xref: /openbmc/linux/kernel/kexec.c (revision e23feb16)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/sections.h>
40 
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu *crash_notes;
43 
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47 size_t vmcoreinfo_size;
48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49 
50 /* Location of the reserved area for the crash kernel */
51 struct resource crashk_res = {
52 	.name  = "Crash kernel",
53 	.start = 0,
54 	.end   = 0,
55 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
56 };
57 struct resource crashk_low_res = {
58 	.name  = "Crash kernel",
59 	.start = 0,
60 	.end   = 0,
61 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
62 };
63 
64 int kexec_should_crash(struct task_struct *p)
65 {
66 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
67 		return 1;
68 	return 0;
69 }
70 
71 /*
72  * When kexec transitions to the new kernel there is a one-to-one
73  * mapping between physical and virtual addresses.  On processors
74  * where you can disable the MMU this is trivial, and easy.  For
75  * others it is still a simple predictable page table to setup.
76  *
77  * In that environment kexec copies the new kernel to its final
78  * resting place.  This means I can only support memory whose
79  * physical address can fit in an unsigned long.  In particular
80  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81  * If the assembly stub has more restrictive requirements
82  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83  * defined more restrictively in <asm/kexec.h>.
84  *
85  * The code for the transition from the current kernel to the
86  * the new kernel is placed in the control_code_buffer, whose size
87  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
88  * page of memory is necessary, but some architectures require more.
89  * Because this memory must be identity mapped in the transition from
90  * virtual to physical addresses it must live in the range
91  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
92  * modifiable.
93  *
94  * The assembly stub in the control code buffer is passed a linked list
95  * of descriptor pages detailing the source pages of the new kernel,
96  * and the destination addresses of those source pages.  As this data
97  * structure is not used in the context of the current OS, it must
98  * be self-contained.
99  *
100  * The code has been made to work with highmem pages and will use a
101  * destination page in its final resting place (if it happens
102  * to allocate it).  The end product of this is that most of the
103  * physical address space, and most of RAM can be used.
104  *
105  * Future directions include:
106  *  - allocating a page table with the control code buffer identity
107  *    mapped, to simplify machine_kexec and make kexec_on_panic more
108  *    reliable.
109  */
110 
111 /*
112  * KIMAGE_NO_DEST is an impossible destination address..., for
113  * allocating pages whose destination address we do not care about.
114  */
115 #define KIMAGE_NO_DEST (-1UL)
116 
117 static int kimage_is_destination_range(struct kimage *image,
118 				       unsigned long start, unsigned long end);
119 static struct page *kimage_alloc_page(struct kimage *image,
120 				       gfp_t gfp_mask,
121 				       unsigned long dest);
122 
123 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
124 	                    unsigned long nr_segments,
125                             struct kexec_segment __user *segments)
126 {
127 	size_t segment_bytes;
128 	struct kimage *image;
129 	unsigned long i;
130 	int result;
131 
132 	/* Allocate a controlling structure */
133 	result = -ENOMEM;
134 	image = kzalloc(sizeof(*image), GFP_KERNEL);
135 	if (!image)
136 		goto out;
137 
138 	image->head = 0;
139 	image->entry = &image->head;
140 	image->last_entry = &image->head;
141 	image->control_page = ~0; /* By default this does not apply */
142 	image->start = entry;
143 	image->type = KEXEC_TYPE_DEFAULT;
144 
145 	/* Initialize the list of control pages */
146 	INIT_LIST_HEAD(&image->control_pages);
147 
148 	/* Initialize the list of destination pages */
149 	INIT_LIST_HEAD(&image->dest_pages);
150 
151 	/* Initialize the list of unusable pages */
152 	INIT_LIST_HEAD(&image->unuseable_pages);
153 
154 	/* Read in the segments */
155 	image->nr_segments = nr_segments;
156 	segment_bytes = nr_segments * sizeof(*segments);
157 	result = copy_from_user(image->segment, segments, segment_bytes);
158 	if (result) {
159 		result = -EFAULT;
160 		goto out;
161 	}
162 
163 	/*
164 	 * Verify we have good destination addresses.  The caller is
165 	 * responsible for making certain we don't attempt to load
166 	 * the new image into invalid or reserved areas of RAM.  This
167 	 * just verifies it is an address we can use.
168 	 *
169 	 * Since the kernel does everything in page size chunks ensure
170 	 * the destination addresses are page aligned.  Too many
171 	 * special cases crop of when we don't do this.  The most
172 	 * insidious is getting overlapping destination addresses
173 	 * simply because addresses are changed to page size
174 	 * granularity.
175 	 */
176 	result = -EADDRNOTAVAIL;
177 	for (i = 0; i < nr_segments; i++) {
178 		unsigned long mstart, mend;
179 
180 		mstart = image->segment[i].mem;
181 		mend   = mstart + image->segment[i].memsz;
182 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 			goto out;
184 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 			goto out;
186 	}
187 
188 	/* Verify our destination addresses do not overlap.
189 	 * If we alloed overlapping destination addresses
190 	 * through very weird things can happen with no
191 	 * easy explanation as one segment stops on another.
192 	 */
193 	result = -EINVAL;
194 	for (i = 0; i < nr_segments; i++) {
195 		unsigned long mstart, mend;
196 		unsigned long j;
197 
198 		mstart = image->segment[i].mem;
199 		mend   = mstart + image->segment[i].memsz;
200 		for (j = 0; j < i; j++) {
201 			unsigned long pstart, pend;
202 			pstart = image->segment[j].mem;
203 			pend   = pstart + image->segment[j].memsz;
204 			/* Do the segments overlap ? */
205 			if ((mend > pstart) && (mstart < pend))
206 				goto out;
207 		}
208 	}
209 
210 	/* Ensure our buffer sizes are strictly less than
211 	 * our memory sizes.  This should always be the case,
212 	 * and it is easier to check up front than to be surprised
213 	 * later on.
214 	 */
215 	result = -EINVAL;
216 	for (i = 0; i < nr_segments; i++) {
217 		if (image->segment[i].bufsz > image->segment[i].memsz)
218 			goto out;
219 	}
220 
221 	result = 0;
222 out:
223 	if (result == 0)
224 		*rimage = image;
225 	else
226 		kfree(image);
227 
228 	return result;
229 
230 }
231 
232 static void kimage_free_page_list(struct list_head *list);
233 
234 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
235 				unsigned long nr_segments,
236 				struct kexec_segment __user *segments)
237 {
238 	int result;
239 	struct kimage *image;
240 
241 	/* Allocate and initialize a controlling structure */
242 	image = NULL;
243 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
244 	if (result)
245 		goto out;
246 
247 	/*
248 	 * Find a location for the control code buffer, and add it
249 	 * the vector of segments so that it's pages will also be
250 	 * counted as destination pages.
