xref: /openbmc/linux/kernel/kexec.c (revision bc5aa3a0)
1 /*
2  * kexec.c - kexec_load system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/syscalls.h>
18 #include <linux/vmalloc.h>
19 #include <linux/slab.h>
20 
21 #include "kexec_internal.h"
22 
23 static int copy_user_segment_list(struct kimage *image,
24 				  unsigned long nr_segments,
25 				  struct kexec_segment __user *segments)
26 {
27 	int ret;
28 	size_t segment_bytes;
29 
30 	/* Read in the segments */
31 	image->nr_segments = nr_segments;
32 	segment_bytes = nr_segments * sizeof(*segments);
33 	ret = copy_from_user(image->segment, segments, segment_bytes);
34 	if (ret)
35 		ret = -EFAULT;
36 
37 	return ret;
38 }
39 
40 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 			     unsigned long nr_segments,
42 			     struct kexec_segment __user *segments,
43 			     unsigned long flags)
44 {
45 	int ret;
46 	struct kimage *image;
47 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48 
49 	if (kexec_on_panic) {
50 		/* Verify we have a valid entry point */
51 		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
52 		    (entry > phys_to_boot_phys(crashk_res.end)))
53 			return -EADDRNOTAVAIL;
54 	}
55 
56 	/* Allocate and initialize a controlling structure */
57 	image = do_kimage_alloc_init();
58 	if (!image)
59 		return -ENOMEM;
60 
61 	image->start = entry;
62 
63 	ret = copy_user_segment_list(image, nr_segments, segments);
64 	if (ret)
65 		goto out_free_image;
66 
67 	if (kexec_on_panic) {
68 		/* Enable special crash kernel control page alloc policy. */
69 		image->control_page = crashk_res.start;
70 		image->type = KEXEC_TYPE_CRASH;
71 	}
72 
73 	ret = sanity_check_segment_list(image);
74 	if (ret)
75 		goto out_free_image;
76 
77 	/*
78 	 * Find a location for the control code buffer, and add it
79 	 * the vector of segments so that it's pages will also be
80 	 * counted as destination pages.
81 	 */
82 	ret = -ENOMEM;
83 	image->control_code_page = kimage_alloc_control_pages(image,
84 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
85 	if (!image->control_code_page) {
86 		pr_err("Could not allocate control_code_buffer\n");
87 		goto out_free_image;
88 	}
89 
90 	if (!kexec_on_panic) {
91 		image->swap_page = kimage_alloc_control_pages(image, 0);
92 		if (!image->swap_page) {
93 			pr_err("Could not allocate swap buffer\n");
94 			goto out_free_control_pages;
95 		}
96 	}
97 
98 	*rimage = image;
99 	return 0;
100 out_free_control_pages:
101 	kimage_free_page_list(&image->control_pages);
102 out_free_image:
103 	kfree(image);
104 	return ret;
105 }
106 
107 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
108 		struct kexec_segment __user *segments, unsigned long flags)
109 {
110 	struct kimage **dest_image, *image;
111 	unsigned long i;
112 	int ret;
113 
114 	if (flags & KEXEC_ON_CRASH) {
115 		dest_image = &kexec_crash_image;
116 		if (kexec_crash_image)
117 			arch_kexec_unprotect_crashkres();
118 	} else {
119 		dest_image = &kexec_image;
120 	}
121 
122 	if (nr_segments == 0) {
123 		/* Uninstall image */
124 		kimage_free(xchg(dest_image, NULL));
125 		return 0;
126 	}
127 	if (flags & KEXEC_ON_CRASH) {
128 		/*
129 		 * Loading another kernel to switch to if this one
130 		 * crashes.  Free any current crash dump kernel before
131 		 * we corrupt it.
