed only in file mode */
557 	if (!kbuf->image->file_mode)
558 		return -EINVAL;
559 
560 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
561 		return -EINVAL;
562 
563 	/*
564 	 * Make sure we are not trying to add buffer after allocating
565 	 * control pages. All segments need to be placed first before
566 	 * any control pages are allocated. As control page allocation
567 	 * logic goes through list of segments to make sure there are
568 	 * no destination overlaps.
569 	 */
570 	if (!list_empty(&kbuf->image->control_pages)) {
571 		WARN_ON(1);
572 		return -EINVAL;
573 	}
574 
575 	/* Ensure minimum alignment needed for segments. */
576 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
577 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
578 
579 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
580 	ret = kexec_locate_mem_hole(kbuf);
581 	if (ret)
582 		return ret;
583 
584 	/* Found a suitable memory range */
585 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
586 	ksegment->kbuf = kbuf->buffer;
587 	ksegment->bufsz = kbuf->bufsz;
588 	ksegment->mem = kbuf->mem;
589 	ksegment->memsz = kbuf->memsz;
590 	kbuf->image->nr_segments++;
591 	return 0;
592 }
593 
594 /* Calculate and store the digest of segments */
595 static int kexec_calculate_store_digests(struct kimage *image)
596 {
597 	struct crypto_shash *tfm;
598 	struct shash_desc *desc;
599 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
600 	size_t desc_size, nullsz;
601 	char *digest;
602 	void *zero_buf;
603 	struct kexec_sha_region *sha_regions;
604 	struct purgatory_info *pi = &image->purgatory_info;
605 
606 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
607 		return 0;
608 
609 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
610 	zero_buf_sz = PAGE_SIZE;
611 
612 	tfm = crypto_alloc_shash("sha256", 0, 0);
613 	if (IS_ERR(tfm)) {
614 		ret = PTR_ERR(tfm);
615 		goto out;
616 	}
617 
618 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
619 	desc = kzalloc(desc_size, GFP_KERNEL);
620 	if (!desc) {
621 		ret = -ENOMEM;
622 		goto out_free_tfm;
623 	}
624 
625 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
626 	sha_regions = vzalloc(sha_region_sz);
627 	if (!sha_regions)
628 		goto out_free_desc;
629 
630 	desc->tfm   = tfm;
631 	desc->flags = 0;
632 
633 	ret = crypto_shash_init(desc);
634 	if (ret < 0)
635 		goto out_free_sha_regions;
636 
637 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
638 	if (!digest) {
639 		ret = -ENOMEM;
640 		goto out_free_sha_regions;
641 	}
642 
643 	for (j = i = 0; i < image->nr_segments; i++) {
644 		struct kexec_segment *ksegment;
645 
646 		ksegment = &image->segment[i];
647 		/*
648 		 * Skip purgatory as it will be modified once we put digest
649 		 * info in purgatory.
650 		 */
651 		if (ksegment->kbuf == pi->purgatory_buf)
652 			continue;
653 
654 		ret = crypto_shash_update(desc, ksegment->kbuf,
655 					  ksegment->bufsz);
656 		if (ret)
657 			break;
658 
659 		/*
660 		 * Assume rest of the buffer is filled with zero and
661 		 * update digest accordingly.
662 		 */
663 		nullsz = ksegment->memsz - ksegment->bufsz;
664 		while (nullsz) {
665 			unsigned long bytes = nullsz;
666 
667 			if (bytes > zero_buf_sz)
668 				bytes = zero_buf_sz;
669 			ret = crypto_shash_update(desc, zero_buf, bytes);
670 			if (ret)
671 				break;
672 			nullsz -= bytes;
673 		}
674 
675 		if (ret)
676 			break;
677 
678 		sha_regions[j].start = ksegment->mem;
679 		sha_regions[j].len = ksegment->memsz;
680 		j++;
681 	}
682 
683 	if (!ret) {
684 		ret = crypto_shash_final(desc, digest);
685 		if (ret)
686 			goto out_free_digest;
687 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
688 						     sha_regions, sha_region_sz, 0);
689 		if (ret)
690 			goto out_free_digest;
691 
692 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
693 						     digest, SHA256_DIGEST_SIZE, 0);
694 		if (ret)
695 			goto out_free_digest;
696 	}
697 
698 out_free_digest:
699 	kfree(digest);
700 out_free_sha_regions:
701 	vfree(sha_regions);
702 out_free_desc:
703 	kfree(desc);
704 out_free_tfm:
705 	kfree(tfm);
706 out:
707 	return ret;
708 }
709 
710 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
711 /*
712  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
713  * @pi:		Purgatory to be loaded.