251 	 */
252 	result = -ENOMEM;
253 	image->control_code_page = kimage_alloc_control_pages(image,
254 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
255 	if (!image->control_code_page) {
256 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
257 		goto out_free;
258 	}
259 
260 	image->swap_page = kimage_alloc_control_pages(image, 0);
261 	if (!image->swap_page) {
262 		printk(KERN_ERR "Could not allocate swap buffer\n");
263 		goto out_free;
264 	}
265 
266 	*rimage = image;
267 	return 0;
268 
269 out_free:
270 	kimage_free_page_list(&image->control_pages);
271 	kfree(image);
272 out:
273 	return result;
274 }
275 
276 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
277 				unsigned long nr_segments,
278 				struct kexec_segment __user *segments)
279 {
280 	int result;
281 	struct kimage *image;
282 	unsigned long i;
283 
284 	image = NULL;
285 	/* Verify we have a valid entry point */
286 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
287 		result = -EADDRNOTAVAIL;
288 		goto out;
289 	}
290 
291 	/* Allocate and initialize a controlling structure */
292 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
293 	if (result)
294 		goto out;
295 
296 	/* Enable the special crash kernel control page
297 	 * allocation policy.
298 	 */
299 	image->control_page = crashk_res.start;
300 	image->type = KEXEC_TYPE_CRASH;
301 
302 	/*
303 	 * Verify we have good destination addresses.  Normally
304 	 * the caller is responsible for making certain we don't
305 	 * attempt to load the new image into invalid or reserved
306 	 * areas of RAM.  But crash kernels are preloaded into a
307 	 * reserved area of ram.  We must ensure the addresses
308 	 * are in the reserved area otherwise preloading the
309 	 * kernel could corrupt things.
310 	 */
311 	result = -EADDRNOTAVAIL;
312 	for (i = 0; i < nr_segments; i++) {
313 		unsigned long mstart, mend;
314 
315 		mstart = image->segment[i].mem;
316 		mend = mstart + image->segment[i].memsz - 1;
317 		/* Ensure we are within the crash kernel limits */
318 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
319 			goto out_free;
320 	}
321 
322 	/*
323 	 * Find a location for the control code buffer, and add
324 	 * the vector of segments so that it's pages will also be
325 	 * counted as destination pages.
326 	 */
327 	result = -ENOMEM;
328 	image->control_code_page = kimage_alloc_control_pages(image,
329 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
330 	if (!image->control_code_page) {
331 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
332 		goto out_free;
333 	}
334 
335 	*rimage = image;
336 	return 0;
337 
338 out_free:
339 	kfree(image);
340 out:
341 	return result;
342 }
343 
344 static int kimage_is_destination_range(struct kimage *image,
345 					unsigned long start,
346 					unsigned long end)
347 {
348 	unsigned long i;
349 
350 	for (i = 0; i < image->nr_segments; i++) {
351 		unsigned long mstart, mend;
352 
353 		mstart = image->segment[i].mem;
354 		mend = mstart + image->segment[i].memsz;
355 		if ((end > mstart) && (start < mend))
356 			return 1;
357 	}
358 
359 	return 0;
360 }
361 
362 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
363 {
364 	struct page *pages;
365 
366 	pages = alloc_pages(gfp_mask, order);
367 	if (pages) {
368 		unsigned int count, i;
369 		pages->mapping = NULL;
370 		set_page_private(pages, order);
371 		count = 1 << order;
372 		for (i = 0; i < count; i++)
373 			SetPageReserved(pages + i);
374 	}
375 
376 	return pages;
377 }
378 
379 static void kimage_free_pages(struct page *page)
380 {
381 	unsigned int order, count, i;
382 
383 	order = page_private(page);
384 	count = 1 << order;
385 	for (i = 0; i < count; i++)
386 		ClearPageReserved(page + i);
387 	__free_pages(page, order);
388 }
389 
390 static void kimage_free_page_list(struct list_head *list)
391 {
392 	struct list_head *pos, *next;
393 
394 	list_for_each_safe(pos, next, list) {
395 		struct page *page;
396 
397 		page = list_entry(pos, struct page, lru);
398 		list_del(&page->lru);
399 		kimage_free_pages(page);
400 	}
401 }
402 
403 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
404 							unsigned int order)
405 {
406 	/* Control pages are special, they are the intermediaries
407 	 * that are needed while we copy the rest of the pages
408 	 * to their final resting place.  As such they must
409 	 * not conflict with either the destination addresses
410 	 * or memory the kernel is already using.
411 	 *
412 	 * The only case where we really need more than one of
413 	 * these are for architectures where we cannot disable
414 	 * the MMU and must instead generate an identity mapped
415 	 * page table for all of the memory.
416 	 *
417 	 * At worst this runs in O(N) of the image size.
418 	 */
419 	struct list_head extra_pages;
420 	struct page *pages;
421 	unsigned int count;
422 
423 	count = 1 << order;
424 	INIT_LIST_HEAD(&extra_pages);
425 
426 	/* Loop while I can allocate a page and the page allocated
427 	 * is a destination page.
428 	 */
429 	do {
430 		unsigned long pfn, epfn, addr, eaddr;
431 
432 		pages = kimage_alloc_pages(GFP_KERNEL, order);
433 		if (!pages)
434 			break;
435 		pfn   = page_to_pfn(pages);
436 		epfn  = pfn + count;
437 		addr  = pfn << PAGE_SHIFT;
438 		eaddr = epfn << PAGE_SHIFT;
439 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
440 			      kimage_is_destination_range(image, addr, eaddr)) {
441 			list_add(&pages->lru, &extra_pages);
442 			pages = NULL;
443 		}
444 	} while (!pages);
445 
446 	if (pages) {
447 		/* Remember the allocated page... */
448 		list_add(&pages->lru, &image->control_pages);
449 
450 		/* Because the page is already in it's destination
451 		 * location we will never allocate another page at
452 		 * that address.  Therefore kimage_alloc_pages
453 		 * will not return it (again) and we don't need
454 		 * to give it an entry in image->segment[].
455 		 */
456 	}
457 	/* Deal with the destination pages I have inadvertently allocated.
458 	 *
459 	 * Ideally I would convert multi-page allocations into single
460 	 * page allocations, and add everything to image->dest_pages.
461 	 *
462 	 * For now it is simpler to just free the pages.
