1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/console.h> 32 #include <linux/vmalloc.h> 33 #include <linux/swap.h> 34 #include <linux/syscore_ops.h> 35 #include <linux/compiler.h> 36 37 #include <asm/page.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/sections.h> 41 42 /* Per cpu memory for storing cpu states in case of system crash. */ 43 note_buf_t __percpu *crash_notes; 44 45 /* vmcoreinfo stuff */ 46 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 47 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 48 size_t vmcoreinfo_size; 49 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 50 51 /* Flag to indicate we are going to kexec a new kernel */ 52 bool kexec_in_progress = false; 53 54 /* Location of the reserved area for the crash kernel */ 55 struct resource crashk_res = { 56 .name = "Crash kernel", 57 .start = 0, 58 .end = 0, 59 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 60 }; 61 struct resource crashk_low_res = { 62 .name = "Crash kernel", 63 .start = 0, 64 .end = 0, 65 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 66 }; 67 68 int kexec_should_crash(struct task_struct *p) 69 { 70 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 71 return 1; 72 return 0; 73 } 74 75 /* 76 * When kexec transitions to the new kernel there is a one-to-one 77 * mapping between physical and virtual addresses. On processors 78 * where you can disable the MMU this is trivial, and easy. For 79 * others it is still a simple predictable page table to setup. 80 * 81 * In that environment kexec copies the new kernel to its final 82 * resting place. This means I can only support memory whose 83 * physical address can fit in an unsigned long. In particular 84 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 85 * If the assembly stub has more restrictive requirements 86 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 87 * defined more restrictively in <asm/kexec.h>. 88 * 89 * The code for the transition from the current kernel to the 90 * the new kernel is placed in the control_code_buffer, whose size 91 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 92 * page of memory is necessary, but some architectures require more. 93 * Because this memory must be identity mapped in the transition from 94 * virtual to physical addresses it must live in the range 95 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 96 * modifiable. 97 * 98 * The assembly stub in the control code buffer is passed a linked list 99 * of descriptor pages detailing the source pages of the new kernel, 100 * and the destination addresses of those source pages. As this data 101 * structure is not used in the context of the current OS, it must 102 * be self-contained. 103 * 104 * The code has been made to work with highmem pages and will use a 105 * destination page in its final resting place (if it happens 106 * to allocate it). The end product of this is that most of the 107 * physical address space, and most of RAM can be used. 108 * 109 * Future directions include: 110 * - allocating a page table with the control code buffer identity 111 * mapped, to simplify machine_kexec and make kexec_on_panic more 112 * reliable. 113 */ 114 115 /* 116 * KIMAGE_NO_DEST is an impossible destination address..., for 117 * allocating pages whose destination address we do not care about. 118 */ 119 #define KIMAGE_NO_DEST (-1UL) 120 121 static int kimage_is_destination_range(struct kimage *image, 122 unsigned long start, unsigned long end); 123 static struct page *kimage_alloc_page(struct kimage *image, 124 gfp_t gfp_mask, 125 unsigned long dest); 126 127 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 128 unsigned long nr_segments, 129 struct kexec_segment __user *segments) 130 { 131 size_t segment_bytes; 132 struct kimage *image; 133 unsigned long i; 134 int result; 135 136 /* Allocate a controlling structure */ 137 result = -ENOMEM; 138 image = kzalloc(sizeof(*image), GFP_KERNEL); 139 if (!image) 140 goto out; 141 142 image->head = 0; 143 image->entry = &image->head; 144 image->last_entry = &image->head; 145 image->control_page = ~0; /* By default this does not apply */ 146 image->start = entry; 147 image->type = KEXEC_TYPE_DEFAULT; 148 149 /* Initialize the list of control pages */ 150 INIT_LIST_HEAD(&image->control_pages); 151 152 /* Initialize the list of destination pages */ 153 INIT_LIST_HEAD(&image->dest_pages); 154 155 /* Initialize the list of unusable pages */ 156 INIT_LIST_HEAD(&image->unuseable_pages); 157 158 /* Read in the segments */ 159 image->nr_segments = nr_segments; 160 segment_bytes = nr_segments * sizeof(*segments); 161 result = copy_from_user(image->segment, segments, segment_bytes); 162 if (result) { 163 result = -EFAULT; 164 goto out; 165 } 166 167 /* 168 * Verify we have good destination addresses. The caller is 169 * responsible for making certain we don't attempt to load 170 * the new image into invalid or reserved areas of RAM. This 171 * just verifies it is an address we can use. 172 * 173 * Since the kernel does everything in page size chunks ensure 174 * the destination addresses are page aligned. Too many 175 * special cases crop of when we don't do this. The most 176 * insidious is getting overlapping destination addresses 177 * simply because addresses are changed to page size 178 * granularity. 179 */ 180 result = -EADDRNOTAVAIL; 181 for (i = 0; i < nr_segments; i++) { 182 unsigned long mstart, mend; 183 184 mstart = image->segment[i].mem; 185 mend = mstart + image->segment[i].memsz; 186 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 187 goto out; 188 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 189 goto out; 190 } 191 192 /* Verify our destination addresses do not overlap. 193 * If we alloed overlapping destination addresses 194 * through very weird things can happen with no 195 * easy explanation as one segment stops on another. 