132 		 */
133 		kimage_free(xchg(&kexec_crash_image, NULL));
134 	}
135 
136 	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
137 	if (ret)
138 		return ret;
139 
140 	if (flags & KEXEC_PRESERVE_CONTEXT)
141 		image->preserve_context = 1;
142 
143 	ret = machine_kexec_prepare(image);
144 	if (ret)
145 		goto out;
146 
147 	for (i = 0; i < nr_segments; i++) {
148 		ret = kimage_load_segment(image, &image->segment[i]);
149 		if (ret)
150 			goto out;
151 	}
152 
153 	kimage_terminate(image);
154 
155 	/* Install the new kernel and uninstall the old */
156 	image = xchg(dest_image, image);
157 
158 out:
159 	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
160 		arch_kexec_protect_crashkres();
161 
162 	kimage_free(image);
163 	return ret;
164 }
165 
166 /*
167  * Exec Kernel system call: for obvious reasons only root may call it.
168  *
169  * This call breaks up into three pieces.
170  * - A generic part which loads the new kernel from the current
171  *   address space, and very carefully places the data in the
172  *   allocated pages.
173  *
174  * - A generic part that interacts with the kernel and tells all of
175  *   the devices to shut down.  Preventing on-going dmas, and placing
176  *   the devices in a consistent state so a later kernel can
177  *   reinitialize them.
178  *
179  * - A machine specific part that includes the syscall number
180  *   and then copies the image to it's final destination.  And
181  *   jumps into the image at entry.
182  *
183  * kexec does not sync, or unmount filesystems so if you need
184  * that to happen you need to do that yourself.
185  */
186 
187 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
188 		struct kexec_segment __user *, segments, unsigned long, flags)
189 {
190 	int result;
191 
192 	/* We only trust the superuser with rebooting the system. */
193 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
194 		return -EPERM;
195 
196 	/*
197 	 * Verify we have a legal set of flags
198 	 * This leaves us room for future extensions.
199 	 */
200 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
201 		return -EINVAL;
202 
203 	/* Verify we are on the appropriate architecture */
204 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
205 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
206 		return -EINVAL;
207 
208 	/* Put an artificial cap on the number
209 	 * of segments passed to kexec_load.
210 	 */
211 	if (nr_segments > KEXEC_SEGMENT_MAX)
212 		return -EINVAL;
213 
214 	/* Because we write directly to the reserved memory
215 	 * region when loading crash kernels we need a mutex here to
216 	 * prevent multiple crash  kernels from attempting to load
217 	 * simultaneously, and to prevent a crash kernel from loading
218 	 * over the top of a in use crash kernel.
219 	 *
220 	 * KISS: always take the mutex.
221 	 */
222 	if (!mutex_trylock(&kexec_mutex))
223 		return -EBUSY;
224 
225 	result = do_kexec_load(entry, nr_segments, segments, flags);
226 
227 	mutex_unlock(&kexec_mutex);
228 
229 	return result;
230 }
231 
232 #ifdef CONFIG_COMPAT
233 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
234 		       compat_ulong_t, nr_segments,
235 		       struct compat_kexec_segment __user *, segments,
236 		       compat_ulong_t, flags)
237 {
238 	struct compat_kexec_segment in;
239 	struct kexec_segment out, __user *ksegments;
240 	unsigned long i, result;
241 
242 	/* Don't allow clients that don't understand the native
243 	 * architecture to do anything.
244 	 */
245 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
246 		return -EINVAL;
247 
248 	if (nr_segments > KEXEC_SEGMENT_MAX)
249 		return -EINVAL;
250 
251 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
252 	for (i = 0; i < nr_segments; i++) {
253 		result = copy_from_user(&in, &segments[i], sizeof(in));
254 		if (result)
255 			return -EFAULT;
256 
257 		out.buf   = compat_ptr(in.buf);
258 		out.bufsz = in.bufsz;
259 		out.mem   = in.mem;
260 		out.memsz = in.memsz;
261 
262 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
263 		if (result)
264 			return -EFAULT;
265 	}
266 
267 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
268 }
269 #endif
270