463 	 */
464 	kimage_free_page_list(&extra_pages);
465 
466 	return pages;
467 }
468 
469 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
470 						      unsigned int order)
471 {
472 	/* Control pages are special, they are the intermediaries
473 	 * that are needed while we copy the rest of the pages
474 	 * to their final resting place.  As such they must
475 	 * not conflict with either the destination addresses
476 	 * or memory the kernel is already using.
477 	 *
478 	 * Control pages are also the only pags we must allocate
479 	 * when loading a crash kernel.  All of the other pages
480 	 * are specified by the segments and we just memcpy
481 	 * into them directly.
482 	 *
483 	 * The only case where we really need more than one of
484 	 * these are for architectures where we cannot disable
485 	 * the MMU and must instead generate an identity mapped
486 	 * page table for all of the memory.
487 	 *
488 	 * Given the low demand this implements a very simple
489 	 * allocator that finds the first hole of the appropriate
490 	 * size in the reserved memory region, and allocates all
491 	 * of the memory up to and including the hole.
492 	 */
493 	unsigned long hole_start, hole_end, size;
494 	struct page *pages;
495 
496 	pages = NULL;
497 	size = (1 << order) << PAGE_SHIFT;
498 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
499 	hole_end   = hole_start + size - 1;
500 	while (hole_end <= crashk_res.end) {
501 		unsigned long i;
502 
503 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
504 			break;
505 		/* See if I overlap any of the segments */
506 		for (i = 0; i < image->nr_segments; i++) {
507 			unsigned long mstart, mend;
508 
509 			mstart = image->segment[i].mem;
510 			mend   = mstart + image->segment[i].memsz - 1;
511 			if ((hole_end >= mstart) && (hole_start <= mend)) {
512 				/* Advance the hole to the end of the segment */
513 				hole_start = (mend + (size - 1)) & ~(size - 1);
514 				hole_end   = hole_start + size - 1;
515 				break;
516 			}
517 		}
518 		/* If I don't overlap any segments I have found my hole! */
519 		if (i == image->nr_segments) {
520 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
521 			break;
522 		}
523 	}
524 	if (pages)
525 		image->control_page = hole_end;
526 
527 	return pages;
528 }
529 
530 
531 struct page *kimage_alloc_control_pages(struct kimage *image,
532 					 unsigned int order)
533 {
534 	struct page *pages = NULL;
535 
536 	switch (image->type) {
537 	case KEXEC_TYPE_DEFAULT:
538 		pages = kimage_alloc_normal_control_pages(image, order);
539 		break;
540 	case KEXEC_TYPE_CRASH:
541 		pages = kimage_alloc_crash_control_pages(image, order);
542 		break;
543 	}
544 
545 	return pages;
546 }
547 
548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
549 {
550 	if (*image->entry != 0)
551 		image->entry++;
552 
553 	if (image->entry == image->last_entry) {
554 		kimage_entry_t *ind_page;
555 		struct page *page;
556 
557 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
558 		if (!page)
559 			return -ENOMEM;
560 
561 		ind_page = page_address(page);
562 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
563 		image->entry = ind_page;
564 		image->last_entry = ind_page +
565 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
566 	}
567 	*image->entry = entry;
568 	image->entry++;
569 	*image->entry = 0;
570 
571 	return 0;
572 }
573 
574 static int kimage_set_destination(struct kimage *image,
575 				   unsigned long destination)
576 {
577 	int result;
578 
579 	destination &= PAGE_MASK;
580 	result = kimage_add_entry(image, destination | IND_DESTINATION);
581 	if (result == 0)
582 		image->destination = destination;
583 
584 	return result;
585 }
586 
587 
588 static int kimage_add_page(struct kimage *image, unsigned long page)
589 {
590 	int result;
591 
592 	page &= PAGE_MASK;
593 	result = kimage_add_entry(image, page | IND_SOURCE);
594 	if (result == 0)
595 		image->destination += PAGE_SIZE;
596 
597 	return result;
598 }
599 
600 
601 static void kimage_free_extra_pages(struct kimage *image)
602 {
603 	/* Walk through and free any extra destination pages I may have */
604 	kimage_free_page_list(&image->dest_pages);
605 
606 	/* Walk through and free any unusable pages I have cached */
607 	kimage_free_page_list(&image->unuseable_pages);
608 
609 }
610 static void kimage_terminate(struct kimage *image)
611 {
612 	if (*image->entry != 0)
613 		image->entry++;
614 
615 	*image->entry = IND_DONE;
616 }
617 
618 #define for_each_kimage_entry(image, ptr, entry) \
619 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
620 		ptr = (entry & IND_INDIRECTION)? \
621 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
622 
623 static void kimage_free_entry(kimage_entry_t entry)
624 {
625 	struct page *page;
626 
627 	page = pfn_to_page(entry >> PAGE_SHIFT);
628 	kimage_free_pages(page);
629 }
630 
631 static void kimage_free(struct kimage *image)
632 {
633 	kimage_entry_t *ptr, entry;
634 	kimage_entry_t ind = 0;
635 
636 	if (!image)
637 		return;
638 
639 	kimage_free_extra_pages(image);
640 	for_each_kimage_entry(image, ptr, entry) {
641 		if (entry & IND_INDIRECTION) {
642 			/* Free the previous indirection page */
643 			if (ind & IND_INDIRECTION)
644 				kimage_free_entry(ind);
645 			/* Save this indirection page until we are
646 			 * done with it.
647 			 */
648 			ind = entry;
649 		}
650 		else if (entry & IND_SOURCE)
651 			kimage_free_entry(entry);
652 	}
653 	/* Free the final indirection page */
654 	if (ind & IND_INDIRECTION)
655 		kimage_free_entry(ind);
656 
657 	/* Handle any machine specific cleanup */
658 	machine_kexec_cleanup(image);
659 
660 	/* Free the kexec control pages... */
661 	kimage_free_page_list(&image->control_pages);
662 	kfree(image);
663 }
664 
665 static kimage_entry_t *kimage_dst_used(struct kimage *image,
666 					unsigned long page)
667 {
668 	kimage_entry_t *ptr, entry;
669 	unsigned long destination = 0;
670 
671 	for_each_kimage_entry(image, ptr, entry) {
672 		if (entry & IND_DESTINATION)
673 			destination = entry & PAGE_MASK;
674 		else if (entry & IND_SOURCE) {
675 			if (page == destination)
676 				return ptr;
677 			destination += PAGE_SIZE;
678 		}
679 	}
680 
681 	return NULL;
682 }
683 
684 static struct page *kimage_alloc_page(struct kimage *image,
685 					gfp_t gfp_mask,
686 					unsigned long destination)
687 {
688 	/*
689 	 * Here we implement safeguards to ensure that a source page
690 	 * is not copied to its destination page before the data on
691 	 * the destination page is no longer useful.