714  * @kbuf:	Buffer to setup.
715  *
716  * Allocates the memory needed for the buffer. Caller is responsible to free
717  * the memory after use.
718  *
719  * Return: 0 on success, negative errno on error.
720  */
721 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
722 				      struct kexec_buf *kbuf)
723 {
724 	const Elf_Shdr *sechdrs;
725 	unsigned long bss_align;
726 	unsigned long bss_sz;
727 	unsigned long align;
728 	int i, ret;
729 
730 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
731 	kbuf->buf_align = bss_align = 1;
732 	kbuf->bufsz = bss_sz = 0;
733 
734 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
735 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
736 			continue;
737 
738 		align = sechdrs[i].sh_addralign;
739 		if (sechdrs[i].sh_type != SHT_NOBITS) {
740 			if (kbuf->buf_align < align)
741 				kbuf->buf_align = align;
742 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
743 			kbuf->bufsz += sechdrs[i].sh_size;
744 		} else {
745 			if (bss_align < align)
746 				bss_align = align;
747 			bss_sz = ALIGN(bss_sz, align);
748 			bss_sz += sechdrs[i].sh_size;
749 		}
750 	}
751 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
752 	kbuf->memsz = kbuf->bufsz + bss_sz;
753 	if (kbuf->buf_align < bss_align)
754 		kbuf->buf_align = bss_align;
755 
756 	kbuf->buffer = vzalloc(kbuf->bufsz);
757 	if (!kbuf->buffer)
758 		return -ENOMEM;
759 	pi->purgatory_buf = kbuf->buffer;
760 
761 	ret = kexec_add_buffer(kbuf);
762 	if (ret)
763 		goto out;
764 
765 	return 0;
766 out:
767 	vfree(pi->purgatory_buf);
768 	pi->purgatory_buf = NULL;
769 	return ret;
770 }
771 
772 /*
773  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
774  * @pi:		Purgatory to be loaded.
775  * @kbuf:	Buffer prepared to store purgatory.
776  *
777  * Allocates the memory needed for the buffer. Caller is responsible to free
778  * the memory after use.
779  *
780  * Return: 0 on success, negative errno on error.
781  */
782 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
783 					 struct kexec_buf *kbuf)
784 {
785 	unsigned long bss_addr;
786 	unsigned long offset;
787 	Elf_Shdr *sechdrs;
788 	int i;
789 
790 	/*
791 	 * The section headers in kexec_purgatory are read-only. In order to
792 	 * have them modifiable make a temporary copy.
793 	 */
794 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
795 	if (!sechdrs)
796 		return -ENOMEM;
797 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
798 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
799 	pi->sechdrs = sechdrs;
800 
801 	offset = 0;
802 	bss_addr = kbuf->mem + kbuf->bufsz;
803 	kbuf->image->start = pi->ehdr->e_entry;
804 
805 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
806 		unsigned long align;
807 		void *src, *dst;
808 
809 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
810 			continue;
811 
812 		align = sechdrs[i].sh_addralign;
813 		if (sechdrs[i].sh_type == SHT_NOBITS) {
814 			bss_addr = ALIGN(bss_addr, align);
815 			sechdrs[i].sh_addr = bss_addr;
816 			bss_addr += sechdrs[i].sh_size;
817 			continue;
818 		}
819 
820 		offset = ALIGN(offset, align);
821 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
822 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
823 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
824 					 + sechdrs[i].sh_size)) {
825 			kbuf->image->start -= sechdrs[i].sh_addr;
826 			kbuf->image->start += kbuf->mem + offset;
827 		}
828 
829 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
830 		dst = pi->purgatory_buf + offset;
831 		memcpy(dst, src, sechdrs[i].sh_size);
832 
833 		sechdrs[i].sh_addr = kbuf->mem + offset;
834 		sechdrs[i].sh_offset = offset;
835 		offset += sechdrs[i].sh_size;
836 	}
837 
838 	return 0;
839 }
840 
841 static int kexec_apply_relocations(struct kimage *image)
842 {
843 	int i, ret;
844 	struct purgatory_info *pi = &image->purgatory_info;
845 	const Elf_Shdr *sechdrs;
846 
847 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
848 
849 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
850 		const Elf_Shdr *relsec;
851 		const Elf_Shdr *symtab;
852 		Elf_Shdr *section;
853 
854 		relsec = sechdrs + i;
855 
856 		if (relsec->sh_type != SHT_RELA &&
857 		    relsec->sh_type != SHT_REL)
858 			continue;
859 
860 		/*
861 		 * For section of type SHT_RELA/SHT_REL,
862 		 * ->sh_link contains section header index of associated
863 		 * symbol table. And ->sh_info contains section header
864 		 * index of section to which relocations apply.
