1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <generated/utsrelease.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/pm.h> 31 #include <linux/cpu.h> 32 #include <linux/console.h> 33 #include <linux/vmalloc.h> 34 #include <linux/swap.h> 35 #include <linux/kmsg_dump.h> 36 37 #include <asm/page.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/system.h> 41 #include <asm/sections.h> 42 43 /* Per cpu memory for storing cpu states in case of system crash. */ 44 note_buf_t __percpu *crash_notes; 45 46 /* vmcoreinfo stuff */ 47 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 48 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 49 size_t vmcoreinfo_size; 50 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 51 52 /* Location of the reserved area for the crash kernel */ 53 struct resource crashk_res = { 54 .name = "Crash kernel", 55 .start = 0, 56 .end = 0, 57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 58 }; 59 60 int kexec_should_crash(struct task_struct *p) 61 { 62 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 63 return 1; 64 return 0; 65 } 66 67 /* 68 * When kexec transitions to the new kernel there is a one-to-one 69 * mapping between physical and virtual addresses. On processors 70 * where you can disable the MMU this is trivial, and easy. For 71 * others it is still a simple predictable page table to setup. 72 * 73 * In that environment kexec copies the new kernel to its final 74 * resting place. This means I can only support memory whose 75 * physical address can fit in an unsigned long. In particular 76 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 77 * If the assembly stub has more restrictive requirements 78 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 79 * defined more restrictively in <asm/kexec.h>. 80 * 81 * The code for the transition from the current kernel to the 82 * the new kernel is placed in the control_code_buffer, whose size 83 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 84 * page of memory is necessary, but some architectures require more. 85 * Because this memory must be identity mapped in the transition from 86 * virtual to physical addresses it must live in the range 87 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 88 * modifiable. 89 * 90 * The assembly stub in the control code buffer is passed a linked list 91 * of descriptor pages detailing the source pages of the new kernel, 92 * and the destination addresses of those source pages. As this data 93 * structure is not used in the context of the current OS, it must 94 * be self-contained. 95 * 96 * The code has been made to work with highmem pages and will use a 97 * destination page in its final resting place (if it happens 98 * to allocate it). The end product of this is that most of the 99 * physical address space, and most of RAM can be used. 100 * 101 * Future directions include: 102 * - allocating a page table with the control code buffer identity 103 * mapped, to simplify machine_kexec and make kexec_on_panic more 104 * reliable. 105 */ 106 107 /* 108 * KIMAGE_NO_DEST is an impossible destination address..., for 109 * allocating pages whose destination address we do not care about. 110 */ 111 #define KIMAGE_NO_DEST (-1UL) 112 113 static int kimage_is_destination_range(struct kimage *image, 114 unsigned long start, unsigned long end); 115 static struct page *kimage_alloc_page(struct kimage *image, 116 gfp_t gfp_mask, 117 unsigned long dest); 118 119 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 120 unsigned long nr_segments, 121 struct kexec_segment __user *segments) 122 { 123 size_t segment_bytes; 124 struct kimage *image; 125 unsigned long i; 126 int result; 127 128 /* Allocate a controlling structure */ 129 result = -ENOMEM; 130 image = kzalloc(sizeof(*image), GFP_KERNEL); 131 if (!image) 132 goto out; 133 134 image->head = 0; 135 image->entry = &image->head; 136 image->last_entry = &image->head; 137 image->control_page = ~0; /* By default this does not apply */ 138 image->start = entry; 139 image->type = KEXEC_TYPE_DEFAULT; 140 141 /* Initialize the list of control pages */ 142 INIT_LIST_HEAD(&image->control_pages); 143 144 /* Initialize the list of destination pages */ 145 INIT_LIST_HEAD(&image->dest_pages); 146 147 /* Initialize the list of unuseable pages */ 148 INIT_LIST_HEAD(&image->unuseable_pages); 149 150 /* Read in the segments */ 151 image->nr_segments = nr_segments; 152 segment_bytes = nr_segments * sizeof(*segments); 153 result = copy_from_user(image->segment, segments, segment_bytes); 154 if (result) { 155 result = -EFAULT; 156 goto out; 157 } 158 159 /* 160 * Verify we have good destination addresses. The caller is 161 * responsible for making certain we don't attempt to load 162 * the new image into invalid or reserved areas of RAM. This 163 * just verifies it is an address we can use. 164 * 165 * Since the kernel does everything in page size chunks ensure 166 * the destination addresses are page aligned. Too many 167 * special cases crop of when we don't do this. The most 168 * insidious is getting overlapping destination addresses 169 * simply because addresses are changed to page size 170 * granularity. 