692 	 *
693 	 * To do this we maintain the invariant that a source page is
694 	 * either its own destination page, or it is not a
695 	 * destination page at all.
696 	 *
697 	 * That is slightly stronger than required, but the proof
698 	 * that no problems will not occur is trivial, and the
699 	 * implementation is simply to verify.
700 	 *
701 	 * When allocating all pages normally this algorithm will run
702 	 * in O(N) time, but in the worst case it will run in O(N^2)
703 	 * time.   If the runtime is a problem the data structures can
704 	 * be fixed.
705 	 */
706 	struct page *page;
707 	unsigned long addr;
708 
709 	/*
710 	 * Walk through the list of destination pages, and see if I
711 	 * have a match.
712 	 */
713 	list_for_each_entry(page, &image->dest_pages, lru) {
714 		addr = page_to_pfn(page) << PAGE_SHIFT;
715 		if (addr == destination) {
716 			list_del(&page->lru);
717 			return page;
718 		}
719 	}
720 	page = NULL;
721 	while (1) {
722 		kimage_entry_t *old;
723 
724 		/* Allocate a page, if we run out of memory give up */
725 		page = kimage_alloc_pages(gfp_mask, 0);
726 		if (!page)
727 			return NULL;
728 		/* If the page cannot be used file it away */
729 		if (page_to_pfn(page) >
730 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
731 			list_add(&page->lru, &image->unuseable_pages);
732 			continue;
733 		}
734 		addr = page_to_pfn(page) << PAGE_SHIFT;
735 
736 		/* If it is the destination page we want use it */
737 		if (addr == destination)
738 			break;
739 
740 		/* If the page is not a destination page use it */
741 		if (!kimage_is_destination_range(image, addr,
742 						  addr + PAGE_SIZE))
743 			break;
744 
745 		/*
746 		 * I know that the page is someones destination page.
747 		 * See if there is already a source page for this
748 		 * destination page.  And if so swap the source pages.
749 		 */
750 		old = kimage_dst_used(image, addr);
751 		if (old) {
752 			/* If so move it */
753 			unsigned long old_addr;
754 			struct page *old_page;
755 
756 			old_addr = *old & PAGE_MASK;
757 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
758 			copy_highpage(page, old_page);
759 			*old = addr | (*old & ~PAGE_MASK);
760 
761 			/* The old page I have found cannot be a
762 			 * destination page, so return it if it's
763 			 * gfp_flags honor the ones passed in.
764 			 */
765 			if (!(gfp_mask & __GFP_HIGHMEM) &&
766 			    PageHighMem(old_page)) {
767 				kimage_free_pages(old_page);
768 				continue;
769 			}
770 			addr = old_addr;
771 			page = old_page;
772 			break;
773 		}
774 		else {
775 			/* Place the page on the destination list I
776 			 * will use it later.
777 			 */
778 			list_add(&page->lru, &image->dest_pages);
779 		}
780 	}
781 
782 	return page;
783 }
784 
785 static int kimage_load_normal_segment(struct kimage *image,
786 					 struct kexec_segment *segment)
787 {
788 	unsigned long maddr;
789 	size_t ubytes, mbytes;
790 	int result;
791 	unsigned char __user *buf;
792 
793 	result = 0;
794 	buf = segment->buf;
795 	ubytes = segment->bufsz;
796 	mbytes = segment->memsz;
797 	maddr = segment->mem;
798 
799 	result = kimage_set_destination(image, maddr);
800 	if (result < 0)
801 		goto out;
802 
803 	while (mbytes) {
804 		struct page *page;
805 		char *ptr;
806 		size_t uchunk, mchunk;
807 
808 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
809 		if (!page) {
810 			result  = -ENOMEM;
811 			goto out;
812 		}
813 		result = kimage_add_page(image, page_to_pfn(page)
814 								<< PAGE_SHIFT);
815 		if (result < 0)
816 			goto out;
817 
818 		ptr = kmap(page);
819 		/* Start with a clear page */
820 		clear_page(ptr);
821 		ptr += maddr & ~PAGE_MASK;
822 		mchunk = min_t(size_t, mbytes,
823 				PAGE_SIZE - (maddr & ~PAGE_MASK));
824 		uchunk = min(ubytes, mchunk);
825 
826 		result = copy_from_user(ptr, buf, uchunk);
827 		kunmap(page);
828 		if (result) {
829 			result = -EFAULT;
830 			goto out;
831 		}
832 		ubytes -= uchunk;
833 		maddr  += mchunk;
834 		buf    += mchunk;
835 		mbytes -= mchunk;
836 	}
837 out:
838 	return result;
839 }
840 
841 static int kimage_load_crash_segment(struct kimage *image,
842 					struct kexec_segment *segment)
843 {
844 	/* For crash dumps kernels we simply copy the data from
845 	 * user space to it's destination.
846 	 * We do things a page at a time for the sake of kmap.
847 	 */
848 	unsigned long maddr;
849 	size_t ubytes, mbytes;
850 	int result;
851 	unsigned char __user *buf;
852 
853 	result = 0;
854 	buf = segment->buf;
855 	ubytes = segment->bufsz;
856 	mbytes = segment->memsz;
857 	maddr = segment->mem;
858 	while (mbytes) {
859 		struct page *page;
860 		char *ptr;
861 		size_t uchunk, mchunk;
862 
863 		page = pfn_to_page(maddr >> PAGE_SHIFT);
864 		if (!page) {
865 			result  = -ENOMEM;
866 			goto out;
867 		}
868 		ptr = kmap(page);
869 		ptr += maddr & ~PAGE_MASK;
870 		mchunk = min_t(size_t, mbytes,
871 				PAGE_SIZE - (maddr & ~PAGE_MASK));
872 		uchunk = min(ubytes, mchunk);
873 		if (mchunk > uchunk) {
874 			/* Zero the trailing part of the page */
875 			memset(ptr + uchunk, 0, mchunk - uchunk);
876 		}
877 		result = copy_from_user(ptr, buf, uchunk);
878 		kexec_flush_icache_page(page);
879 		kunmap(page);
880 		if (result) {
881 			result = -EFAULT;
882 			goto out;
883 		}
884 		ubytes -= uchunk;
885 		maddr  += mchunk;
886 		buf    += mchunk;
887 		mbytes -= mchunk;
888 	}
889 out:
890 	return result;
891 }
892 
893 static int kimage_load_segment(struct kimage *image,
894 				struct kexec_segment *segment)
895 {
896 	int result = -ENOMEM;
897 
898 	switch (image->type) {
899 	case KEXEC_TYPE_DEFAULT:
900 		result = kimage_load_normal_segment(image, segment);
901 		break;
902 	case KEXEC_TYPE_CRASH:
903 		result = kimage_load_crash_segment(image, segment);
904 		break;
905 	}
906 
907 	return result;
908 }
909 
910 /*
911  * Exec Kernel system call: for obvious reasons only root may call it.