865 		 */
866 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
867 		    relsec->sh_link >= pi->ehdr->e_shnum)
868 			return -ENOEXEC;
869 
870 		section = pi->sechdrs + relsec->sh_info;
871 		symtab = sechdrs + relsec->sh_link;
872 
873 		if (!(section->sh_flags & SHF_ALLOC))
874 			continue;
875 
876 		/*
877 		 * symtab->sh_link contain section header index of associated
878 		 * string table.
879 		 */
880 		if (symtab->sh_link >= pi->ehdr->e_shnum)
881 			/* Invalid section number? */
882 			continue;
883 
884 		/*
885 		 * Respective architecture needs to provide support for applying
886 		 * relocations of type SHT_RELA/SHT_REL.
887 		 */
888 		if (relsec->sh_type == SHT_RELA)
889 			ret = arch_kexec_apply_relocations_add(pi, section,
890 							       relsec, symtab);
891 		else if (relsec->sh_type == SHT_REL)
892 			ret = arch_kexec_apply_relocations(pi, section,
893 							   relsec, symtab);
894 		if (ret)
895 			return ret;
896 	}
897 
898 	return 0;
899 }
900 
901 /*
902  * kexec_load_purgatory - Load and relocate the purgatory object.
903  * @image:	Image to add the purgatory to.
904  * @kbuf:	Memory parameters to use.
905  *
906  * Allocates the memory needed for image->purgatory_info.sechdrs and
907  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
908  * to free the memory after use.
909  *
910  * Return: 0 on success, negative errno on error.
911  */
912 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
913 {
914 	struct purgatory_info *pi = &image->purgatory_info;
915 	int ret;
916 
917 	if (kexec_purgatory_size <= 0)
918 		return -EINVAL;
919 
920 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
921 
922 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
923 	if (ret)
924 		return ret;
925 
926 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
927 	if (ret)
928 		goto out_free_kbuf;
929 
930 	ret = kexec_apply_relocations(image);
931 	if (ret)
932 		goto out;
933 
934 	return 0;
935 out:
936 	vfree(pi->sechdrs);
937 	pi->sechdrs = NULL;
938 out_free_kbuf:
939 	vfree(pi->purgatory_buf);
940 	pi->purgatory_buf = NULL;
941 	return ret;
942 }
943 
944 /*
945  * kexec_purgatory_find_symbol - find a symbol in the purgatory
946  * @pi:		Purgatory to search in.
947  * @name:	Name of the symbol.
948  *
949  * Return: pointer to symbol in read-only symtab on success, NULL on error.