171 */ 172 result = -EADDRNOTAVAIL; 173 for (i = 0; i < nr_segments; i++) { 174 unsigned long mstart, mend; 175 176 mstart = image->segment[i].mem; 177 mend = mstart + image->segment[i].memsz; 178 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 179 goto out; 180 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 181 goto out; 182 } 183 184 /* Verify our destination addresses do not overlap. 185 * If we alloed overlapping destination addresses 186 * through very weird things can happen with no 187 * easy explanation as one segment stops on another. 188 */ 189 result = -EINVAL; 190 for (i = 0; i < nr_segments; i++) { 191 unsigned long mstart, mend; 192 unsigned long j; 193 194 mstart = image->segment[i].mem; 195 mend = mstart + image->segment[i].memsz; 196 for (j = 0; j < i; j++) { 197 unsigned long pstart, pend; 198 pstart = image->segment[j].mem; 199 pend = pstart + image->segment[j].memsz; 200 /* Do the segments overlap ? */ 201 if ((mend > pstart) && (mstart < pend)) 202 goto out; 203 } 204 } 205 206 /* Ensure our buffer sizes are strictly less than 207 * our memory sizes. This should always be the case, 208 * and it is easier to check up front than to be surprised 209 * later on. 210 */ 211 result = -EINVAL; 212 for (i = 0; i < nr_segments; i++) { 213 if (image->segment[i].bufsz > image->segment[i].memsz) 214 goto out; 215 } 216 217 result = 0; 218 out: 219 if (result == 0) 220 *rimage = image; 221 else 222 kfree(image); 223 224 return result; 225 226 } 227 228 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 229 unsigned long nr_segments, 230 struct kexec_segment __user *segments) 231 { 232 int result; 233 struct kimage *image; 234 235 /* Allocate and initialize a controlling structure */ 236 image = NULL; 237 result = do_kimage_alloc(&image, entry, nr_segments, segments); 238 if (result) 239 goto out; 240 241 *rimage = image; 242 243 /* 244 * Find a location for the control code buffer, and add it 245 * the vector of segments so that it's pages will also be 246 * counted as destination pages. 247 */ 248 result = -ENOMEM; 249 image->control_code_page = kimage_alloc_control_pages(image, 250 get_order(KEXEC_CONTROL_PAGE_SIZE)); 251 if (!image->control_code_page) { 252 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 253 goto out; 254 } 255 256 image->swap_page = kimage_alloc_control_pages(image, 0); 257 if (!image->swap_page) { 258 printk(KERN_ERR "Could not allocate swap buffer\n"); 259 goto out; 260 } 261 262 result = 0; 263 out: 264 if (result == 0) 265 *rimage = image; 266 else 267 kfree(image); 268 269 return result; 270 } 271 272 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 273 unsigned long nr_segments, 274 struct kexec_segment __user *segments) 275 { 276 int result; 277 struct kimage *image; 278 unsigned long i; 279 280 image = NULL; 281 /* Verify we have a valid entry point */ 282 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 283 result = -EADDRNOTAVAIL; 284 goto out; 285 } 286 287 /* Allocate and initialize a controlling structure */ 288 result = do_kimage_alloc(&image, entry, nr_segments, segments); 289 if (result) 290 goto out; 291 292 /* Enable the special crash kernel control page 293 * allocation policy. 294 */ 295 image->control_page = crashk_res.start; 296 image->type = KEXEC_TYPE_CRASH; 297 298 /* 299 * Verify we have good destination addresses. Normally 300 * the caller is responsible for making certain we don't 301 * attempt to load the new image into invalid or reserved 302 * areas of RAM. But crash kernels are preloaded into a 303 * reserved area of ram. We must ensure the addresses 304 * are in the reserved area otherwise preloading the 305 * kernel could corrupt things. 306 */ 307 result = -EADDRNOTAVAIL; 308 for (i = 0; i < nr_segments; i++) { 309 unsigned long mstart, mend; 310 311 mstart = image->segment[i].mem; 312 mend = mstart + image->segment[i].memsz - 1; 313 /* Ensure we are within the crash kernel limits */ 314 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 315 goto out; 316 } 317 318 /* 319 * Find a location for the control code buffer, and add 320 * the vector of segments so that it's pages will also be 321 * counted as destination pages. 322 */ 323 result = -ENOMEM; 324 image->control_code_page = kimage_alloc_control_pages(image, 325 get_order(KEXEC_CONTROL_PAGE_SIZE)); 326 if (!image->control_code_page) { 327 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 328 goto out; 329 } 330 331 result = 0; 332 out: 333 if (result == 0) 334 *rimage = image; 335 else 336 kfree(image); 337 338 return result; 339 } 340 341 static int kimage_is_destination_range(struct kimage *image, 342 unsigned long start, 343 unsigned long end) 344 { 345 unsigned long i; 346 347 for (i = 0; i < image->nr_segments; i++) { 348 unsigned long mstart, mend; 349 350 mstart = image->segment[i].mem; 351 mend = mstart + image->segment[i].memsz; 352 if ((end > mstart) && (start < mend)) 353 return 1; 354 } 355 356 return 0; 357 } 358 359 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 360 { 361 struct page *pages; 362 363 pages = alloc_pages(gfp_mask, order); 364 if (pages) { 365 unsigned int count, i; 366 pages->mapping = NULL; 367 set_page_private(pages, order); 368 count = 1 << order; 369 for (i = 0; i < count; i++) 370 SetPageReserved(pages + i); 371 } 372 373 return pages; 374 } 375 376 static void kimage_free_pages(struct page *page) 377 { 378 unsigned int order, count, i; 379 380 order = page_private(page); 381 count = 1 << order; 382 for (i = 0; i < count; i++) 383 ClearPageReserved(page + i); 384 __free_pages(page, order); 385 } 386 387 static void kimage_free_page_list(struct list_head *list) 388 { 389 struct list_head *pos, *next; 390 391 list_for_each_safe(pos, next, list) { 392 struct page *page; 393 394 page = list_entry(pos, struct page, lru); 395 list_del(&page->lru); 396 kimage_free_pages(page); 397 } 398 } 399 400 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 401 unsigned int order) 402 { 403 /* Control pages are special, they are the intermediaries 404 * that are needed while we copy the rest of the pages 405 * to their final resting place. As such they must 406 * not conflict with either the destination addresses 407 * or memory the kernel is already using. 