196 */ 197 result = -EINVAL; 198 for (i = 0; i < nr_segments; i++) { 199 unsigned long mstart, mend; 200 unsigned long j; 201 202 mstart = image->segment[i].mem; 203 mend = mstart + image->segment[i].memsz; 204 for (j = 0; j < i; j++) { 205 unsigned long pstart, pend; 206 pstart = image->segment[j].mem; 207 pend = pstart + image->segment[j].memsz; 208 /* Do the segments overlap ? */ 209 if ((mend > pstart) && (mstart < pend)) 210 goto out; 211 } 212 } 213 214 /* Ensure our buffer sizes are strictly less than 215 * our memory sizes. This should always be the case, 216 * and it is easier to check up front than to be surprised 217 * later on. 218 */ 219 result = -EINVAL; 220 for (i = 0; i < nr_segments; i++) { 221 if (image->segment[i].bufsz > image->segment[i].memsz) 222 goto out; 223 } 224 225 result = 0; 226 out: 227 if (result == 0) 228 *rimage = image; 229 else 230 kfree(image); 231 232 return result; 233 234 } 235 236 static void kimage_free_page_list(struct list_head *list); 237 238 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 239 unsigned long nr_segments, 240 struct kexec_segment __user *segments) 241 { 242 int result; 243 struct kimage *image; 244 245 /* Allocate and initialize a controlling structure */ 246 image = NULL; 247 result = do_kimage_alloc(&image, entry, nr_segments, segments); 248 if (result) 249 goto out; 250 251 /* 252 * Find a location for the control code buffer, and add it 253 * the vector of segments so that it's pages will also be 254 * counted as destination pages. 255 */ 256 result = -ENOMEM; 257 image->control_code_page = kimage_alloc_control_pages(image, 258 get_order(KEXEC_CONTROL_PAGE_SIZE)); 259 if (!image->control_code_page) { 260 pr_err("Could not allocate control_code_buffer\n"); 261 goto out_free; 262 } 263 264 image->swap_page = kimage_alloc_control_pages(image, 0); 265 if (!image->swap_page) { 266 pr_err("Could not allocate swap buffer\n"); 267 goto out_free; 268 } 269 270 *rimage = image; 271 return 0; 272 273 out_free: 274 kimage_free_page_list(&image->control_pages); 275 kfree(image); 276 out: 277 return result; 278 } 279 280 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 281 unsigned long nr_segments, 282 struct kexec_segment __user *segments) 283 { 284 int result; 285 struct kimage *image; 286 unsigned long i; 287 288 image = NULL; 289 /* Verify we have a valid entry point */ 290 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 291 result = -EADDRNOTAVAIL; 292 goto out; 293 } 294 295 /* Allocate and initialize a controlling structure */ 296 result = do_kimage_alloc(&image, entry, nr_segments, segments); 297 if (result) 298 goto out; 299 300 /* Enable the special crash kernel control page 301 * allocation policy. 302 */ 303 image->control_page = crashk_res.start; 304 image->type = KEXEC_TYPE_CRASH; 305 306 /* 307 * Verify we have good destination addresses. Normally 308 * the caller is responsible for making certain we don't 309 * attempt to load the new image into invalid or reserved 310 * areas of RAM. But crash kernels are preloaded into a 311 * reserved area of ram. We must ensure the addresses 312 * are in the reserved area otherwise preloading the 313 * kernel could corrupt things. 314 */ 315 result = -EADDRNOTAVAIL; 316 for (i = 0; i < nr_segments; i++) { 317 unsigned long mstart, mend; 318 319 mstart = image->segment[i].mem; 320 mend = mstart + image->segment[i].memsz - 1; 321 /* Ensure we are within the crash kernel limits */ 322 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 323 goto out_free; 324 } 325 326 /* 327 * Find a location for the control code buffer, and add 328 * the vector of segments so that it's pages will also be 329 * counted as destination pages. 330 */ 331 result = -ENOMEM; 332 image->control_code_page = kimage_alloc_control_pages(image, 333 get_order(KEXEC_CONTROL_PAGE_SIZE)); 334 if (!image->control_code_page) { 335 pr_err("Could not allocate control_code_buffer\n"); 336 goto out_free; 337 } 338 339 *rimage = image; 340 return 0; 341 342 out_free: 343 kfree(image); 344 out: 345 return result; 346 } 347 348 static int kimage_is_destination_range(struct kimage *image, 349 unsigned long start, 350 unsigned long end) 351 { 352 unsigned long i; 353 354 for (i = 0; i < image->nr_segments; i++) { 355 unsigned long mstart, mend; 356 357 mstart = image->segment[i].mem; 358 mend = mstart + image->segment[i].memsz; 359 if ((end > mstart) && (start < mend)) 360 return 1; 361 } 362 363 return 0; 364 } 365 366 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 367 { 368 struct page *pages; 369 370 pages = alloc_pages(gfp_mask, order); 371 if (pages) { 372 unsigned int count, i; 373 pages->mapping = NULL; 374 set_page_private(pages, order); 375 count = 1 << order; 376 for (i = 0; i < count; i++) 377 SetPageReserved(pages + i); 378 } 379 380 return pages; 381 } 382 383 static void kimage_free_pages(struct page *page) 384 { 385 unsigned int order, count, i; 386 387 order = page_private(page); 388 count = 1 << order; 389 for (i = 0; i < count; i++) 390 ClearPageReserved(page + i); 391 __free_pages(page, order); 392 } 393 394 static void kimage_free_page_list(struct list_head *list) 395 { 396 struct list_head *pos, *next; 397 398 list_for_each_safe(pos, next, list) { 399 struct page *page; 400 401 page = list_entry(pos, struct page, lru); 402 list_del(&page->lru); 403 kimage_free_pages(page); 404 } 405 } 406 407 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 408 unsigned int order) 409 { 410 /* Control pages are special, they are the intermediaries 411 * that are needed while we copy the rest of the pages 412 * to their final resting place. As such they must 413 * not conflict with either the destination addresses 414 * or memory the kernel is already using. 415 * 416 * The only case where we really need more than one of 417 * these are for architectures where we cannot disable 418 * the MMU and must instead generate an identity mapped 419 * page table for all of the memory. 