950  */
951 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
952 						  const char *name)
953 {
954 	const Elf_Shdr *sechdrs;
955 	const Elf_Ehdr *ehdr;
956 	const Elf_Sym *syms;
957 	const char *strtab;
958 	int i, k;
959 
960 	if (!pi->ehdr)
961 		return NULL;
962 
963 	ehdr = pi->ehdr;
964 	sechdrs = (void *)ehdr + ehdr->e_shoff;
965 
966 	for (i = 0; i < ehdr->e_shnum; i++) {
967 		if (sechdrs[i].sh_type != SHT_SYMTAB)
968 			continue;
969 
970 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
971 			/* Invalid strtab section number */
972 			continue;
973 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
974 		syms = (void *)ehdr + sechdrs[i].sh_offset;
975 
976 		/* Go through symbols for a match */
977 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
978 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
979 				continue;
980 
981 			if (strcmp(strtab + syms[k].st_name, name) != 0)
982 				continue;
983 
984 			if (syms[k].st_shndx == SHN_UNDEF ||
985 			    syms[k].st_shndx >= ehdr->e_shnum) {
986 				pr_debug("Symbol: %s has bad section index %d.\n",
987 						name, syms[k].st_shndx);
988 				return NULL;
989 			}
990 
991 			/* Found the symbol we are looking for */
992 			return &syms[k];
993 		}
994 	}
995 
996 	return NULL;
997 }
998 
999 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1000 {
1001 	struct purgatory_info *pi = &image->purgatory_info;
1002 	const Elf_Sym *sym;
1003 	Elf_Shdr *sechdr;
1004 
1005 	sym = kexec_purgatory_find_symbol(pi, name);
1006 	if (!sym)
1007 		return ERR_PTR(-EINVAL);
1008 
1009 	sechdr = &pi->sechdrs[sym->st_shndx];
1010 
1011 	/*
1012 	 * Returns the address where symbol will finally be loaded after
1013 	 * kexec_load_segment()
1014 	 */
1015 	return (void *)(sechdr->sh_addr + sym->st_value);
1016 }
1017 
1018 /*
1019  * Get or set value of a symbol. If "get_value" is true, symbol value is
1020  * returned in buf otherwise symbol value is set based on value in buf.
1021  */
1022 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1023 				   void *buf, unsigned int size, bool get_value)
1024 {
1025 	struct purgatory_info *pi = &image->purgatory_info;
1026 	const Elf_Sym *sym;
1027 	Elf_Shdr *sec;
1028 	char *sym_buf;
1029 
1030 	sym = kexec_purgatory_find_symbol(pi, name);
1031 	if (!sym)
1032 		return -EINVAL;
1033 
1034 	if (sym->st_size != size) {
1035 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1036 		       name, (unsigned long)sym->st_size, size);
1037 		return -EINVAL;
1038 	}
1039 
1040 	sec = pi->sechdrs + sym->st_shndx;
1041 
1042 	if (sec->sh_type == SHT_NOBITS) {
1043 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1044 		       get_value ? "get" : "set");
1045 		return -EINVAL;
1046 	}
1047 
1048 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1049 
1050 	if (get_value)
1051 		memcpy((void *)buf, sym_buf, size);
1052 	else
1053 		memcpy((void *)sym_buf, buf, size);
1054 
1055 	return 0;
1056 }
1057 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1058 
1059 int crash_exclude_mem_range(struct crash_mem *mem,
1060 			    unsigned long long mstart, unsigned long long mend)
1061 {
1062 	int i, j;
1063 	unsigned long long start, end;
1064 	struct crash_mem_range temp_range = {0, 0};
1065 
1066 	for (i = 0; i < mem->nr_ranges; i++) {
1067 		start = mem->ranges[i].start;
1068 		end = mem->ranges[i].end;
1069 
1070 		if (mstart > end || mend < start)
1071 			continue;
1072 
1073 		/* Truncate any area outside of range */
1074 		if (mstart < start)
1075 			mstart = start;
1076 		if (mend > end)
1077 			mend = end;
1078 
1079 		/* Found completely overlapping range */
1080 		if (mstart == start && mend == end) {
1081 			mem->ranges[i].start = 0;
1082 			mem->ranges[i].end = 0;
1083 			if (i < mem->nr_ranges - 1) {
1084 				/* Shift rest of the ranges to left */
1085 				for (j = i; j < mem->nr_ranges - 1; j++) {
1086 					mem->ranges[j].start =
1087 						mem->ranges[j+1].start;
1088 					mem->ranges[j].end =
1089 							mem->ranges[j+1].end;
1090 				}
1091 			}
1092 			mem->nr_ranges--;
1093 			return 0;
1094 		}
1095 
1096 		if (mstart > start && mend < end) {
1097 			/* Split original range */
1098 			mem->ranges[i].end = mstart - 1;
1099 			temp_range.start = mend + 1;