408 * 409 * The only case where we really need more than one of 410 * these are for architectures where we cannot disable 411 * the MMU and must instead generate an identity mapped 412 * page table for all of the memory. 413 * 414 * At worst this runs in O(N) of the image size. 415 */ 416 struct list_head extra_pages; 417 struct page *pages; 418 unsigned int count; 419 420 count = 1 << order; 421 INIT_LIST_HEAD(&extra_pages); 422 423 /* Loop while I can allocate a page and the page allocated 424 * is a destination page. 425 */ 426 do { 427 unsigned long pfn, epfn, addr, eaddr; 428 429 pages = kimage_alloc_pages(GFP_KERNEL, order); 430 if (!pages) 431 break; 432 pfn = page_to_pfn(pages); 433 epfn = pfn + count; 434 addr = pfn << PAGE_SHIFT; 435 eaddr = epfn << PAGE_SHIFT; 436 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 437 kimage_is_destination_range(image, addr, eaddr)) { 438 list_add(&pages->lru, &extra_pages); 439 pages = NULL; 440 } 441 } while (!pages); 442 443 if (pages) { 444 /* Remember the allocated page... */ 445 list_add(&pages->lru, &image->control_pages); 446 447 /* Because the page is already in it's destination 448 * location we will never allocate another page at 449 * that address. Therefore kimage_alloc_pages 450 * will not return it (again) and we don't need 451 * to give it an entry in image->segment[]. 452 */ 453 } 454 /* Deal with the destination pages I have inadvertently allocated. 455 * 456 * Ideally I would convert multi-page allocations into single 457 * page allocations, and add everyting to image->dest_pages. 458 * 459 * For now it is simpler to just free the pages. 460 */ 461 kimage_free_page_list(&extra_pages); 462 463 return pages; 464 } 465 466 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 467 unsigned int order) 468 { 469 /* Control pages are special, they are the intermediaries 470 * that are needed while we copy the rest of the pages 471 * to their final resting place. As such they must 472 * not conflict with either the destination addresses 473 * or memory the kernel is already using. 474 * 475 * Control pages are also the only pags we must allocate 476 * when loading a crash kernel. All of the other pages 477 * are specified by the segments and we just memcpy 478 * into them directly. 479 * 480 * The only case where we really need more than one of 481 * these are for architectures where we cannot disable 482 * the MMU and must instead generate an identity mapped 483 * page table for all of the memory. 484 * 485 * Given the low demand this implements a very simple 486 * allocator that finds the first hole of the appropriate 487 * size in the reserved memory region, and allocates all 488 * of the memory up to and including the hole. 489 */ 490 unsigned long hole_start, hole_end, size; 491 struct page *pages; 492 493 pages = NULL; 494 size = (1 << order) << PAGE_SHIFT; 495 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 496 hole_end = hole_start + size - 1; 497 while (hole_end <= crashk_res.end) { 498 unsigned long i; 499 500 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) 501 break; 502 if (hole_end > crashk_res.end) 503 break; 504 /* See if I overlap any of the segments */ 505 for (i = 0; i < image->nr_segments; i++) { 506 unsigned long mstart, mend; 507 508 mstart = image->segment[i].mem; 509 mend = mstart + image->segment[i].memsz - 1; 510 if ((hole_end >= mstart) && (hole_start <= mend)) { 511 /* Advance the hole to the end of the segment */ 512 hole_start = (mend + (size - 1)) & ~(size - 1); 513 hole_end = hole_start + size - 1; 514 break; 515 } 516 } 517 /* If I don't overlap any segments I have found my hole! */ 518 if (i == image->nr_segments) { 519 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 520 break; 521 } 522 } 523 if (pages) 524 image->control_page = hole_end; 525 526 return pages; 527 } 528 529 530 struct page *kimage_alloc_control_pages(struct kimage *image, 531 unsigned int order) 532 { 533 struct page *pages = NULL; 534 535 switch (image->type) { 536 case KEXEC_TYPE_DEFAULT: 537 pages = kimage_alloc_normal_control_pages(image, order); 538 break; 539 case KEXEC_TYPE_CRASH: 540 pages = kimage_alloc_crash_control_pages(image, order); 541 break; 542 } 543 544 return pages; 545 } 546 547 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 548 { 549 if (*image->entry != 0) 550 image->entry++; 551 552 if (image->entry == image->last_entry) { 553 kimage_entry_t *ind_page; 554 struct page *page; 555 556 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 557 if (!page) 558 return -ENOMEM; 559 560 ind_page = page_address(page); 561 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 562 image->entry = ind_page; 563 image->last_entry = ind_page + 564 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 565 } 566 *image->entry = entry; 567 image->entry++; 568 *image->entry = 0; 569 570 return 0; 571 } 572 573 static int kimage_set_destination(struct kimage *image, 574 unsigned long destination) 575 { 576 int result; 577 578 destination &= PAGE_MASK; 579 result = kimage_add_entry(image, destination | IND_DESTINATION); 580 if (result == 0) 581 image->destination = destination; 582 583 return result; 584 } 585 586 587 static int kimage_add_page(struct kimage *image, unsigned long page) 588 { 589 int result; 590 591 page &= PAGE_MASK; 592 result = kimage_add_entry(image, page | IND_SOURCE); 593 if (result == 0) 594 image->destination += PAGE_SIZE; 595 596 return result; 597 } 598 599 600 static void kimage_free_extra_pages(struct kimage *image) 601 { 602 /* Walk through and free any extra destination pages I may have */ 603 kimage_free_page_list(&image->dest_pages); 604 605 /* Walk through and free any unuseable pages I have cached */ 606 kimage_free_page_list(&image->unuseable_pages); 607 608 } 609 static void kimage_terminate(struct kimage *image) 610 { 611 if (*image->entry != 0) 612 image->entry++; 613 614 *image->entry = IND_DONE; 615 } 616 617 #define for_each_kimage_entry(image, ptr, entry) \ 618 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 619 ptr = (entry & IND_INDIRECTION)? \ 620 phys_to_virt((entry & PAGE_MASK)): ptr +1) 621 622 static void kimage_free_entry(kimage_entry_t entry) 623 { 624 struct page *page; 625 626 page = pfn_to_page(entry >> PAGE_SHIFT); 627 kimage_free_pages(page); 628 } 629 630 static void kimage_free(struct kimage *image) 631 { 632 kimage_entry_t *ptr, entry; 633 kimage_entry_t ind = 0; 634 635 if (!image) 636 return; 637 638 kimage_free_extra_pages(image); 639 for_each_kimage_entry(image, ptr, entry) { 640 if (entry & IND_INDIRECTION) { 641 /* Free the previous indirection page */ 642 if (ind & IND_INDIRECTION) 643 kimage_free_entry(ind); 644 /* Save this indirection page until we are 645 * done with it. 646 */ 647 ind = entry; 648 } 649 else if (entry & IND_SOURCE) 650 kimage_free_entry(entry); 651 } 652 /* Free the final indirection page */ 653 if (ind & IND_INDIRECTION) 654 kimage_free_entry(ind); 655 656 /* Handle any machine specific cleanup */ 657 machine_kexec_cleanup(image); 658 659 /* Free the kexec control pages... */ 660 kimage_free_page_list(&image->control_pages); 661 kfree(image); 662 } 663 664 static kimage_entry_t *kimage_dst_used(struct kimage *image, 665 unsigned long page) 666 { 667 kimage_entry_t *ptr, entry; 668 unsigned long destination = 0; 669 670 for_each_kimage_entry(image, ptr, entry) { 671 if (entry & IND_DESTINATION) 672 destination = entry & PAGE_MASK; 673 else if (entry & IND_SOURCE) { 674 if (page == destination) 675 return ptr; 676 destination += PAGE_SIZE; 677 } 678 } 679 680 return NULL; 681 } 682 683 static struct page *kimage_alloc_page(struct kimage *image, 684 gfp_t gfp_mask, 685 unsigned long destination) 686 { 687 /* 688 * Here we implement safeguards to ensure that a source page 689 * is not copied to its destination page before the data on 690 * the destination page is no longer useful. 691 * 692 * To do this we maintain the invariant that a source page is 693 * either its own destination page, or it is not a 694 * destination page at all. 695 * 696 * That is slightly stronger than required, but the proof 697 * that no problems will not occur is trivial, and the 698 * implementation is simply to verify. 699 * 700 * When allocating all pages normally this algorithm will run 701 * in O(N) time, but in the worst case it will run in O(N^2) 702 * time. If the runtime is a problem the data structures can 703 * be fixed. 704 */ 705 struct page *page; 706 unsigned long addr; 707 708 /* 709 * Walk through the list of destination pages, and see if I 710 * have a match. 711 */ 712 list_for_each_entry(page, &image->dest_pages, lru) { 713 addr = page_to_pfn(page) << PAGE_SHIFT; 714 if (addr == destination) { 715 list_del(&page->lru); 716 return page; 717 } 718 } 719 page = NULL; 720 while (1) { 721 kimage_entry_t *old; 722 723 /* Allocate a page, if we run out of memory give up */ 724 page = kimage_alloc_pages(gfp_mask, 0); 725 if (!page) 726 return NULL; 727 /* If the page cannot be used file it away */ 728 if (page_to_pfn(page) > 729 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 730 list_add(&page->lru, &image->unuseable_pages); 731 continue; 732 } 733 addr = page_to_pfn(page) << PAGE_SHIFT; 734 735 /* If it is the destination page we want use it */ 736 if (addr == destination) 737 break; 738 739 /* If the page is not a destination page use it */ 740 if (!kimage_is_destination_range(image, addr, 741 addr + PAGE_SIZE)) 742 break; 743 744 /* 745 * I know that the page is someones destination page. 746 * See if there is already a source page for this 747 * destination page. And if so swap the source pages. 748 */ 749 old = kimage_dst_used(image, addr); 750 if (old) { 751 /* If so move it */ 752 unsigned long old_addr; 753 struct page *old_page; 754 755 old_addr = *old & PAGE_MASK; 756 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 757 copy_highpage(page, old_page); 758 *old = addr | (*old & ~PAGE_MASK); 759 760 /* The old page I have found cannot be a 761 * destination page, so return it if it's 762 * gfp_flags honor the ones passed in. 763 */ 764 if (!