420 * 421 * At worst this runs in O(N) of the image size. 422 */ 423 struct list_head extra_pages; 424 struct page *pages; 425 unsigned int count; 426 427 count = 1 << order; 428 INIT_LIST_HEAD(&extra_pages); 429 430 /* Loop while I can allocate a page and the page allocated 431 * is a destination page. 432 */ 433 do { 434 unsigned long pfn, epfn, addr, eaddr; 435 436 pages = kimage_alloc_pages(GFP_KERNEL, order); 437 if (!pages) 438 break; 439 pfn = page_to_pfn(pages); 440 epfn = pfn + count; 441 addr = pfn << PAGE_SHIFT; 442 eaddr = epfn << PAGE_SHIFT; 443 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 444 kimage_is_destination_range(image, addr, eaddr)) { 445 list_add(&pages->lru, &extra_pages); 446 pages = NULL; 447 } 448 } while (!pages); 449 450 if (pages) { 451 /* Remember the allocated page... */ 452 list_add(&pages->lru, &image->control_pages); 453 454 /* Because the page is already in it's destination 455 * location we will never allocate another page at 456 * that address. Therefore kimage_alloc_pages 457 * will not return it (again) and we don't need 458 * to give it an entry in image->segment[]. 459 */ 460 } 461 /* Deal with the destination pages I have inadvertently allocated. 462 * 463 * Ideally I would convert multi-page allocations into single 464 * page allocations, and add everything to image->dest_pages. 465 * 466 * For now it is simpler to just free the pages. 467 */ 468 kimage_free_page_list(&extra_pages); 469 470 return pages; 471 } 472 473 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 474 unsigned int order) 475 { 476 /* Control pages are special, they are the intermediaries 477 * that are needed while we copy the rest of the pages 478 * to their final resting place. As such they must 479 * not conflict with either the destination addresses 480 * or memory the kernel is already using. 481 * 482 * Control pages are also the only pags we must allocate 483 * when loading a crash kernel. All of the other pages 484 * are specified by the segments and we just memcpy 485 * into them directly. 486 * 487 * The only case where we really need more than one of 488 * these are for architectures where we cannot disable 489 * the MMU and must instead generate an identity mapped 490 * page table for all of the memory. 491 * 492 * Given the low demand this implements a very simple 493 * allocator that finds the first hole of the appropriate 494 * size in the reserved memory region, and allocates all 495 * of the memory up to and including the hole. 496 */ 497 unsigned long hole_start, hole_end, size; 498 struct page *pages; 499 500 pages = NULL; 501 size = (1 << order) << PAGE_SHIFT; 502 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 503 hole_end = hole_start + size - 1; 504 while (hole_end <= crashk_res.end) { 505 unsigned long i; 506 507 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 508 break; 509 /* See if I overlap any of the segments */ 510 for (i = 0; i < image->nr_segments; i++) { 511 unsigned long mstart, mend; 512 513 mstart = image->segment[i].mem; 514 mend = mstart + image->segment[i].memsz - 1; 515 if ((hole_end >= mstart) && (hole_start <= mend)) { 516 /* Advance the hole to the end of the segment */ 517 hole_start = (mend + (size - 1)) & ~(size - 1); 518 hole_end = hole_start + size - 1; 519 break; 520 } 521 } 522 /* If I don't overlap any segments I have found my hole! */ 523 if (i == image->nr_segments) { 524 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 525 break; 526 } 527 } 528 if (pages) 529 image->control_page = hole_end; 530 531 return pages; 532 } 533 534 535 struct page *kimage_alloc_control_pages(struct kimage *image, 536 unsigned int order) 537 { 538 struct page *pages = NULL; 539 540 switch (image->type) { 541 case KEXEC_TYPE_DEFAULT: 542 pages = kimage_alloc_normal_control_pages(image, order); 543 break; 544 case KEXEC_TYPE_CRASH: 545 pages = kimage_alloc_crash_control_pages(image, order); 546 break; 547 } 548 549 return pages; 550 } 551 552 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 553 { 554 if (*image->entry != 0) 555 image->entry++; 556 557 if (image->entry == image->last_entry) { 558 kimage_entry_t *ind_page; 559 struct page *page; 560 561 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 562 if (!page) 563 return -ENOMEM; 564 565 ind_page = page_address(page); 566 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 567 image->entry = ind_page; 568 image->last_entry = ind_page + 569 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 570 } 571 *image->entry = entry; 572 image->entry++; 573 *image->entry = 0; 574 575 return 0; 576 } 577 578 static int kimage_set_destination(struct kimage *image, 579 unsigned long destination) 580 { 581 int result; 582 583 destination &= PAGE_MASK; 584 result = kimage_add_entry(image, destination | IND_DESTINATION); 585 if (result == 0) 586 image->destination = destination; 587 588 return result; 589 } 590 591 592 static int kimage_add_page(struct kimage *image, unsigned long page) 593 { 594 int result; 595 596 page &= PAGE_MASK; 597 result = kimage_add_entry(image, page | IND_SOURCE); 598 if (result == 0) 599 image->destination += PAGE_SIZE; 600 601 return result; 602 } 603 604 605 static void kimage_free_extra_pages(struct kimage *image) 606 { 607 /* Walk through and free any extra destination pages I may have */ 608 kimage_free_page_list(&image->dest_pages); 609 610 /* Walk through and free any unusable pages I have cached */ 611 kimage_free_page_list(&image->unuseable_pages); 612 613 } 614 static void kimage_terminate(struct kimage *image) 615 { 616 if (*image->entry != 0) 617 image->entry++; 618 619 *image->entry = IND_DONE; 620 } 621 622 #define for_each_kimage_entry(image, ptr, entry) \ 623 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 624 ptr = (entry & IND_INDIRECTION) ? \ 625 phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 626 627 static