1100 			temp_range.end = end;
1101 		} else if (mstart != start)
1102 			mem->ranges[i].end = mstart - 1;
1103 		else
1104 			mem->ranges[i].start = mend + 1;
1105 		break;
1106 	}
1107 
1108 	/* If a split happened, add the split to array */
1109 	if (!temp_range.end)
1110 		return 0;
1111 
1112 	/* Split happened */
1113 	if (i == mem->max_nr_ranges - 1)
1114 		return -ENOMEM;
1115 
1116 	/* Location where new range should go */
1117 	j = i + 1;
1118 	if (j < mem->nr_ranges) {
1119 		/* Move over all ranges one slot towards the end */
1120 		for (i = mem->nr_ranges - 1; i >= j; i--)
1121 			mem->ranges[i + 1] = mem->ranges[i];
1122 	}
1123 
1124 	mem->ranges[j].start = temp_range.start;
1125 	mem->ranges[j].end = temp_range.end;
1126 	mem->nr_ranges++;
1127 	return 0;
1128 }
1129 
1130 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1131 			  void **addr, unsigned long *sz)
1132 {
1133 	Elf64_Ehdr *ehdr;
1134 	Elf64_Phdr *phdr;
1135 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1136 	unsigned char *buf;
1137 	unsigned int cpu, i;
1138 	unsigned long long notes_addr;
1139 	unsigned long mstart, mend;
1140 
1141 	/* extra phdr for vmcoreinfo elf note */
1142 	nr_phdr = nr_cpus + 1;
1143 	nr_phdr += mem->nr_ranges;
1144 
1145 	/*
1146 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1147 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1148 	 * I think this is required by tools like gdb. So same physical
1149 	 * memory will be mapped in two elf headers. One will contain kernel
1150 	 * text virtual addresses and other will have __va(physical) addresses.
1151 	 */
1152 
1153 	nr_phdr++;
1154 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1155 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1156 
1157 	buf = vzalloc(elf_sz);
1158 	if (!buf)
1159 		return -ENOMEM;
1160 
1161 	ehdr = (Elf64_Ehdr *)buf;
1162 	phdr = (Elf64_Phdr *)(ehdr + 1);
1163 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1164 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1165 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1166 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1167 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1168 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1169 	ehdr->e_type = ET_CORE;
1170 	ehdr->e_machine = ELF_ARCH;
1171 	ehdr->e_version = EV_CURRENT;
1172 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1173 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1174 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1175 
1176 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1177 	for_each_present_cpu(cpu) {
1178 		phdr->p_type = PT_NOTE;
1179 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1180 		phdr->p_offset = phdr->p_paddr = notes_addr;
1181 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1182 		(ehdr->e_phnum)++;
1183 		phdr++;
1184 	}
1185 
1186 	/* Prepare one PT_NOTE header for vmcoreinfo */
1187 	phdr->p_type = PT_NOTE;
1188 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1189 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1190 	(ehdr->e_phnum)++;
1191 	phdr++;
1192 
1193 	/* Prepare PT_LOAD type program header for kernel text region */
1194 	if (kernel_map) {
1195 		phdr->p_type = PT_LOAD;
1196 		phdr->p_flags = PF_R|PF_W|PF_X;
1197 		phdr->p_vaddr = (Elf64_Addr)_text;
1198 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1199 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1200 		ehdr->e_phnum++;
1201 		phdr++;
1202 	}
1203 
1204 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1205 	for (i = 0; i < mem->nr_ranges; i++) {
1206 		mstart = mem->ranges[i].start;
1207 		mend = mem->ranges[i].end;
1208 
1209 		phdr->p_type = PT_LOAD;
1210 		phdr->p_flags = PF_R|PF_W|PF_X;
1211 		phdr->p_offset  = mstart;
1212 
1213 		phdr->p_paddr = mstart;
1214 		phdr->p_vaddr = (unsigned long long) __va(mstart);
1215 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1216 		phdr->p_align = 0;
1217 		ehdr->e_phnum++;
1218 		phdr++;
1219 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1220 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1221 			ehdr->e_phnum, phdr->p_offset);
1222 	}
1223 
1224 	*addr = buf;
1225 	*sz = elf_sz;
1226 	return 0;
1227 }
1228