(gfp_mask & __GFP_HIGHMEM) && 765 PageHighMem(old_page)) { 766 kimage_free_pages(old_page); 767 continue; 768 } 769 addr = old_addr; 770 page = old_page; 771 break; 772 } 773 else { 774 /* Place the page on the destination list I 775 * will use it later. 776 */ 777 list_add(&page->lru, &image->dest_pages); 778 } 779 } 780 781 return page; 782 } 783 784 static int kimage_load_normal_segment(struct kimage *image, 785 struct kexec_segment *segment) 786 { 787 unsigned long maddr; 788 unsigned long ubytes, mbytes; 789 int result; 790 unsigned char __user *buf; 791 792 result = 0; 793 buf = segment->buf; 794 ubytes = segment->bufsz; 795 mbytes = segment->memsz; 796 maddr = segment->mem; 797 798 result = kimage_set_destination(image, maddr); 799 if (result < 0) 800 goto out; 801 802 while (mbytes) { 803 struct page *page; 804 char *ptr; 805 size_t uchunk, mchunk; 806 807 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 808 if (!page) { 809 result = -ENOMEM; 810 goto out; 811 } 812 result = kimage_add_page(image, page_to_pfn(page) 813 << PAGE_SHIFT); 814 if (result < 0) 815 goto out; 816 817 ptr = kmap(page); 818 /* Start with a clear page */ 819 clear_page(ptr); 820 ptr += maddr & ~PAGE_MASK; 821 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 822 if (mchunk > mbytes) 823 mchunk = mbytes; 824 825 uchunk = mchunk; 826 if (uchunk > ubytes) 827 uchunk = ubytes; 828 829 result = copy_from_user(ptr, buf, uchunk); 830 kunmap(page); 831 if (result) { 832 result = -EFAULT; 833 goto out; 834 } 835 ubytes -= uchunk; 836 maddr += mchunk; 837 buf += mchunk; 838 mbytes -= mchunk; 839 } 840 out: 841 return result; 842 } 843 844 static int kimage_load_crash_segment(struct kimage *image, 845 struct kexec_segment *segment) 846 { 847 /* For crash dumps kernels we simply copy the data from 848 * user space to it's destination. 849 * We do things a page at a time for the sake of kmap. 850 */ 851 unsigned long maddr; 852 unsigned long ubytes, mbytes; 853 int result; 854 unsigned char __user *buf; 855 856 result = 0; 857 buf = segment->buf; 858 ubytes = segment->bufsz; 859 mbytes = segment->memsz; 860 maddr = segment->mem; 861 while (mbytes) { 862 struct page *page; 863 char *ptr; 864 size_t uchunk, mchunk; 865 866 page = pfn_to_page(maddr >> PAGE_SHIFT); 867 if (!page) { 868 result = -ENOMEM; 869 goto out; 870 } 871 ptr = kmap(page); 872 ptr += maddr & ~PAGE_MASK; 873 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 874 if (mchunk > mbytes) 875 mchunk = mbytes; 876 877 uchunk = mchunk; 878 if (uchunk > ubytes) { 879 uchunk = ubytes; 880 /* Zero the trailing part of the page */ 881 memset(ptr + uchunk, 0, mchunk - uchunk); 882 } 883 result = copy_from_user(ptr, buf, uchunk); 884 kexec_flush_icache_page(page); 885 kunmap(page); 886 if (result) { 887 result = -EFAULT; 888 goto out; 889 } 890 ubytes -= uchunk; 891 maddr += mchunk; 892 buf += mchunk; 893 mbytes -= mchunk; 894 } 895 out: 896 return result; 897 } 898 899 static int kimage_load_segment(struct kimage *image, 900 struct kexec_segment *segment) 901 { 902 int result = -ENOMEM; 903 904 switch (image->type) { 905 case KEXEC_TYPE_DEFAULT: 906 result = kimage_load_normal_segment(image, segment); 907 break; 908 case KEXEC_TYPE_CRASH: 909 result = kimage_load_crash_segment(image, segment); 910 break; 911 } 912 913 return result; 914 } 915 916 /* 917 * Exec Kernel system call: for obvious reasons only root may call it. 918 * 919 * This call breaks up into three pieces. 920 * - A generic part which loads the new kernel from the current 921 * address space, and very carefully places the data in the 922 * allocated pages. 923 * 924 * - A generic part that interacts with the kernel and tells all of 925 * the devices to shut down. Preventing on-going dmas, and placing 926 * the devices in a consistent state so a later kernel can 927 * reinitialize them. 928 * 929 * - A machine specific part that includes the syscall number 930 * and the copies the image to it's final destination. And 931 * jumps into the image at entry. 932 * 933 * kexec does not sync, or unmount filesystems so if you need 934 * that to happen you need to do that yourself. 935 */ 936 struct kimage *kexec_image; 937 struct kimage *kexec_crash_image; 938 939 static DEFINE_MUTEX(kexec_mutex); 940 941 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 942 struct kexec_segment __user *, segments, unsigned long, flags) 943 { 944 struct kimage **dest_image, *image; 945 int result; 946 947 /* We only trust the superuser with rebooting the system. */ 948 if (!capable(CAP_SYS_BOOT)) 949 return -EPERM; 950 951 /* 952 * Verify we have a legal set of flags 953 * This leaves us room for future extensions. 954 */ 955 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 956 return -EINVAL; 957 958 /* Verify we are on the appropriate architecture */ 959 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 960 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 961 return -EINVAL; 962 963 /* Put an artificial cap on the number 964 * of segments passed to kexec_load. 965 */ 966 if (nr_segments > KEXEC_SEGMENT_MAX) 967 return -EINVAL; 968 969 image = NULL; 970 result = 0; 971 972 /* Because we write directly to the reserved memory 973 * region when loading crash kernels we need a mutex here to 974 * prevent multiple crash kernels from attempting to load 975 * simultaneously, and to prevent a crash kernel from loading 976 * over the top of a in use crash kernel. 