1 /* 2 * kexec.c - kexec_load system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/security.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/syscalls.h> 19 #include <linux/vmalloc.h> 20 #include <linux/slab.h> 21 22 #include "kexec_internal.h" 23 24 static int copy_user_segment_list(struct kimage *image, 25 unsigned long nr_segments, 26 struct kexec_segment __user *segments) 27 { 28 int ret; 29 size_t segment_bytes; 30 31 /* Read in the segments */ 32 image->nr_segments = nr_segments; 33 segment_bytes = nr_segments * sizeof(*segments); 34 ret = copy_from_user(image->segment, segments, segment_bytes); 35 if (ret) 36 ret = -EFAULT; 37 38 return ret; 39 } 40 41 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 42 unsigned long nr_segments, 43 struct kexec_segment __user *segments, 44 unsigned long flags) 45 { 46 int ret; 47 struct kimage *image; 48 bool kexec_on_panic = flags & KEXEC_ON_CRASH; 49 50 if (kexec_on_panic) { 51 /* Verify we have a valid entry point */ 52 if ((entry < phys_to_boot_phys(crashk_res.start)) || 53 (entry > phys_to_boot_phys(crashk_res.end))) 54 return -EADDRNOTAVAIL; 55 } 56 57 /* Allocate and initialize a controlling structure */ 58 image = do_kimage_alloc_init(); 59 if (!image) 60 return -ENOMEM; 61 62 image->start = entry; 63 64 ret = copy_user_segment_list(image, nr_segments, segments); 65 if (ret) 66 goto out_free_image; 67 68 if (kexec_on_panic) { 69 /* Enable special crash kernel control page alloc policy. */ 70 image->control_page = crashk_res.start; 71 image->type = KEXEC_TYPE_CRASH; 72 } 73 74 ret = sanity_check_segment_list(image); 75 if (ret) 76 goto out_free_image; 77 78 /* 79 * Find a location for the control code buffer, and add it 80 * the vector of segments so that it's pages will also be 81 * counted as destination pages. 82 */ 83 ret = -ENOMEM; 84 image->control_code_page = kimage_alloc_control_pages(image, 85 get_order(KEXEC_CONTROL_PAGE_SIZE)); 86 if (!image->control_code_page) { 87 pr_err("Could not allocate control_code_buffer\n"); 88 goto out_free_image; 89 } 90 91 if (!kexec_on_panic) { 92 image->swap_page = kimage_alloc_control_pages(image, 0); 93 if (!image->swap_page) { 94 pr_err("Could not allocate swap buffer\n"); 95 goto out_free_control_pages; 96 } 97 } 98 99 *rimage = image; 100 return 0; 101 out_free_control_pages: 102 kimage_free_page_list(&image->control_pages); 103 out_free_image: 104 kfree(image); 105 return ret; 106 } 107 108 static int do_kexec_load(unsigned long entry, unsigned long nr_segments, 109 struct kexec_segment __user *segments, unsigned long flags) 110 { 111 struct kimage **dest_image, *image; 112 unsigned long i; 113 int ret; 114 115 if (flags & KEXEC_ON_CRASH) { 116 dest_image = &kexec_crash_image; 117 if (kexec_crash_image) 118 arch_kexec_unprotect_crashkres(); 119 } else { 120 dest_image = &kexec_image; 121 } 122 123 if (nr_segments == 0) { 124 /* Uninstall image */ 125 kimage_free(xchg(dest_image, NULL)); 126 return 0; 127 } 128 if (flags & KEXEC_ON_CRASH) { 129 /* 130 * Loading another kernel to switch to if this one 131 * crashes. Free any current crash dump kernel before 132 * we corrupt it. 133 */ 134 kimage_free(xchg(&kexec_crash_image, NULL)); 135 } 136 137 ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags); 138 if (ret) 139 return ret; 140 141 if (flags & KEXEC_PRESERVE_CONTEXT) 142 image->preserve_context = 1; 143 144 ret = machine_kexec_prepare(image); 145 if (ret) 146 goto out; 147 148 /* 149 * Some architecture(like S390) may touch the crash memory before 150 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 151 */ 152 ret = kimage_crash_copy_vmcoreinfo(image); 153 if (ret) 154 goto out; 155 156 for (i = 0; i < nr_segments; i++) { 157 ret = kimage_load_segment(image, &image->segment[i]); 158 if (ret) 159 goto out; 160 } 161 162 kimage_terminate(image); 163 164 /* Install the new kernel and uninstall the old */ 165 image = xchg(dest_image, image); 166 167 out: 168 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image) 169 arch_kexec_protect_crashkres(); 170 171 kimage_free(image); 172 return ret; 173 } 174 175 /* 176 * Exec Kernel system call: for obvious reasons only root may call it. 177 * 178 * This call breaks up into three pieces. 