void kimage_free_entry(kimage_entry_t entry) 628 { 629 struct page *page; 630 631 page = pfn_to_page(entry >> PAGE_SHIFT); 632 kimage_free_pages(page); 633 } 634 635 static void kimage_free(struct kimage *image) 636 { 637 kimage_entry_t *ptr, entry; 638 kimage_entry_t ind = 0; 639 640 if (!image) 641 return; 642 643 kimage_free_extra_pages(image); 644 for_each_kimage_entry(image, ptr, entry) { 645 if (entry & IND_INDIRECTION) { 646 /* Free the previous indirection page */ 647 if (ind & IND_INDIRECTION) 648 kimage_free_entry(ind); 649 /* Save this indirection page until we are 650 * done with it. 651 */ 652 ind = entry; 653 } else if (entry & IND_SOURCE) 654 kimage_free_entry(entry); 655 } 656 /* Free the final indirection page */ 657 if (ind & IND_INDIRECTION) 658 kimage_free_entry(ind); 659 660 /* Handle any machine specific cleanup */ 661 machine_kexec_cleanup(image); 662 663 /* Free the kexec control pages... */ 664 kimage_free_page_list(&image->control_pages); 665 kfree(image); 666 } 667 668 static kimage_entry_t *kimage_dst_used(struct kimage *image, 669 unsigned long page) 670 { 671 kimage_entry_t *ptr, entry; 672 unsigned long destination = 0; 673 674 for_each_kimage_entry(image, ptr, entry) { 675 if (entry & IND_DESTINATION) 676 destination = entry & PAGE_MASK; 677 else if (entry & IND_SOURCE) { 678 if (page == destination) 679 return ptr; 680 destination += PAGE_SIZE; 681 } 682 } 683 684 return NULL; 685 } 686 687 static struct page *kimage_alloc_page(struct kimage *image, 688 gfp_t gfp_mask, 689 unsigned long destination) 690 { 691 /* 692 * Here we implement safeguards to ensure that a source page 693 * is not copied to its destination page before the data on 694 * the destination page is no longer useful. 695 * 696 * To do this we maintain the invariant that a source page is 697 * either its own destination page, or it is not a 698 * destination page at all. 699 * 700 * That is slightly stronger than required, but the proof 701 * that no problems will not occur is trivial, and the 702 * implementation is simply to verify. 703 * 704 * When allocating all pages normally this algorithm will run 705 * in O(N) time, but in the worst case it will run in O(N^2) 706 * time. If the runtime is a problem the data structures can 707 * be fixed. 708 */ 709 struct page *page; 710 unsigned long addr; 711 712 /* 713 * Walk through the list of destination pages, and see if I 714 * have a match. 715 */ 716 list_for_each_entry(page, &image->dest_pages, lru) { 717 addr = page_to_pfn(page) << PAGE_SHIFT; 718 if (addr == destination) { 719 list_del(&page->lru); 720 return page; 721 } 722 } 723 page = NULL; 724 while (1) { 725 kimage_entry_t *old; 726 727 /* Allocate a page, if we run out of memory give up */ 728 page = kimage_alloc_pages(gfp_mask, 0); 729 if (!page) 730 return NULL; 731 /* If the page cannot be used file it away */ 732 if (page_to_pfn(page) > 733 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 734 list_add(&page->lru, &image->unuseable_pages); 735 continue; 736 } 737 addr = page_to_pfn(page) << PAGE_SHIFT; 738 739 /* If it is the destination page we want use it */ 740 if (addr == destination) 741 break; 742 743 /* If the page is not a destination page use it */ 744 if (!kimage_is_destination_range(image, addr, 745 addr + PAGE_SIZE)) 746 break; 747 748 /* 749 * I know that the page is someones destination page. 750 * See if there is already a source page for this 751 * destination page. And if so swap the source pages. 752 */ 753 old = kimage_dst_used(image, addr); 754 if (old) { 755 /* If so move it */ 756 unsigned long old_addr; 757 struct page *old_page; 758 759 old_addr = *old & PAGE_MASK; 760 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 761 copy_highpage(page, old_page); 762 *old = addr | (*old & ~PAGE_MASK); 763 764 /* The old page I have found cannot be a 765 * destination page, so return it if it's 766 * gfp_flags honor the ones passed in. 767 */ 768 if (!(gfp_mask & __GFP_HIGHMEM) && 769 PageHighMem(old_page)) { 770 kimage_free_pages(old_page); 771 continue; 772 } 773 addr = old_addr; 774 page = old_page; 775 break; 776 } else { 777 /* Place the page on the destination list I 778 * will use it later. 779 */ 780 list_add(&page->lru, &image->dest_pages); 781 } 782 } 783 784 return page; 785 } 786 787 static int kimage_load_normal_segment(struct kimage *image, 788 struct kexec_segment *segment) 789 { 790 unsigned long maddr; 791 size_t ubytes, mbytes; 792 int result; 793 unsigned char __user *buf; 794 795 result = 0; 796 buf = segment->buf; 797 ubytes = segment->bufsz; 798 mbytes = segment->memsz; 799 maddr = segment->mem; 800 801 result = kimage_set_destination(image, maddr); 802 if (result < 0) 803 goto out; 804 805 while (mbytes) { 806 struct page *page; 807 char *ptr; 808 size_t uchunk, mchunk; 809 810 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 811 if (!page) { 812 result = -ENOMEM; 813 goto out; 814 } 815 result = kimage_add_page(image, page_to_pfn(page) 816 << PAGE_SHIFT); 817 if (result < 0) 818 goto out; 819 820 ptr = kmap(page); 821 /* Start with a clear page */ 822 clear_page(ptr); 823 ptr += maddr & ~PAGE_MASK; 824 mchunk = min_t(size_t, mbytes, 825 PAGE_SIZE - (maddr & ~PAGE_MASK)); 826 uchunk = min(ubytes, mchunk); 827 828 result = copy_from_user(ptr, buf, uchunk); 829 kunmap(page); 830 if (result) { 831 result = -EFAULT; 832 goto out; 833 } 834 ubytes -= uchunk; 835 maddr += mchunk; 836 buf += mchunk; 837 mbytes -= mchunk; 838 } 839 out: 840 return result; 841 } 842 843 static int kimage_load_crash_segment(struct kimage *image, 844 struct kexec_segment *segment) 845 { 846 /* For crash dumps kernels we simply copy the data from 847 * user space to it's destination. 