977 * 978 * KISS: always take the mutex. 979 */ 980 if (!mutex_trylock(&kexec_mutex)) 981 return -EBUSY; 982 983 dest_image = &kexec_image; 984 if (flags & KEXEC_ON_CRASH) 985 dest_image = &kexec_crash_image; 986 if (nr_segments > 0) { 987 unsigned long i; 988 989 /* Loading another kernel to reboot into */ 990 if ((flags & KEXEC_ON_CRASH) == 0) 991 result = kimage_normal_alloc(&image, entry, 992 nr_segments, segments); 993 /* Loading another kernel to switch to if this one crashes */ 994 else if (flags & KEXEC_ON_CRASH) { 995 /* Free any current crash dump kernel before 996 * we corrupt it. 997 */ 998 kimage_free(xchg(&kexec_crash_image, NULL)); 999 result = kimage_crash_alloc(&image, entry, 1000 nr_segments, segments); 1001 } 1002 if (result) 1003 goto out; 1004 1005 if (flags & KEXEC_PRESERVE_CONTEXT) 1006 image->preserve_context = 1; 1007 result = machine_kexec_prepare(image); 1008 if (result) 1009 goto out; 1010 1011 for (i = 0; i < nr_segments; i++) { 1012 result = kimage_load_segment(image, &image->segment[i]); 1013 if (result) 1014 goto out; 1015 } 1016 kimage_terminate(image); 1017 } 1018 /* Install the new kernel, and Uninstall the old */ 1019 image = xchg(dest_image, image); 1020 1021 out: 1022 mutex_unlock(&kexec_mutex); 1023 kimage_free(image); 1024 1025 return result; 1026 } 1027 1028 #ifdef CONFIG_COMPAT 1029 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1030 unsigned long nr_segments, 1031 struct compat_kexec_segment __user *segments, 1032 unsigned long flags) 1033 { 1034 struct compat_kexec_segment in; 1035 struct kexec_segment out, __user *ksegments; 1036 unsigned long i, result; 1037 1038 /* Don't allow clients that don't understand the native 1039 * architecture to do anything. 1040 */ 1041 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1042 return -EINVAL; 1043 1044 if (nr_segments > KEXEC_SEGMENT_MAX) 1045 return -EINVAL; 1046 1047 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1048 for (i=0; i < nr_segments; i++) { 1049 result = copy_from_user(&in, &segments[i], sizeof(in)); 1050 if (result) 1051 return -EFAULT; 1052 1053 out.buf = compat_ptr(in.buf); 1054 out.bufsz = in.bufsz; 1055 out.mem = in.mem; 1056 out.memsz = in.memsz; 1057 1058 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1059 if (result) 1060 return -EFAULT; 1061 } 1062 1063 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1064 } 1065 #endif 1066 1067 void crash_kexec(struct pt_regs *regs) 1068 { 1069 /* Take the kexec_mutex here to prevent sys_kexec_load 1070 * running on one cpu from replacing the crash kernel 1071 * we are using after a panic on a different cpu. 1072 * 1073 * If the crash kernel was not located in a fixed area 1074 * of memory the xchg(&kexec_crash_image) would be 1075 * sufficient. But since I reuse the memory... 1076 */ 1077 if (mutex_trylock(&kexec_mutex)) { 1078 if (kexec_crash_image) { 1079 struct pt_regs fixed_regs; 1080 1081 kmsg_dump(KMSG_DUMP_KEXEC); 1082 1083 crash_setup_regs(&fixed_regs, regs); 1084 crash_save_vmcoreinfo(); 1085 machine_crash_shutdown(&fixed_regs); 1086 machine_kexec(kexec_crash_image); 1087 } 1088 mutex_unlock(&kexec_mutex); 1089 } 1090 } 1091 1092 size_t crash_get_memory_size(void) 1093 { 1094 size_t size = 0; 1095 mutex_lock(&kexec_mutex); 1096 if (crashk_res.end != crashk_res.start) 1097 size = crashk_res.end - crashk_res.start + 1; 1098 mutex_unlock(&kexec_mutex); 1099 return size; 1100 } 1101 1102 static void free_reserved_phys_range(unsigned long begin, unsigned long end) 1103 { 1104 unsigned long addr; 1105 1106 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1107 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); 1108 init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); 1109 free_page((unsigned long)__va(addr)); 1110 totalram_pages++; 1111 } 1112 } 1113 1114 int crash_shrink_memory(unsigned long new_size) 1115 { 1116 int ret = 0; 1117 unsigned long start, end; 1118 1119 mutex_lock(&kexec_mutex); 1120 1121 if (kexec_crash_image) { 1122 ret = -ENOENT; 1123 goto unlock; 1124 } 1125 start = crashk_res.start; 1126 end = crashk_res.end; 1127 1128 if (new_size >= end - start + 1) { 1129 ret = -EINVAL; 1130 if (new_size == end - start + 1) 1131 ret = 0; 1132 goto unlock; 1133 } 1134 1135 start = roundup(start, PAGE_SIZE); 1136 end = roundup(start + new_size, PAGE_SIZE); 1137 1138 free_reserved_phys_range(end, crashk_res.end); 1139 1140 if ((start == end) && (crashk_res.parent != NULL)) 1141 release_resource(&crashk_res); 1142 crashk_res.end = end - 1; 1143 1144 unlock: 1145 mutex_unlock(&kexec_mutex); 1146 return ret; 1147 } 1148 1149 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1150 size_t data_len) 1151 { 1152 struct elf_note note; 1153 1154 note.n_namesz = strlen(name) + 1; 1155 note.n_descsz = data_len; 1156 note.n_type = type; 1157 memcpy(buf, ¬e, sizeof(note)); 1158 buf += (sizeof(note) + 3)/4; 1159 memcpy(buf, name, note.n_namesz); 1160 buf += (note.n_namesz + 3)/4; 1161 memcpy(buf, data, note.n_descsz); 1162 buf += (note.n_descsz + 3)/4; 1163 1164 return buf; 1165 } 1166 1167 static void final_note(u32 *buf) 1168 { 1169 struct elf_note note; 1170 1171 note.n_namesz = 0; 1172 note.n_descsz = 0; 1173 note.n_type = 0; 1174 memcpy(buf, ¬e, sizeof(note)); 1175 } 1176 1177 void crash_save_cpu(struct pt_regs *regs, int cpu) 1178 { 1179 struct elf_prstatus prstatus; 1180 u32 *buf; 1181 1182 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1183 return; 1184 1185 /* Using ELF notes here is opportunistic. 