179 * - A generic part which loads the new kernel from the current 180 * address space, and very carefully places the data in the 181 * allocated pages. 182 * 183 * - A generic part that interacts with the kernel and tells all of 184 * the devices to shut down. Preventing on-going dmas, and placing 185 * the devices in a consistent state so a later kernel can 186 * reinitialize them. 187 * 188 * - A machine specific part that includes the syscall number 189 * and then copies the image to it's final destination. And 190 * jumps into the image at entry. 191 * 192 * kexec does not sync, or unmount filesystems so if you need 193 * that to happen you need to do that yourself. 194 */ 195 196 static inline int kexec_load_check(unsigned long nr_segments, 197 unsigned long flags) 198 { 199 int result; 200 201 /* We only trust the superuser with rebooting the system. */ 202 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 203 return -EPERM; 204 205 /* Permit LSMs and IMA to fail the kexec */ 206 result = security_kernel_load_data(LOADING_KEXEC_IMAGE); 207 if (result < 0) 208 return result; 209 210 /* 211 * Verify we have a legal set of flags 212 * This leaves us room for future extensions. 213 */ 214 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 215 return -EINVAL; 216 217 /* Put an artificial cap on the number 218 * of segments passed to kexec_load. 219 */ 220 if (nr_segments > KEXEC_SEGMENT_MAX) 221 return -EINVAL; 222 223 return 0; 224 } 225 226 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 227 struct kexec_segment __user *, segments, unsigned long, flags) 228 { 229 int result; 230 231 result = kexec_load_check(nr_segments, flags); 232 if (result) 233 return result; 234 235 /* Verify we are on the appropriate architecture */ 236 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 237 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 238 return -EINVAL; 239 240 /* Because we write directly to the reserved memory 241 * region when loading crash kernels we need a mutex here to 242 * prevent multiple crash kernels from attempting to load 243 * simultaneously, and to prevent a crash kernel from loading 244 * over the top of a in use crash kernel. 245 * 246 * KISS: always take the mutex. 247 */ 248 if (!mutex_trylock(&kexec_mutex)) 249 return -EBUSY; 250 251 result = do_kexec_load(entry, nr_segments, segments, flags); 252 253 mutex_unlock(&kexec_mutex); 254 255 return result; 256 } 257 258 #ifdef CONFIG_COMPAT 259 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 260 compat_ulong_t, nr_segments, 261 struct compat_kexec_segment __user *, segments, 262 compat_ulong_t, flags) 263 { 264 struct compat_kexec_segment in; 265 struct kexec_segment out, __user *ksegments; 266 unsigned long i, result; 267 268 result = kexec_load_check(nr_segments, flags); 269 if (result) 270 return result; 271 272 /* Don't allow clients that don't understand the native 273 * architecture to do anything. 274 */ 275 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 276 return -EINVAL; 277 278 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 279 for (i = 0; i < nr_segments; i++) { 280 result = copy_from_user(&in, &segments[i], sizeof(in)); 281 if (result) 282 return -EFAULT; 283 284 out.buf = compat_ptr(in.buf); 285 out.bufsz = in.bufsz; 286 out.mem = in.mem; 287 out.memsz = in.memsz; 288 289 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 290 if (result) 291 return -EFAULT; 292 } 293 294 /* Because we write directly to the reserved memory 295 * region when loading crash kernels we need a mutex here to 296 * prevent multiple crash kernels from attempting to load 297 * simultaneously, and to prevent a crash kernel from loading 298 * over the top of a in use crash kernel. 299 * 300 * KISS: always take the mutex. 301 */ 302 if (!mutex_trylock(&kexec_mutex)) 303 return -EBUSY; 304 305 result = do_kexec_load(entry, nr_segments, ksegments, flags); 306 307 mutex_unlock(&kexec_mutex); 308 309 return result; 310 } 311 #endif 312