848 * We do things a page at a time for the sake of kmap. 849 */ 850 unsigned long maddr; 851 size_t ubytes, mbytes; 852 int result; 853 unsigned char __user *buf; 854 855 result = 0; 856 buf = segment->buf; 857 ubytes = segment->bufsz; 858 mbytes = segment->memsz; 859 maddr = segment->mem; 860 while (mbytes) { 861 struct page *page; 862 char *ptr; 863 size_t uchunk, mchunk; 864 865 page = pfn_to_page(maddr >> PAGE_SHIFT); 866 if (!page) { 867 result = -ENOMEM; 868 goto out; 869 } 870 ptr = kmap(page); 871 ptr += maddr & ~PAGE_MASK; 872 mchunk = min_t(size_t, mbytes, 873 PAGE_SIZE - (maddr & ~PAGE_MASK)); 874 uchunk = min(ubytes, mchunk); 875 if (mchunk > uchunk) { 876 /* Zero the trailing part of the page */ 877 memset(ptr + uchunk, 0, mchunk - uchunk); 878 } 879 result = copy_from_user(ptr, buf, uchunk); 880 kexec_flush_icache_page(page); 881 kunmap(page); 882 if (result) { 883 result = -EFAULT; 884 goto out; 885 } 886 ubytes -= uchunk; 887 maddr += mchunk; 888 buf += mchunk; 889 mbytes -= mchunk; 890 } 891 out: 892 return result; 893 } 894 895 static int kimage_load_segment(struct kimage *image, 896 struct kexec_segment *segment) 897 { 898 int result = -ENOMEM; 899 900 switch (image->type) { 901 case KEXEC_TYPE_DEFAULT: 902 result = kimage_load_normal_segment(image, segment); 903 break; 904 case KEXEC_TYPE_CRASH: 905 result = kimage_load_crash_segment(image, segment); 906 break; 907 } 908 909 return result; 910 } 911 912 /* 913 * Exec Kernel system call: for obvious reasons only root may call it. 914 * 915 * This call breaks up into three pieces. 916 * - A generic part which loads the new kernel from the current 917 * address space, and very carefully places the data in the 918 * allocated pages. 919 * 920 * - A generic part that interacts with the kernel and tells all of 921 * the devices to shut down. Preventing on-going dmas, and placing 922 * the devices in a consistent state so a later kernel can 923 * reinitialize them. 924 * 925 * - A machine specific part that includes the syscall number 926 * and then copies the image to it's final destination. And 927 * jumps into the image at entry. 928 * 929 * kexec does not sync, or unmount filesystems so if you need 930 * that to happen you need to do that yourself. 931 */ 932 struct kimage *kexec_image; 933 struct kimage *kexec_crash_image; 934 int kexec_load_disabled; 935 936 static DEFINE_MUTEX(kexec_mutex); 937 938 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 939 struct kexec_segment __user *, segments, unsigned long, flags) 940 { 941 struct kimage **dest_image, *image; 942 int result; 943 944 /* We only trust the superuser with rebooting the system. */ 945 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 946 return -EPERM; 947 948 /* 949 * Verify we have a legal set of flags 950 * This leaves us room for future extensions. 951 */ 952 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 953 return -EINVAL; 954 955 /* Verify we are on the appropriate architecture */ 956 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 957 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 958 return -EINVAL; 959 960 /* Put an artificial cap on the number 961 * of segments passed to kexec_load. 962 */ 963 if (nr_segments > KEXEC_SEGMENT_MAX) 964 return -EINVAL; 965 966 image = NULL; 967 result = 0; 968 969 /* Because we write directly to the reserved memory 970 * region when loading crash kernels we need a mutex here to 971 * prevent multiple crash kernels from attempting to load 972 * simultaneously, and to prevent a crash kernel from loading 973 * over the top of a in use crash kernel. 974 * 975 * KISS: always take the mutex. 976 */ 977 if (!mutex_trylock(&kexec_mutex)) 978 return -EBUSY; 979 980 dest_image = &kexec_image; 981 if (flags & KEXEC_ON_CRASH) 982 dest_image = &kexec_crash_image; 983 if (nr_segments > 0) { 984 unsigned long i; 985 986 /* Loading another kernel to reboot into */ 987 if ((flags & KEXEC_ON_CRASH) == 0) 988 result = kimage_normal_alloc(&image, entry, 989 nr_segments, segments); 990 /* Loading another kernel to switch to if this one crashes */ 991 else if (flags & KEXEC_ON_CRASH) { 992 /* Free any current crash dump kernel before 993 * we corrupt it. 994 */ 995 kimage_free(xchg(&kexec_crash_image, NULL)); 996 result = kimage_crash_alloc(&image, entry, 997 nr_segments, segments); 998 crash_map_reserved_pages(); 999 } 1000 if (result) 1001 goto out; 1002 1003 if (flags & KEXEC_PRESERVE_CONTEXT) 1004 image->preserve_context = 1; 1005 result = machine_kexec_prepare(image); 1006 if (result) 1007 goto out; 1008 1009 for (i = 0; i < nr_segments; i++) { 1010 result = kimage_load_segment(image, &image->segment[i]); 1011 if (result) 1012 goto out; 1013 } 1014 kimage_terminate(image); 1015 if (flags & KEXEC_ON_CRASH) 1016 crash_unmap_reserved_pages(); 1017 } 1018 /* Install the new kernel, and Uninstall the old */ 1019 image = xchg(dest_image, image); 1020 1021 out: 1022 mutex_unlock(&kexec_mutex); 1023 kimage_free(image); 1024 1025 return result; 1026 } 1027 1028 /* 1029 * Add and remove page tables for crashkernel memory 1030 * 1031 * Provide an empty default implementation here -- architecture 1032 * code may override this 1033 */ 1034 void __weak crash_map_reserved_pages(void) 1035 {} 1036 1037 void __weak crash_unmap_reserved_pages(void) 1038 {} 1039 1040 #ifdef CONFIG_COMPAT 1041 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 1042 compat_ulong_t, nr_segments, 1043 struct compat_kexec_segment __user *, segments, 1044 compat_ulong_t, flags) 1045 { 1046 struct compat_kexec_segment in; 1047 struct kexec_segment out, __user *ksegments; 1048 unsigned long i, result; 1049 1050 /* Don't allow clients that don't understand the native 1051 * architecture to do anything. 