912  *
913  * This call breaks up into three pieces.
914  * - A generic part which loads the new kernel from the current
915  *   address space, and very carefully places the data in the
916  *   allocated pages.
917  *
918  * - A generic part that interacts with the kernel and tells all of
919  *   the devices to shut down.  Preventing on-going dmas, and placing
920  *   the devices in a consistent state so a later kernel can
921  *   reinitialize them.
922  *
923  * - A machine specific part that includes the syscall number
924  *   and the copies the image to it's final destination.  And
925  *   jumps into the image at entry.
926  *
927  * kexec does not sync, or unmount filesystems so if you need
928  * that to happen you need to do that yourself.
929  */
930 struct kimage *kexec_image;
931 struct kimage *kexec_crash_image;
932 
933 static DEFINE_MUTEX(kexec_mutex);
934 
935 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
936 		struct kexec_segment __user *, segments, unsigned long, flags)
937 {
938 	struct kimage **dest_image, *image;
939 	int result;
940 
941 	/* We only trust the superuser with rebooting the system. */
942 	if (!capable(CAP_SYS_BOOT))
943 		return -EPERM;
944 
945 	/*
946 	 * Verify we have a legal set of flags
947 	 * This leaves us room for future extensions.
948 	 */
949 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
950 		return -EINVAL;
951 
952 	/* Verify we are on the appropriate architecture */
953 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
954 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
955 		return -EINVAL;
956 
957 	/* Put an artificial cap on the number
958 	 * of segments passed to kexec_load.
959 	 */
960 	if (nr_segments > KEXEC_SEGMENT_MAX)
961 		return -EINVAL;
962 
963 	image = NULL;
964 	result = 0;
965 
966 	/* Because we write directly to the reserved memory
967 	 * region when loading crash kernels we need a mutex here to
968 	 * prevent multiple crash  kernels from attempting to load
969 	 * simultaneously, and to prevent a crash kernel from loading
970 	 * over the top of a in use crash kernel.
971 	 *
972 	 * KISS: always take the mutex.
973 	 */
974 	if (!mutex_trylock(&kexec_mutex))
975 		return -EBUSY;
976 
977 	dest_image = &kexec_image;
978 	if (flags & KEXEC_ON_CRASH)
979 		dest_image = &kexec_crash_image;
980 	if (nr_segments > 0) {
981 		unsigned long i;
982 
983 		/* Loading another kernel to reboot into */
984 		if ((flags & KEXEC_ON_CRASH) == 0)
985 			result = kimage_normal_alloc(&image, entry,
986 							nr_segments, segments);
987 		/* Loading another kernel to switch to if this one crashes */
988 		else if (flags & KEXEC_ON_CRASH) {
989 			/* Free any current crash dump kernel before
990 			 * we corrupt it.
991 			 */
992 			kimage_free(xchg(&kexec_crash_image, NULL));
993 			result = kimage_crash_alloc(&image, entry,
994 						     nr_segments, segments);
995 			crash_map_reserved_pages();
996 		}
997 		if (result)
998 			goto out;
999 
1000 		if (flags & KEXEC_PRESERVE_CONTEXT)
1001 			image->preserve_context = 1;
1002 		result = machine_kexec_prepare(image);
1003 		if (result)
1004 			goto out;
1005 
1006 		for (i = 0; i < nr_segments; i++) {
1007 			result = kimage_load_segment(image, &image->segment[i]);
1008 			if (result)
1009 				goto out;
1010 		}
1011 		kimage_terminate(image);
1012 		if (flags & KEXEC_ON_CRASH)
1013 			crash_unmap_reserved_pages();
1014 	}
1015 	/* Install the new kernel, and  Uninstall the old */
1016 	image = xchg(dest_image, image);
1017 
1018 out:
1019 	mutex_unlock(&kexec_mutex);
1020 	kimage_free(image);
1021 
1022 	return result;
1023 }
1024 
1025 /*
1026  * Add and remove page tables for crashkernel memory
1027  *
1028  * Provide an empty default implementation here -- architecture
1029  * code may override this
1030  */
1031 void __weak crash_map_reserved_pages(void)
1032 {}
1033 
1034 void __weak crash_unmap_reserved_pages(void)
1035 {}
1036 
1037 #ifdef CONFIG_COMPAT
1038 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1039 				unsigned long nr_segments,
1040 				struct compat_kexec_segment __user *segments,
1041 				unsigned long flags)
1042 {
1043 	struct compat_kexec_segment in;
1044 	struct kexec_segment out, __user *ksegments;
1045 	unsigned long i, result;
1046 
1047 	/* Don't allow clients that don't understand the native
1048 	 * architecture to do anything.
1049 	 */
1050 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1051 		return -EINVAL;
1052 
1053 	if (nr_segments > KEXEC_SEGMENT_MAX)
1054 		return -EINVAL;
1055 
1056 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1057 	for (i=0; i < nr_segments; i++) {
1058 		result = copy_from_user(&in, &segments[i], sizeof(in));
1059 		if (result)
1060 			return -EFAULT;
1061 
1062 		out.buf   = compat_ptr(in.buf);
1063 		out.bufsz = in.bufsz;
1064 		out.mem   = in.mem;
1065 		out.memsz = in.memsz;
1066 
1067 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1068 		if (result)
1069 			return -EFAULT;
1070 	}
1071 
1072 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1073 }
1074 #endif
1075 
1076 void crash_kexec(struct pt_regs *regs)
1077 {
1078 	/* Take the kexec_mutex here to prevent sys_kexec_load
1079 	 * running on one cpu from replacing the crash kernel
1080 	 * we are using after a panic on a different cpu.
1081 	 *
1082 	 * If the crash kernel was not located in a fixed area
1083 	 * of memory the xchg(&kexec_crash_image) would be
1084 	 * sufficient.  But since I reuse the memory...
