1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <generated/utsrelease.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/pm.h> 31 #include <linux/cpu.h> 32 #include <linux/console.h> 33 #include <linux/vmalloc.h> 34 #include <linux/swap.h> 35 #include <linux/syscore_ops.h> 36 37 #include <asm/page.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/sections.h> 41 42 /* Per cpu memory for storing cpu states in case of system crash. */ 43 note_buf_t __percpu *crash_notes; 44 45 /* vmcoreinfo stuff */ 46 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 47 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 48 size_t vmcoreinfo_size; 49 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 50 51 /* Location of the reserved area for the crash kernel */ 52 struct resource crashk_res = { 53 .name = "Crash kernel", 54 .start = 0, 55 .end = 0, 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 57 }; 58 59 int kexec_should_crash(struct task_struct *p) 60 { 61 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 62 return 1; 63 return 0; 64 } 65 66 /* 67 * When kexec transitions to the new kernel there is a one-to-one 68 * mapping between physical and virtual addresses. On processors 69 * where you can disable the MMU this is trivial, and easy. For 70 * others it is still a simple predictable page table to setup. 71 * 72 * In that environment kexec copies the new kernel to its final 73 * resting place. This means I can only support memory whose 74 * physical address can fit in an unsigned long. In particular 75 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 76 * If the assembly stub has more restrictive requirements 77 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 78 * defined more restrictively in <asm/kexec.h>. 79 * 80 * The code for the transition from the current kernel to the 81 * the new kernel is placed in the control_code_buffer, whose size 82 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 83 * page of memory is necessary, but some architectures require more. 84 * Because this memory must be identity mapped in the transition from 85 * virtual to physical addresses it must live in the range 86 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 87 * modifiable. 88 * 89 * The assembly stub in the control code buffer is passed a linked list 90 * of descriptor pages detailing the source pages of the new kernel, 91 * and the destination addresses of those source pages. As this data 92 * structure is not used in the context of the current OS, it must 93 * be self-contained. 94 * 95 * The code has been made to work with highmem pages and will use a 96 * destination page in its final resting place (if it happens 97 * to allocate it). The end product of this is that most of the 98 * physical address space, and most of RAM can be used. 99 * 100 * Future directions include: 101 * - allocating a page table with the control code buffer identity 102 * mapped, to simplify machine_kexec and make kexec_on_panic more 103 * reliable. 104 */ 105 106 /* 107 * KIMAGE_NO_DEST is an impossible destination address..., for 108 * allocating pages whose destination address we do not care about. 109 */ 110 #define KIMAGE_NO_DEST (-1UL) 111 112 static int kimage_is_destination_range(struct kimage *image, 113 unsigned long start, unsigned long end); 114 static struct page *kimage_alloc_page(struct kimage *image, 115 gfp_t gfp_mask, 116 unsigned long dest); 117 118 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 119 unsigned long nr_segments, 120 struct kexec_segment __user *segments) 121 { 122 size_t segment_bytes; 123 struct kimage *image; 124 unsigned long i; 125 int result; 126 127 /* Allocate a controlling structure */ 128 result = -ENOMEM; 129 image = kzalloc(sizeof(*image), GFP_KERNEL); 130 if (!image) 131 goto out; 132 133 image->head = 0; 134 image->entry = &image->head; 135 image->last_entry = &image->head; 136 image->control_page = ~0; /* By default this does not apply */ 137 image->start = entry; 138 image->type = KEXEC_TYPE_DEFAULT; 139 140 /* Initialize the list of control pages */ 141 INIT_LIST_HEAD(&image->control_pages); 142 143 /* Initialize the list of destination pages */ 144 INIT_LIST_HEAD(&image->dest_pages); 145 146 /* Initialize the list of unusable pages */ 147 INIT_LIST_HEAD(&image->unuseable_pages); 148 149 /* Read in the segments */ 150 image->nr_segments = nr_segments; 151 segment_bytes = nr_segments * sizeof(*segments); 152 result = copy_from_user(image->segment, segments, segment_bytes); 153 if (result) { 154 result = -EFAULT; 155 goto out; 156 } 157 158 /* 159 * Verify we have good destination addresses. The caller is 160 * responsible for making certain we don't attempt to load 161 * the new image into invalid or reserved areas of RAM. This 162 * just verifies it is an address we can use. 163 * 164 * Since the kernel does everything in page size chunks ensure 165 * the destination addresses are page aligned. Too many 166 * special cases crop of when we don't do this. The most 167 * insidious is getting overlapping destination addresses 168 * simply because addresses are changed to page size 169 * granularity. 170 */ 171 result = -EADDRNOTAVAIL; 172 for (i = 0; i < nr_segments; i++) { 173 unsigned long mstart, mend; 174 175 mstart = image->segment[i].mem; 176 mend = mstart + image->segment[i].memsz; 177 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 178 goto out; 179 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 180 goto out; 181 } 182 183 /* Verify our destination addresses do not overlap. 184 * If we alloed overlapping destination addresses 185 * through very weird things can happen with no 186 * easy explanation as one segment stops on another. 