1052 */ 1053 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1054 return -EINVAL; 1055 1056 if (nr_segments > KEXEC_SEGMENT_MAX) 1057 return -EINVAL; 1058 1059 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1060 for (i = 0; i < nr_segments; i++) { 1061 result = copy_from_user(&in, &segments[i], sizeof(in)); 1062 if (result) 1063 return -EFAULT; 1064 1065 out.buf = compat_ptr(in.buf); 1066 out.bufsz = in.bufsz; 1067 out.mem = in.mem; 1068 out.memsz = in.memsz; 1069 1070 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1071 if (result) 1072 return -EFAULT; 1073 } 1074 1075 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1076 } 1077 #endif 1078 1079 void crash_kexec(struct pt_regs *regs) 1080 { 1081 /* Take the kexec_mutex here to prevent sys_kexec_load 1082 * running on one cpu from replacing the crash kernel 1083 * we are using after a panic on a different cpu. 1084 * 1085 * If the crash kernel was not located in a fixed area 1086 * of memory the xchg(&kexec_crash_image) would be 1087 * sufficient. But since I reuse the memory... 1088 */ 1089 if (mutex_trylock(&kexec_mutex)) { 1090 if (kexec_crash_image) { 1091 struct pt_regs fixed_regs; 1092 1093 crash_setup_regs(&fixed_regs, regs); 1094 crash_save_vmcoreinfo(); 1095 machine_crash_shutdown(&fixed_regs); 1096 machine_kexec(kexec_crash_image); 1097 } 1098 mutex_unlock(&kexec_mutex); 1099 } 1100 } 1101 1102 size_t crash_get_memory_size(void) 1103 { 1104 size_t size = 0; 1105 mutex_lock(&kexec_mutex); 1106 if (crashk_res.end != crashk_res.start) 1107 size = resource_size(&crashk_res); 1108 mutex_unlock(&kexec_mutex); 1109 return size; 1110 } 1111 1112 void __weak crash_free_reserved_phys_range(unsigned long begin, 1113 unsigned long end) 1114 { 1115 unsigned long addr; 1116 1117 for (addr = begin; addr < end; addr += PAGE_SIZE) 1118 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1119 } 1120 1121 int crash_shrink_memory(unsigned long new_size) 1122 { 1123 int ret = 0; 1124 unsigned long start, end; 1125 unsigned long old_size; 1126 struct resource *ram_res; 1127 1128 mutex_lock(&kexec_mutex); 1129 1130 if (kexec_crash_image) { 1131 ret = -ENOENT; 1132 goto unlock; 1133 } 1134 start = crashk_res.start; 1135 end = crashk_res.end; 1136 old_size = (end == 0) ? 0 : end - start + 1; 1137 if (new_size >= old_size) { 1138 ret = (new_size == old_size) ? 0 : -EINVAL; 1139 goto unlock; 1140 } 1141 1142 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1143 if (!ram_res) { 1144 ret = -ENOMEM; 1145 goto unlock; 1146 } 1147 1148 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1149 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1150 1151 crash_map_reserved_pages(); 1152 crash_free_reserved_phys_range(end, crashk_res.end); 1153 1154 if ((start == end) && (crashk_res.parent != NULL)) 1155 release_resource(&crashk_res); 1156 1157 ram_res->start = end; 1158 ram_res->end = crashk_res.end; 1159 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1160 ram_res->name = "System RAM"; 1161 1162 crashk_res.end = end - 1; 1163 1164 insert_resource(&iomem_resource, ram_res); 1165 crash_unmap_reserved_pages(); 1166 1167 unlock: 1168 mutex_unlock(&kexec_mutex); 1169 return ret; 1170 } 1171 1172 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1173 size_t data_len) 1174 { 1175 struct elf_note note; 1176 1177 note.n_namesz = strlen(name) + 1; 1178 note.n_descsz = data_len; 1179 note.n_type = type; 1180 memcpy(buf, ¬e, sizeof(note)); 1181 buf += (sizeof(note) + 3)/4; 1182 memcpy(buf, name, note.n_namesz); 1183 buf += (note.n_namesz + 3)/4; 1184 memcpy(buf, data, note.n_descsz); 1185 buf += (note.n_descsz + 3)/4; 1186 1187 return buf; 1188 } 1189 1190 static void final_note(u32 *buf) 1191 { 1192 struct elf_note note; 1193 1194 note.n_namesz = 0; 1195 note.n_descsz = 0; 1196 note.n_type = 0; 1197 memcpy(buf, ¬e, sizeof(note)); 1198 } 1199 1200 void crash_save_cpu(struct pt_regs *regs, int cpu) 1201 { 1202 struct elf_prstatus prstatus; 1203 u32 *buf; 1204 1205 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1206 return; 1207 1208 /* Using ELF notes here is opportunistic. 1209 * I need a well defined structure format 1210 * for the data I pass, and I need tags 1211 * on the data to indicate what information I have 1212 * squirrelled away. ELF notes happen to provide 1213 * all of that, so there is no need to invent something new. 1214 */ 1215 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1216 if (!buf) 1217 return; 1218 memset(&prstatus, 0, sizeof(prstatus)); 1219 prstatus.pr_pid = current->pid; 1220 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1221 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1222 &prstatus, sizeof(prstatus)); 1223 final_note(buf); 1224 } 1225 1226 static int __init crash_notes_memory_init(void) 1227 { 1228 /* Allocate memory for saving cpu registers. */ 1229 crash_notes = alloc_percpu(note_buf_t); 1230 if (!crash_notes) { 1231 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); 1232 return -ENOMEM; 1233 } 1234 return 0; 1235 } 1236 subsys_initcall(crash_notes_memory_init); 1237 1238 1239 /* 1240 * parsing the "crashkernel" commandline 1241 * 1242 * this code is intended to be called from architecture specific code 1243 */ 1244 1245 1246 /* 1247 * This function parses command lines in the format 1248 * 1249 * crashkernel=ramsize-range:size[,...][@offset] 1250 * 1251 * The function returns 0 on success and -EINVAL on failure. 