1085 	 */
1086 	if (mutex_trylock(&kexec_mutex)) {
1087 		if (kexec_crash_image) {
1088 			struct pt_regs fixed_regs;
1089 
1090 			crash_setup_regs(&fixed_regs, regs);
1091 			crash_save_vmcoreinfo();
1092 			machine_crash_shutdown(&fixed_regs);
1093 			machine_kexec(kexec_crash_image);
1094 		}
1095 		mutex_unlock(&kexec_mutex);
1096 	}
1097 }
1098 
1099 size_t crash_get_memory_size(void)
1100 {
1101 	size_t size = 0;
1102 	mutex_lock(&kexec_mutex);
1103 	if (crashk_res.end != crashk_res.start)
1104 		size = resource_size(&crashk_res);
1105 	mutex_unlock(&kexec_mutex);
1106 	return size;
1107 }
1108 
1109 void __weak crash_free_reserved_phys_range(unsigned long begin,
1110 					   unsigned long end)
1111 {
1112 	unsigned long addr;
1113 
1114 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1115 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1116 }
1117 
1118 int crash_shrink_memory(unsigned long new_size)
1119 {
1120 	int ret = 0;
1121 	unsigned long start, end;
1122 	unsigned long old_size;
1123 	struct resource *ram_res;
1124 
1125 	mutex_lock(&kexec_mutex);
1126 
1127 	if (kexec_crash_image) {
1128 		ret = -ENOENT;
1129 		goto unlock;
1130 	}
1131 	start = crashk_res.start;
1132 	end = crashk_res.end;
1133 	old_size = (end == 0) ? 0 : end - start + 1;
1134 	if (new_size >= old_size) {
1135 		ret = (new_size == old_size) ? 0 : -EINVAL;
1136 		goto unlock;
1137 	}
1138 
1139 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1140 	if (!ram_res) {
1141 		ret = -ENOMEM;
1142 		goto unlock;
1143 	}
1144 
1145 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1146 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1147 
1148 	crash_map_reserved_pages();
1149 	crash_free_reserved_phys_range(end, crashk_res.end);
1150 
1151 	if ((start == end) && (crashk_res.parent != NULL))
1152 		release_resource(&crashk_res);
1153 
1154 	ram_res->start = end;
1155 	ram_res->end = crashk_res.end;
1156 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1157 	ram_res->name = "System RAM";
1158 
1159 	crashk_res.end = end - 1;
1160 
1161 	insert_resource(&iomem_resource, ram_res);
1162 	crash_unmap_reserved_pages();
1163 
1164 unlock:
1165 	mutex_unlock(&kexec_mutex);
1166 	return ret;
1167 }
1168 
1169 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1170 			    size_t data_len)
1171 {
1172 	struct elf_note note;
1173 
1174 	note.n_namesz = strlen(name) + 1;
1175 	note.n_descsz = data_len;
1176 	note.n_type   = type;
1177 	memcpy(buf, &note, sizeof(note));
1178 	buf += (sizeof(note) + 3)/4;
1179 	memcpy(buf, name, note.n_namesz);
1180 	buf += (note.n_namesz + 3)/4;
1181 	memcpy(buf, data, note.n_descsz);
1182 	buf += (note.n_descsz + 3)/4;
1183 
1184 	return buf;
1185 }
1186 
1187 static void final_note(u32 *buf)
1188 {
1189 	struct elf_note note;
1190 
1191 	note.n_namesz = 0;
1192 	note.n_descsz = 0;
1193 	note.n_type   = 0;
1194 	memcpy(buf, &note, sizeof(note));
1195 }
1196 
1197 void crash_save_cpu(struct pt_regs *regs, int cpu)
1198 {
1199 	struct elf_prstatus prstatus;
1200 	u32 *buf;
1201 
1202 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1203 		return;
1204 
1205 	/* Using ELF notes here is opportunistic.
1206 	 * I need a well defined structure format
1207 	 * for the data I pass, and I need tags
1208 	 * on the data to indicate what information I have
1209 	 * squirrelled away.  ELF notes happen to provide
1210 	 * all of that, so there is no need to invent something new.
1211 	 */
1212 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1213 	if (!buf)
1214 		return;
1215 	memset(&prstatus, 0, sizeof(prstatus));
1216 	prstatus.pr_pid = current->pid;
1217 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1218 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1219 		      	      &prstatus, sizeof(prstatus));
1220 	final_note(buf);
1221 }
1222 
1223 static int __init crash_notes_memory_init(void)
1224 {
1225 	/* Allocate memory for saving cpu registers. */
1226 	crash_notes = alloc_percpu(note_buf_t);
1227 	if (!crash_notes) {
1228 		printk("Kexec: Memory allocation for saving cpu register"
1229 		" states failed\n");
1230 		return -ENOMEM;
1231 	}
1232 	return 0;
1233 }
1234 module_init(crash_notes_memory_init)
1235 
1236 
1237 /*
1238  * parsing the "crashkernel" commandline
1239  *
1240  * this code is intended to be called from architecture specific code
1241  */
1242 
1243 
1244 /*
1245  * This function parses command lines in the format
1246  *
1247  *   crashkernel=ramsize-range:size[,...][@offset]
1248  *
1249  * The function returns 0 on success and -EINVAL on failure.
1250  */
1251 static int __init parse_crashkernel_mem(char 			*cmdline,
1252 					unsigned long long	system_ram,
1253 					unsigned long long	*crash_size,
1254 					unsigned long long	*crash_base)
1255 {
1256 	char *cur = cmdline, *tmp;
1257 
1258 	/* for each entry of the comma-separated list */
1259 	do {
1260 		unsigned long long start, end = ULLONG_MAX, size;
1261 
1262 		/* get the start of the range */
1263 		start = memparse(cur, &tmp);
1264 		if (cur == tmp) {
1265 			pr_warning("crashkernel: Memory value expected\n");
1266 			return -EINVAL;
1267 		}
1268 		cur = tmp;
1269 		if (*cur != '-') {
1270 			pr_warning("crashkernel: '-' expected\n");
1271 			return -EINVAL;
1272 		}
1273 		cur++;
1274 
1275 		/* if no ':' is here, than we read the end */
1276 		if (*cur != ':') {
1277 			end = memparse(cur, &tmp);
1278 			if (cur == tmp) {
1279 				pr_warning("crashkernel: Memory "
1280 						"value expected\n");
1281 				return -EINVAL;
1282 			}
1283 			cur = tmp;
1284 			if (end <= start) {
1285 				pr_warning("crashkernel: end <= start\n");
1286 				return -EINVAL;
1287 			}
1288 		}
1289 
1290 		if (*cur != ':') {
1291 			pr_warning("crashkernel: ':' expected\n");
1292 			return -EINVAL;
1293 		}
1294 		cur++;
1295 
1296 		size = memparse(cur, &tmp);
1297 		if (cur == tmp) {
1298 			pr_warning("Memory value expected\n");
1299 			return -EINVAL;
1300 		}
1301 		cur = tmp;
1302 		if (size >= system_ram) {
1303 			pr_warning("crashkernel: invalid size\n");
1304 			return -EINVAL;
1305 		}
1306 
1307 		/* match ? */
1308 		if (system_ram >= start && system_ram < end) {
1309 			*crash_size = size;
1310 			break;
1311 		}
1312 	} while (*cur++ == ',');
1313 
1314 	if (*crash_size > 0) {
1315 		while (*cur && *cur != ' ' && *cur != '@')
1316 			cur++;
1317 		if (*cur == '@') {
1318 			cur++;
1319 			*crash_base = memparse(cur, &tmp);
1320 			if (cur == tmp) {
1321 				pr_warning("Memory value expected "
1322 						"after '@'\n");
1323 				return -EINVAL;
1324 			}
1325 		}
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * That function parses "simple" (old) crashkernel command lines like
1333  *
1334  * 	crashkernel=size[@offset]
1335  *
1336  * It returns 0 on success and -EINVAL on failure.