1186 * I need a well defined structure format 1187 * for the data I pass, and I need tags 1188 * on the data to indicate what information I have 1189 * squirrelled away. ELF notes happen to provide 1190 * all of that, so there is no need to invent something new. 1191 */ 1192 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1193 if (!buf) 1194 return; 1195 memset(&prstatus, 0, sizeof(prstatus)); 1196 prstatus.pr_pid = current->pid; 1197 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1198 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1199 &prstatus, sizeof(prstatus)); 1200 final_note(buf); 1201 } 1202 1203 static int __init crash_notes_memory_init(void) 1204 { 1205 /* Allocate memory for saving cpu registers. */ 1206 crash_notes = alloc_percpu(note_buf_t); 1207 if (!crash_notes) { 1208 printk("Kexec: Memory allocation for saving cpu register" 1209 " states failed\n"); 1210 return -ENOMEM; 1211 } 1212 return 0; 1213 } 1214 module_init(crash_notes_memory_init) 1215 1216 1217 /* 1218 * parsing the "crashkernel" commandline 1219 * 1220 * this code is intended to be called from architecture specific code 1221 */ 1222 1223 1224 /* 1225 * This function parses command lines in the format 1226 * 1227 * crashkernel=ramsize-range:size[,...][@offset] 1228 * 1229 * The function returns 0 on success and -EINVAL on failure. 1230 */ 1231 static int __init parse_crashkernel_mem(char *cmdline, 1232 unsigned long long system_ram, 1233 unsigned long long *crash_size, 1234 unsigned long long *crash_base) 1235 { 1236 char *cur = cmdline, *tmp; 1237 1238 /* for each entry of the comma-separated list */ 1239 do { 1240 unsigned long long start, end = ULLONG_MAX, size; 1241 1242 /* get the start of the range */ 1243 start = memparse(cur, &tmp); 1244 if (cur == tmp) { 1245 pr_warning("crashkernel: Memory value expected\n"); 1246 return -EINVAL; 1247 } 1248 cur = tmp; 1249 if (*cur != '-') { 1250 pr_warning("crashkernel: '-' expected\n"); 1251 return -EINVAL; 1252 } 1253 cur++; 1254 1255 /* if no ':' is here, than we read the end */ 1256 if (*cur != ':') { 1257 end = memparse(cur, &tmp); 1258 if (cur == tmp) { 1259 pr_warning("crashkernel: Memory " 1260 "value expected\n"); 1261 return -EINVAL; 1262 } 1263 cur = tmp; 1264 if (end <= start) { 1265 pr_warning("crashkernel: end <= start\n"); 1266 return -EINVAL; 1267 } 1268 } 1269 1270 if (*cur != ':') { 1271 pr_warning("crashkernel: ':' expected\n"); 1272 return -EINVAL; 1273 } 1274 cur++; 1275 1276 size = memparse(cur, &tmp); 1277 if (cur == tmp) { 1278 pr_warning("Memory value expected\n"); 1279 return -EINVAL; 1280 } 1281 cur = tmp; 1282 if (size >= system_ram) { 1283 pr_warning("crashkernel: invalid size\n"); 1284 return -EINVAL; 1285 } 1286 1287 /* match ? */ 1288 if (system_ram >= start && system_ram < end) { 1289 *crash_size = size; 1290 break; 1291 } 1292 } while (*cur++ == ','); 1293 1294 if (*crash_size > 0) { 1295 while (*cur && *cur != ' ' && *cur != '@') 1296 cur++; 1297 if (*cur == '@') { 1298 cur++; 1299 *crash_base = memparse(cur, &tmp); 1300 if (cur == tmp) { 1301 pr_warning("Memory value expected " 1302 "after '@'\n"); 1303 return -EINVAL; 1304 } 1305 } 1306 } 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * That function parses "simple" (old) crashkernel command lines like 1313 * 1314 * crashkernel=size[@offset] 1315 * 1316 * It returns 0 on success and -EINVAL on failure. 1317 */ 1318 static int __init parse_crashkernel_simple(char *cmdline, 1319 unsigned long long *crash_size, 1320 unsigned long long *crash_base) 1321 { 1322 char *cur = cmdline; 1323 1324 *crash_size = memparse(cmdline, &cur); 1325 if (cmdline == cur) { 1326 pr_warning("crashkernel: memory value expected\n"); 1327 return -EINVAL; 1328 } 1329 1330 if (*cur == '@') 1331 *crash_base = memparse(cur+1, &cur); 1332 1333 return 0; 1334 } 1335 1336 /* 1337 * That function is the entry point for command line parsing and should be 1338 * called from the arch-specific code. 1339 */ 1340 int __init parse_crashkernel(char *cmdline, 1341 unsigned long long system_ram, 1342 unsigned long long *crash_size, 1343 unsigned long long *crash_base) 1344 { 1345 char *p = cmdline, *ck_cmdline = NULL; 1346 char *first_colon, *first_space; 1347 1348 BUG_ON(!crash_size || !crash_base); 1349 *crash_size = 0; 1350 *crash_base = 0; 1351 1352 /* find crashkernel and use the last one if there are more */ 1353 p = strstr(p, "crashkernel="); 1354 while (p) { 1355 ck_cmdline = p; 1356 p = strstr(p+1, "crashkernel="); 1357 } 1358 1359 if (!ck_cmdline) 1360 return -EINVAL; 1361 1362 ck_cmdline += 12; /* strlen("crashkernel=") */ 1363 1364 /* 1365 * if the commandline contains a ':', then that's the extended 1366 * syntax -- if not, it must be the classic syntax 1367 */ 1368 first_colon = strchr(ck_cmdline, ':'); 1369 first_space = strchr(ck_cmdline, ' '); 1370 if (first_colon && (!first_space || first_colon < first_space)) 1371 return parse_crashkernel_mem(ck_cmdline, system_ram, 1372 crash_size, crash_base); 1373 else 1374 return parse_crashkernel_simple(ck_cmdline, crash_size, 1375 crash_base); 1376 1377 return 0; 1378 } 1379 1380 1381 1382 void crash_save_vmcoreinfo(void) 1383 { 1384 u32 *buf; 1385 1386 if (!vmcoreinfo_size) 1387 return; 1388 1389 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); 1390 1391 buf = (u32 *)vmcoreinfo_note; 1392 1393 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1394 vmcoreinfo_size); 1395 1396 final_note(buf); 1397 } 1398 1399 void vmcoreinfo_append_str(const char *fmt, ...) 