1252 */ 1253 static int __init parse_crashkernel_mem(char *cmdline, 1254 unsigned long long system_ram, 1255 unsigned long long *crash_size, 1256 unsigned long long *crash_base) 1257 { 1258 char *cur = cmdline, *tmp; 1259 1260 /* for each entry of the comma-separated list */ 1261 do { 1262 unsigned long long start, end = ULLONG_MAX, size; 1263 1264 /* get the start of the range */ 1265 start = memparse(cur, &tmp); 1266 if (cur == tmp) { 1267 pr_warn("crashkernel: Memory value expected\n"); 1268 return -EINVAL; 1269 } 1270 cur = tmp; 1271 if (*cur != '-') { 1272 pr_warn("crashkernel: '-' expected\n"); 1273 return -EINVAL; 1274 } 1275 cur++; 1276 1277 /* if no ':' is here, than we read the end */ 1278 if (*cur != ':') { 1279 end = memparse(cur, &tmp); 1280 if (cur == tmp) { 1281 pr_warn("crashkernel: Memory value expected\n"); 1282 return -EINVAL; 1283 } 1284 cur = tmp; 1285 if (end <= start) { 1286 pr_warn("crashkernel: end <= start\n"); 1287 return -EINVAL; 1288 } 1289 } 1290 1291 if (*cur != ':') { 1292 pr_warn("crashkernel: ':' expected\n"); 1293 return -EINVAL; 1294 } 1295 cur++; 1296 1297 size = memparse(cur, &tmp); 1298 if (cur == tmp) { 1299 pr_warn("Memory value expected\n"); 1300 return -EINVAL; 1301 } 1302 cur = tmp; 1303 if (size >= system_ram) { 1304 pr_warn("crashkernel: invalid size\n"); 1305 return -EINVAL; 1306 } 1307 1308 /* match ? */ 1309 if (system_ram >= start && system_ram < end) { 1310 *crash_size = size; 1311 break; 1312 } 1313 } while (*cur++ == ','); 1314 1315 if (*crash_size > 0) { 1316 while (*cur && *cur != ' ' && *cur != '@') 1317 cur++; 1318 if (*cur == '@') { 1319 cur++; 1320 *crash_base = memparse(cur, &tmp); 1321 if (cur == tmp) { 1322 pr_warn("Memory value expected after '@'\n"); 1323 return -EINVAL; 1324 } 1325 } 1326 } 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * That function parses "simple" (old) crashkernel command lines like 1333 * 1334 * crashkernel=size[@offset] 1335 * 1336 * It returns 0 on success and -EINVAL on failure. 1337 */ 1338 static int __init parse_crashkernel_simple(char *cmdline, 1339 unsigned long long *crash_size, 1340 unsigned long long *crash_base) 1341 { 1342 char *cur = cmdline; 1343 1344 *crash_size = memparse(cmdline, &cur); 1345 if (cmdline == cur) { 1346 pr_warn("crashkernel: memory value expected\n"); 1347 return -EINVAL; 1348 } 1349 1350 if (*cur == '@') 1351 *crash_base = memparse(cur+1, &cur); 1352 else if (*cur != ' ' && *cur != '\0') { 1353 pr_warn("crashkernel: unrecognized char\n"); 1354 return -EINVAL; 1355 } 1356 1357 return 0; 1358 } 1359 1360 #define SUFFIX_HIGH 0 1361 #define SUFFIX_LOW 1 1362 #define SUFFIX_NULL 2 1363 static __initdata char *suffix_tbl[] = { 1364 [SUFFIX_HIGH] = ",high", 1365 [SUFFIX_LOW] = ",low", 1366 [SUFFIX_NULL] = NULL, 1367 }; 1368 1369 /* 1370 * That function parses "suffix" crashkernel command lines like 1371 * 1372 * crashkernel=size,[high|low] 1373 * 1374 * It returns 0 on success and -EINVAL on failure. 1375 */ 1376 static int __init parse_crashkernel_suffix(char *cmdline, 1377 unsigned long long *crash_size, 1378 unsigned long long *crash_base, 1379 const char *suffix) 1380 { 1381 char *cur = cmdline; 1382 1383 *crash_size = memparse(cmdline, &cur); 1384 if (cmdline == cur) { 1385 pr_warn("crashkernel: memory value expected\n"); 1386 return -EINVAL; 1387 } 1388 1389 /* check with suffix */ 1390 if (strncmp(cur, suffix, strlen(suffix))) { 1391 pr_warn("crashkernel: unrecognized char\n"); 1392 return -EINVAL; 1393 } 1394 cur += strlen(suffix); 1395 if (*cur != ' ' && *cur != '\0') { 1396 pr_warn("crashkernel: unrecognized char\n"); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static __init char *get_last_crashkernel(char *cmdline, 1404 const char *name, 1405 const char *suffix) 1406 { 1407 char *p = cmdline, *ck_cmdline = NULL; 1408 1409 /* find crashkernel and use the last one if there are more */ 1410 p = strstr(p, name); 1411 while (p) { 1412 char *end_p = strchr(p, ' '); 1413 char *q; 1414 1415 if (!end_p) 1416 end_p = p + strlen(p); 1417 1418 if (!suffix) { 1419 int i; 1420 1421 /* skip the one with any known suffix */ 1422 for (i = 0; suffix_tbl[i]; i++) { 1423 q = end_p - strlen(suffix_tbl[i]); 1424 if (!strncmp(q, suffix_tbl[i], 1425 strlen(suffix_tbl[i]))) 1426 goto next; 1427 } 1428 ck_cmdline = p; 1429 } else { 1430 q = end_p - strlen(suffix); 1431 if (!strncmp(q, suffix, strlen(suffix))) 1432 ck_cmdline = p; 1433 } 1434 next: 1435 p = strstr(p+1, name); 1436 } 1437 1438 if (!ck_cmdline) 1439 return NULL; 1440 1441 return ck_cmdline; 1442 } 1443 1444 static int __init __parse_crashkernel(char *cmdline, 1445 unsigned long long system_ram, 1446 unsigned long long *crash_size, 1447 unsigned long long *crash_base, 1448 const char *name, 1449 const char *suffix) 1450 { 1451 char *first_colon, *first_space; 1452 char *ck_cmdline; 1453 1454 BUG_ON(!crash_size || !crash_base); 1455 *crash_size = 0; 1456 *crash_base = 0; 1457 1458 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1459 1460 if (!ck_cmdline) 1461 return -EINVAL; 1462 1463 ck_cmdline += strlen(name); 1464 1465 if (suffix) 1466 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1467 crash_base, suffix); 1468 /* 1469 * if the commandline contains a ':', then that's the extended 1470 * syntax -- if not, it must be the classic syntax 1471 */ 1472 first_colon = strchr(ck_cmdline, ':'); 1473 first_space = strchr(ck_cmdline, ' '); 1474 if (first_colon && (!first_space || first_colon < first_space)) 1475 return parse_crashkernel_mem(ck_cmdline, system_ram, 1476 crash_size, crash_base); 1477 1478 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1479 } 1480 1481 /* 1482 * That function is the entry point for command line parsing and should be 1483 * called from the arch-specific code. 1484 */ 1485 int __init parse_crashkernel(char *cmdline, 1486 unsigned long long system_ram, 1487 unsigned long long *crash_size, 1488 unsigned long long *crash_base) 1489 { 1490 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1491 "crashkernel=", NULL); 1492 } 1493 1494 int __init parse_crashkernel_high(char *cmdline, 1495 unsigned long long system_ram, 1496 unsigned long long *crash_size, 1497 unsigned long long *crash_base) 1498 { 1499 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1500 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1501 } 1502 1503 int __init parse_crashkernel_low(char *cmdline, 1504 unsigned long long system_ram, 1505 unsigned long long *crash_size, 1506 unsigned long long *crash_base) 1507 { 1508 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1509 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1510 } 1511 1512 static void update_vmcoreinfo_note(void) 1513 { 1514 u32 *buf = vmcoreinfo_note; 1515 1516 if (!vmcoreinfo_size) 1517 return; 1518 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1519 vmcoreinfo_size); 1520 final_note(buf); 1521 } 1522 1523 void crash_save_vmcoreinfo(void) 1524 { 1525 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1526 update_vmcoreinfo_note(); 1527 } 1528 1529 void vmcoreinfo_append_str(const char *fmt, ...) 