1337  */
1338 static int __init parse_crashkernel_simple(char 		*cmdline,
1339 					   unsigned long long 	*crash_size,
1340 					   unsigned long long 	*crash_base)
1341 {
1342 	char *cur = cmdline;
1343 
1344 	*crash_size = memparse(cmdline, &cur);
1345 	if (cmdline == cur) {
1346 		pr_warning("crashkernel: memory value expected\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	if (*cur == '@')
1351 		*crash_base = memparse(cur+1, &cur);
1352 	else if (*cur != ' ' && *cur != '\0') {
1353 		pr_warning("crashkernel: unrecognized char\n");
1354 		return -EINVAL;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 #define SUFFIX_HIGH 0
1361 #define SUFFIX_LOW  1
1362 #define SUFFIX_NULL 2
1363 static __initdata char *suffix_tbl[] = {
1364 	[SUFFIX_HIGH] = ",high",
1365 	[SUFFIX_LOW]  = ",low",
1366 	[SUFFIX_NULL] = NULL,
1367 };
1368 
1369 /*
1370  * That function parses "suffix"  crashkernel command lines like
1371  *
1372  *	crashkernel=size,[high|low]
1373  *
1374  * It returns 0 on success and -EINVAL on failure.
1375  */
1376 static int __init parse_crashkernel_suffix(char *cmdline,
1377 					   unsigned long long	*crash_size,
1378 					   unsigned long long	*crash_base,
1379 					   const char *suffix)
1380 {
1381 	char *cur = cmdline;
1382 
1383 	*crash_size = memparse(cmdline, &cur);
1384 	if (cmdline == cur) {
1385 		pr_warn("crashkernel: memory value expected\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	/* check with suffix */
1390 	if (strncmp(cur, suffix, strlen(suffix))) {
1391 		pr_warn("crashkernel: unrecognized char\n");
1392 		return -EINVAL;
1393 	}
1394 	cur += strlen(suffix);
1395 	if (*cur != ' ' && *cur != '\0') {
1396 		pr_warn("crashkernel: unrecognized char\n");
1397 		return -EINVAL;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static __init char *get_last_crashkernel(char *cmdline,
1404 			     const char *name,
1405 			     const char *suffix)
1406 {
1407 	char *p = cmdline, *ck_cmdline = NULL;
1408 
1409 	/* find crashkernel and use the last one if there are more */
1410 	p = strstr(p, name);
1411 	while (p) {
1412 		char *end_p = strchr(p, ' ');
1413 		char *q;
1414 
1415 		if (!end_p)
1416 			end_p = p + strlen(p);
1417 
1418 		if (!suffix) {
1419 			int i;
1420 
1421 			/* skip the one with any known suffix */
1422 			for (i = 0; suffix_tbl[i]; i++) {
1423 				q = end_p - strlen(suffix_tbl[i]);
1424 				if (!strncmp(q, suffix_tbl[i],
1425 					     strlen(suffix_tbl[i])))
1426 					goto next;
1427 			}
1428 			ck_cmdline = p;
1429 		} else {
1430 			q = end_p - strlen(suffix);
1431 			if (!strncmp(q, suffix, strlen(suffix)))
1432 				ck_cmdline = p;
1433 		}
1434 next:
1435 		p = strstr(p+1, name);
1436 	}
1437 
1438 	if (!ck_cmdline)
1439 		return NULL;
1440 
1441 	return ck_cmdline;
1442 }
1443 
1444 static int __init __parse_crashkernel(char *cmdline,
1445 			     unsigned long long system_ram,
1446 			     unsigned long long *crash_size,
1447 			     unsigned long long *crash_base,
1448 			     const char *name,
1449 			     const char *suffix)
1450 {
1451 	char	*first_colon, *first_space;
1452 	char	*ck_cmdline;
1453 
1454 	BUG_ON(!crash_size || !crash_base);
1455 	*crash_size = 0;
1456 	*crash_base = 0;
1457 
1458 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1459 
1460 	if (!ck_cmdline)
1461 		return -EINVAL;
1462 
1463 	ck_cmdline += strlen(name);
1464 
1465 	if (suffix)
1466 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1467 				crash_base, suffix);
1468 	/*
1469 	 * if the commandline contains a ':', then that's the extended
1470 	 * syntax -- if not, it must be the classic syntax
1471 	 */
1472 	first_colon = strchr(ck_cmdline, ':');
1473 	first_space = strchr(ck_cmdline, ' ');
1474 	if (first_colon && (!first_space || first_colon < first_space))
1475 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1476 				crash_size, crash_base);
1477 
1478 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1479 }
1480 
1481 /*
1482  * That function is the entry point for command line parsing and should be
1483  * called from the arch-specific code.
1484  */
1485 int __init parse_crashkernel(char *cmdline,
1486 			     unsigned long long system_ram,
1487 			     unsigned long long *crash_size,
1488 			     unsigned long long *crash_base)
1489 {
1490 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1491 					"crashkernel=", NULL);
1492 }
1493 
1494 int __init parse_crashkernel_high(char *cmdline,
1495 			     unsigned long long system_ram,
1496 			     unsigned long long *crash_size,
1497 			     unsigned long long *crash_base)
1498 {
1499 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1500 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1501 }
1502 
1503 int __init parse_crashkernel_low(char *cmdline,
1504 			     unsigned long long system_ram,
1505 			     unsigned long long *crash_size,
1506 			     unsigned long long *crash_base)
1507 {
1508 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1509 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1510 }
1511 
1512 static void update_vmcoreinfo_note(void)
1513 {
1514 	u32 *buf = vmcoreinfo_note;
1515 
1516 	if (!vmcoreinfo_size)
1517 		return;
1518 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1519 			      vmcoreinfo_size);
1520 	final_note(buf);
1521 }
1522 
1523 void crash_save_vmcoreinfo(void)
1524 {
1525 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1526 	update_vmcoreinfo_note();
1527 }
1528 
1529 void vmcoreinfo_append_str(const char *fmt, ...)