1400 { 1401 va_list args; 1402 char buf[0x50]; 1403 int r; 1404 1405 va_start(args, fmt); 1406 r = vsnprintf(buf, sizeof(buf), fmt, args); 1407 va_end(args); 1408 1409 if (r + vmcoreinfo_size > vmcoreinfo_max_size) 1410 r = vmcoreinfo_max_size - vmcoreinfo_size; 1411 1412 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1413 1414 vmcoreinfo_size += r; 1415 } 1416 1417 /* 1418 * provide an empty default implementation here -- architecture 1419 * code may override this 1420 */ 1421 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1422 {} 1423 1424 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1425 { 1426 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1427 } 1428 1429 static int __init crash_save_vmcoreinfo_init(void) 1430 { 1431 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1432 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1433 1434 VMCOREINFO_SYMBOL(init_uts_ns); 1435 VMCOREINFO_SYMBOL(node_online_map); 1436 VMCOREINFO_SYMBOL(swapper_pg_dir); 1437 VMCOREINFO_SYMBOL(_stext); 1438 VMCOREINFO_SYMBOL(vmlist); 1439 1440 #ifndef CONFIG_NEED_MULTIPLE_NODES 1441 VMCOREINFO_SYMBOL(mem_map); 1442 VMCOREINFO_SYMBOL(contig_page_data); 1443 #endif 1444 #ifdef CONFIG_SPARSEMEM 1445 VMCOREINFO_SYMBOL(mem_section); 1446 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1447 VMCOREINFO_STRUCT_SIZE(mem_section); 1448 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1449 #endif 1450 VMCOREINFO_STRUCT_SIZE(page); 1451 VMCOREINFO_STRUCT_SIZE(pglist_data); 1452 VMCOREINFO_STRUCT_SIZE(zone); 1453 VMCOREINFO_STRUCT_SIZE(free_area); 1454 VMCOREINFO_STRUCT_SIZE(list_head); 1455 VMCOREINFO_SIZE(nodemask_t); 1456 VMCOREINFO_OFFSET(page, flags); 1457 VMCOREINFO_OFFSET(page, _count); 1458 VMCOREINFO_OFFSET(page, mapping); 1459 VMCOREINFO_OFFSET(page, lru); 1460 VMCOREINFO_OFFSET(pglist_data, node_zones); 1461 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1462 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1463 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1464 #endif 1465 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1466 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1467 VMCOREINFO_OFFSET(pglist_data, node_id); 1468 VMCOREINFO_OFFSET(zone, free_area); 1469 VMCOREINFO_OFFSET(zone, vm_stat); 1470 VMCOREINFO_OFFSET(zone, spanned_pages); 1471 VMCOREINFO_OFFSET(free_area, free_list); 1472 VMCOREINFO_OFFSET(list_head, next); 1473 VMCOREINFO_OFFSET(list_head, prev); 1474 VMCOREINFO_OFFSET(vm_struct, addr); 1475 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1476 log_buf_kexec_setup(); 1477 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1478 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1479 VMCOREINFO_NUMBER(PG_lru); 1480 VMCOREINFO_NUMBER(PG_private); 1481 VMCOREINFO_NUMBER(PG_swapcache); 1482 1483 arch_crash_save_vmcoreinfo(); 1484 1485 return 0; 1486 } 1487 1488 module_init(crash_save_vmcoreinfo_init) 1489 1490 /* 1491 * Move into place and start executing a preloaded standalone 1492 * executable. If nothing was preloaded return an error. 1493 */ 1494 int kernel_kexec(void) 1495 { 1496 int error = 0; 1497 1498 if (!mutex_trylock(&kexec_mutex)) 1499 return -EBUSY; 1500 if (!kexec_image) { 1501 error = -EINVAL; 1502 goto Unlock; 1503 } 1504 1505 #ifdef CONFIG_KEXEC_JUMP 1506 if (kexec_image->preserve_context) { 1507 mutex_lock(&pm_mutex); 1508 pm_prepare_console(); 1509 error = freeze_processes(); 1510 if (error) { 1511 error = -EBUSY; 1512 goto Restore_console; 1513 } 1514 suspend_console(); 1515 error = dpm_suspend_start(PMSG_FREEZE); 1516 if (error) 1517 goto Resume_console; 1518 /* At this point, dpm_suspend_start() has been called, 1519 * but *not* dpm_suspend_noirq(). We *must* call 1520 * dpm_suspend_noirq() now. Otherwise, drivers for 1521 * some devices (e.g. interrupt controllers) become 1522 * desynchronized with the actual state of the 1523 * hardware at resume time, and evil weirdness ensues. 1524 */ 1525 error = dpm_suspend_noirq(PMSG_FREEZE); 1526 if (error) 1527 goto Resume_devices; 1528 error = disable_nonboot_cpus(); 1529 if (error) 1530 goto Enable_cpus; 1531 local_irq_disable(); 1532 /* Suspend system devices */ 1533 error = sysdev_suspend(PMSG_FREEZE); 1534 if (error) 1535 goto Enable_irqs; 1536 } else 1537 #endif 1538 { 1539 kernel_restart_prepare(NULL); 1540 printk(KERN_EMERG "Starting new kernel\n"); 1541 machine_shutdown(); 1542 } 1543 1544 machine_kexec(kexec_image); 1545 1546 #ifdef CONFIG_KEXEC_JUMP 1547 if (kexec_image->preserve_context) { 1548 sysdev_resume(); 1549 Enable_irqs: 1550 local_irq_enable(); 1551 Enable_cpus: 1552 enable_nonboot_cpus(); 1553 dpm_resume_noirq(PMSG_RESTORE); 1554 Resume_devices: 1555 dpm_resume_end(PMSG_RESTORE); 1556 Resume_console: 1557 resume_console(); 1558 thaw_processes(); 1559 Restore_console: 1560 pm_restore_console(); 1561 mutex_unlock(&pm_mutex); 1562 } 1563 #endif 1564 1565 Unlock: 1566 mutex_unlock(&kexec_mutex); 1567 return error; 1568 } 1569