1530 { 1531 va_list args; 1532 char buf[0x50]; 1533 size_t r; 1534 1535 va_start(args, fmt); 1536 r = vscnprintf(buf, sizeof(buf), fmt, args); 1537 va_end(args); 1538 1539 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1540 1541 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1542 1543 vmcoreinfo_size += r; 1544 } 1545 1546 /* 1547 * provide an empty default implementation here -- architecture 1548 * code may override this 1549 */ 1550 void __weak arch_crash_save_vmcoreinfo(void) 1551 {} 1552 1553 unsigned long __weak paddr_vmcoreinfo_note(void) 1554 { 1555 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1556 } 1557 1558 static int __init crash_save_vmcoreinfo_init(void) 1559 { 1560 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1561 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1562 1563 VMCOREINFO_SYMBOL(init_uts_ns); 1564 VMCOREINFO_SYMBOL(node_online_map); 1565 #ifdef CONFIG_MMU 1566 VMCOREINFO_SYMBOL(swapper_pg_dir); 1567 #endif 1568 VMCOREINFO_SYMBOL(_stext); 1569 VMCOREINFO_SYMBOL(vmap_area_list); 1570 1571 #ifndef CONFIG_NEED_MULTIPLE_NODES 1572 VMCOREINFO_SYMBOL(mem_map); 1573 VMCOREINFO_SYMBOL(contig_page_data); 1574 #endif 1575 #ifdef CONFIG_SPARSEMEM 1576 VMCOREINFO_SYMBOL(mem_section); 1577 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1578 VMCOREINFO_STRUCT_SIZE(mem_section); 1579 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1580 #endif 1581 VMCOREINFO_STRUCT_SIZE(page); 1582 VMCOREINFO_STRUCT_SIZE(pglist_data); 1583 VMCOREINFO_STRUCT_SIZE(zone); 1584 VMCOREINFO_STRUCT_SIZE(free_area); 1585 VMCOREINFO_STRUCT_SIZE(list_head); 1586 VMCOREINFO_SIZE(nodemask_t); 1587 VMCOREINFO_OFFSET(page, flags); 1588 VMCOREINFO_OFFSET(page, _count); 1589 VMCOREINFO_OFFSET(page, mapping); 1590 VMCOREINFO_OFFSET(page, lru); 1591 VMCOREINFO_OFFSET(page, _mapcount); 1592 VMCOREINFO_OFFSET(page, private); 1593 VMCOREINFO_OFFSET(pglist_data, node_zones); 1594 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1595 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1596 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1597 #endif 1598 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1599 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1600 VMCOREINFO_OFFSET(pglist_data, node_id); 1601 VMCOREINFO_OFFSET(zone, free_area); 1602 VMCOREINFO_OFFSET(zone, vm_stat); 1603 VMCOREINFO_OFFSET(zone, spanned_pages); 1604 VMCOREINFO_OFFSET(free_area, free_list); 1605 VMCOREINFO_OFFSET(list_head, next); 1606 VMCOREINFO_OFFSET(list_head, prev); 1607 VMCOREINFO_OFFSET(vmap_area, va_start); 1608 VMCOREINFO_OFFSET(vmap_area, list); 1609 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1610 log_buf_kexec_setup(); 1611 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1612 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1613 VMCOREINFO_NUMBER(PG_lru); 1614 VMCOREINFO_NUMBER(PG_private); 1615 VMCOREINFO_NUMBER(PG_swapcache); 1616 VMCOREINFO_NUMBER(PG_slab); 1617 #ifdef CONFIG_MEMORY_FAILURE 1618 VMCOREINFO_NUMBER(PG_hwpoison); 1619 #endif 1620 VMCOREINFO_NUMBER(PG_head_mask); 1621 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 1622 1623 arch_crash_save_vmcoreinfo(); 1624 update_vmcoreinfo_note(); 1625 1626 return 0; 1627 } 1628 1629 subsys_initcall(crash_save_vmcoreinfo_init); 1630 1631 /* 1632 * Move into place and start executing a preloaded standalone 1633 * executable. If nothing was preloaded return an error. 1634 */ 1635 int kernel_kexec(void) 1636 { 1637 int error = 0; 1638 1639 if (!mutex_trylock(&kexec_mutex)) 1640 return -EBUSY; 1641 if (!kexec_image) { 1642 error = -EINVAL; 1643 goto Unlock; 1644 } 1645 1646 #ifdef CONFIG_KEXEC_JUMP 1647 if (kexec_image->preserve_context) { 1648 lock_system_sleep(); 1649 pm_prepare_console(); 1650 error = freeze_processes(); 1651 if (error) { 1652 error = -EBUSY; 1653 goto Restore_console; 1654 } 1655 suspend_console(); 1656 error = dpm_suspend_start(PMSG_FREEZE); 1657 if (error) 1658 goto Resume_console; 1659 /* At this point, dpm_suspend_start() has been called, 1660 * but *not* dpm_suspend_end(). We *must* call 1661 * dpm_suspend_end() now. Otherwise, drivers for 1662 * some devices (e.g. interrupt controllers) become 1663 * desynchronized with the actual state of the 1664 * hardware at resume time, and evil weirdness ensues. 1665 */ 1666 error = dpm_suspend_end(PMSG_FREEZE); 1667 if (error) 1668 goto Resume_devices; 1669 error = disable_nonboot_cpus(); 1670 if (error) 1671 goto Enable_cpus; 1672 local_irq_disable(); 1673 error = syscore_suspend(); 1674 if (error) 1675 goto Enable_irqs; 1676 } else 1677 #endif 1678 { 1679 kexec_in_progress = true; 1680 kernel_restart_prepare(NULL); 1681 migrate_to_reboot_cpu(); 1682 1683 /* 1684 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1685 * no further code needs to use CPU hotplug (which is true in 1686 * the reboot case). However, the kexec path depends on using 1687 * CPU hotplug again; so re-enable it here. 1688 */ 1689 cpu_hotplug_enable(); 1690 pr_emerg("Starting new kernel\n"); 1691 machine_shutdown(); 1692 } 1693 1694 machine_kexec(kexec_image); 1695 1696 #ifdef CONFIG_KEXEC_JUMP 1697 if (kexec_image->preserve_context) { 1698 syscore_resume(); 1699 Enable_irqs: 1700 local_irq_enable(); 1701 Enable_cpus: 1702 enable_nonboot_cpus(); 1703 dpm_resume_start(PMSG_RESTORE); 1704 Resume_devices: 1705 dpm_resume_end(PMSG_RESTORE); 1706 Resume_console: 1707 resume_console(); 1708 thaw_processes(); 1709 Restore_console: 1710 pm_restore_console(); 1711 unlock_system_sleep(); 1712 } 1713 #endif 1714 1715 Unlock: 1716 mutex_unlock(&kexec_mutex); 1717 return error; 1718 } 1719