1530 {
1531 	va_list args;
1532 	char buf[0x50];
1533 	size_t r;
1534 
1535 	va_start(args, fmt);
1536 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1537 	va_end(args);
1538 
1539 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1540 
1541 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1542 
1543 	vmcoreinfo_size += r;
1544 }
1545 
1546 /*
1547  * provide an empty default implementation here -- architecture
1548  * code may override this
1549  */
1550 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1551 {}
1552 
1553 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1554 {
1555 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1556 }
1557 
1558 static int __init crash_save_vmcoreinfo_init(void)
1559 {
1560 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1561 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1562 
1563 	VMCOREINFO_SYMBOL(init_uts_ns);
1564 	VMCOREINFO_SYMBOL(node_online_map);
1565 #ifdef CONFIG_MMU
1566 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1567 #endif
1568 	VMCOREINFO_SYMBOL(_stext);
1569 	VMCOREINFO_SYMBOL(vmap_area_list);
1570 
1571 #ifndef CONFIG_NEED_MULTIPLE_NODES
1572 	VMCOREINFO_SYMBOL(mem_map);
1573 	VMCOREINFO_SYMBOL(contig_page_data);
1574 #endif
1575 #ifdef CONFIG_SPARSEMEM
1576 	VMCOREINFO_SYMBOL(mem_section);
1577 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1578 	VMCOREINFO_STRUCT_SIZE(mem_section);
1579 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1580 #endif
1581 	VMCOREINFO_STRUCT_SIZE(page);
1582 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1583 	VMCOREINFO_STRUCT_SIZE(zone);
1584 	VMCOREINFO_STRUCT_SIZE(free_area);
1585 	VMCOREINFO_STRUCT_SIZE(list_head);
1586 	VMCOREINFO_SIZE(nodemask_t);
1587 	VMCOREINFO_OFFSET(page, flags);
1588 	VMCOREINFO_OFFSET(page, _count);
1589 	VMCOREINFO_OFFSET(page, mapping);
1590 	VMCOREINFO_OFFSET(page, lru);
1591 	VMCOREINFO_OFFSET(page, _mapcount);
1592 	VMCOREINFO_OFFSET(page, private);
1593 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1594 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1595 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1596 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1597 #endif
1598 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1599 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1600 	VMCOREINFO_OFFSET(pglist_data, node_id);
1601 	VMCOREINFO_OFFSET(zone, free_area);
1602 	VMCOREINFO_OFFSET(zone, vm_stat);
1603 	VMCOREINFO_OFFSET(zone, spanned_pages);
1604 	VMCOREINFO_OFFSET(free_area, free_list);
1605 	VMCOREINFO_OFFSET(list_head, next);
1606 	VMCOREINFO_OFFSET(list_head, prev);
1607 	VMCOREINFO_OFFSET(vmap_area, va_start);
1608 	VMCOREINFO_OFFSET(vmap_area, list);
1609 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1610 	log_buf_kexec_setup();
1611 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1612 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1613 	VMCOREINFO_NUMBER(PG_lru);
1614 	VMCOREINFO_NUMBER(PG_private);
1615 	VMCOREINFO_NUMBER(PG_swapcache);
1616 	VMCOREINFO_NUMBER(PG_slab);
1617 #ifdef CONFIG_MEMORY_FAILURE
1618 	VMCOREINFO_NUMBER(PG_hwpoison);
1619 #endif
1620 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1621 
1622 	arch_crash_save_vmcoreinfo();
1623 	update_vmcoreinfo_note();
1624 
1625 	return 0;
1626 }
1627 
1628 module_init(crash_save_vmcoreinfo_init)
1629 
1630 /*
1631  * Move into place and start executing a preloaded standalone
1632  * executable.  If nothing was preloaded return an error.
1633  */
1634 int kernel_kexec(void)
1635 {
1636 	int error = 0;
1637 
1638 	if (!mutex_trylock(&kexec_mutex))
1639 		return -EBUSY;
1640 	if (!kexec_image) {
1641 		error = -EINVAL;
1642 		goto Unlock;
1643 	}
1644 
1645 #ifdef CONFIG_KEXEC_JUMP
1646 	if (kexec_image->preserve_context) {
1647 		lock_system_sleep();
1648 		pm_prepare_console();
1649 		error = freeze_processes();
1650 		if (error) {
1651 			error = -EBUSY;
1652 			goto Restore_console;
1653 		}
1654 		suspend_console();
1655 		error = dpm_suspend_start(PMSG_FREEZE);
1656 		if (error)
1657 			goto Resume_console;
1658 		/* At this point, dpm_suspend_start() has been called,
1659 		 * but *not* dpm_suspend_end(). We *must* call
1660 		 * dpm_suspend_end() now.  Otherwise, drivers for
1661 		 * some devices (e.g. interrupt controllers) become
1662 		 * desynchronized with the actual state of the
1663 		 * hardware at resume time, and evil weirdness ensues.
1664 		 */
1665 		error = dpm_suspend_end(PMSG_FREEZE);
1666 		if (error)
1667 			goto Resume_devices;
1668 		error = disable_nonboot_cpus();
1669 		if (error)
1670 			goto Enable_cpus;
1671 		local_irq_disable();
1672 		error = syscore_suspend();
1673 		if (error)
1674 			goto Enable_irqs;
1675 	} else
1676 #endif
1677 	{
1678 		kernel_restart_prepare(NULL);
1679 		printk(KERN_EMERG "Starting new kernel\n");
1680 		machine_shutdown();
1681 	}
1682 
1683 	machine_kexec(kexec_image);
1684 
1685 #ifdef CONFIG_KEXEC_JUMP
1686 	if (kexec_image->preserve_context) {
1687 		syscore_resume();
1688  Enable_irqs:
1689 		local_irq_enable();
1690  Enable_cpus:
1691 		enable_nonboot_cpus();
1692 		dpm_resume_start(PMSG_RESTORE);
1693  Resume_devices:
1694 		dpm_resume_end(PMSG_RESTORE);
1695  Resume_console:
1696 		resume_console();
1697 		thaw_processes();
1698  Restore_console:
1699 		pm_restore_console();
1700 		unlock_system_sleep();
1701 	}
1702 #endif
1703 
1704  Unlock:
1705 	mutex_unlock(&kexec_mutex);
1706 	return error;
1707 }
1708