187 */ 188 result = -EINVAL; 189 for (i = 0; i < nr_segments; i++) { 190 unsigned long mstart, mend; 191 unsigned long j; 192 193 mstart = image->segment[i].mem; 194 mend = mstart + image->segment[i].memsz; 195 for (j = 0; j < i; j++) { 196 unsigned long pstart, pend; 197 pstart = image->segment[j].mem; 198 pend = pstart + image->segment[j].memsz; 199 /* Do the segments overlap ? */ 200 if ((mend > pstart) && (mstart < pend)) 201 goto out; 202 } 203 } 204 205 /* Ensure our buffer sizes are strictly less than 206 * our memory sizes. This should always be the case, 207 * and it is easier to check up front than to be surprised 208 * later on. 209 */ 210 result = -EINVAL; 211 for (i = 0; i < nr_segments; i++) { 212 if (image->segment[i].bufsz > image->segment[i].memsz) 213 goto out; 214 } 215 216 result = 0; 217 out: 218 if (result == 0) 219 *rimage = image; 220 else 221 kfree(image); 222 223 return result; 224 225 } 226 227 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 228 unsigned long nr_segments, 229 struct kexec_segment __user *segments) 230 { 231 int result; 232 struct kimage *image; 233 234 /* Allocate and initialize a controlling structure */ 235 image = NULL; 236 result = do_kimage_alloc(&image, entry, nr_segments, segments); 237 if (result) 238 goto out; 239 240 *rimage = image; 241 242 /* 243 * Find a location for the control code buffer, and add it 244 * the vector of segments so that it's pages will also be 245 * counted as destination pages. 246 */ 247 result = -ENOMEM; 248 image->control_code_page = kimage_alloc_control_pages(image, 249 get_order(KEXEC_CONTROL_PAGE_SIZE)); 250 if (!image->control_code_page) { 251 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 252 goto out; 253 } 254 255 image->swap_page = kimage_alloc_control_pages(image, 0); 256 if (!image->swap_page) { 257 printk(KERN_ERR "Could not allocate swap buffer\n"); 258 goto out; 259 } 260 261 result = 0; 262 out: 263 if (result == 0) 264 *rimage = image; 265 else 266 kfree(image); 267 268 return result; 269 } 270 271 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 272 unsigned long nr_segments, 273 struct kexec_segment __user *segments) 274 { 275 int result; 276 struct kimage *image; 277 unsigned long i; 278 279 image = NULL; 280 /* Verify we have a valid entry point */ 281 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 282 result = -EADDRNOTAVAIL; 283 goto out; 284 } 285 286 /* Allocate and initialize a controlling structure */ 287 result = do_kimage_alloc(&image, entry, nr_segments, segments); 288 if (result) 289 goto out; 290 291 /* Enable the special crash kernel control page 292 * allocation policy. 293 */ 294 image->control_page = crashk_res.start; 295 image->type = KEXEC_TYPE_CRASH; 296 297 /* 298 * Verify we have good destination addresses. Normally 299 * the caller is responsible for making certain we don't 300 * attempt to load the new image into invalid or reserved 301 * areas of RAM. But crash kernels are preloaded into a 302 * reserved area of ram. We must ensure the addresses 303 * are in the reserved area otherwise preloading the 304 * kernel could corrupt things. 305 */ 306 result = -EADDRNOTAVAIL; 307 for (i = 0; i < nr_segments; i++) { 308 unsigned long mstart, mend; 309 310 mstart = image->segment[i].mem; 311 mend = mstart + image->segment[i].memsz - 1; 312 /* Ensure we are within the crash kernel limits */ 313 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 314 goto out; 315 } 316 317 /* 318 * Find a location for the control code buffer, and add 319 * the vector of segments so that it's pages will also be 320 * counted as destination pages. 321 */ 322 result = -ENOMEM; 323 image->control_code_page = kimage_alloc_control_pages(image, 324 get_order(KEXEC_CONTROL_PAGE_SIZE)); 325 if (!image->control_code_page) { 326 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 327 goto out; 328 } 329 330 result = 0; 331 out: 332 if (result == 0) 333 *rimage = image; 334 else 335 kfree(image); 336 337 return result; 338 } 339 340 static int kimage_is_destination_range(struct kimage *image, 341 unsigned long start, 342 unsigned long end) 343 { 344 unsigned long i; 345 346 for (i = 0; i < image->nr_segments; i++) { 347 unsigned long mstart, mend; 348 349 mstart = image->segment[i].mem; 350 mend = mstart + image->segment[i].memsz; 351 if ((end > mstart) && (start < mend)) 352 return 1; 353 } 354 355 return 0; 356 } 357 358 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 359 { 360 struct page *pages; 361 362 pages = alloc_pages(gfp_mask, order); 363 if (pages) { 364 unsigned int count, i; 365 pages->mapping = NULL; 366 set_page_private(pages, order); 367 count = 1 << order; 368 for (i = 0; i < count; i++) 369 SetPageReserved(pages + i); 370 } 371 372 return pages; 373 } 374 375 static void kimage_free_pages(struct page *page) 376 { 377 unsigned int order, count, i; 378 379 order = page_private(page); 380 count = 1 << order; 381 for (i = 0; i < count; i++) 382 ClearPageReserved(page + i); 383 __free_pages(page, order); 384 } 385 386 static void kimage_free_page_list(struct list_head *list) 387 { 388 struct list_head *pos, *next; 389 390 list_for_each_safe(pos, next, list) { 391 struct page *page; 392 393 page = list_entry(pos, struct page, lru); 394 list_del(&page->lru); 395 kimage_free_pages(page); 396 } 397 } 398 399 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 400 unsigned int order) 401 { 402 /* Control pages are special, they are the intermediaries 403 * that are needed while we copy the rest of the pages 404 * to their final resting place. As such they must 405 * not conflict with either the destination addresses 406 * or memory the kernel is already using. 407 * 408 * The only case where we really need more than one of 409 * these are for architectures where we cannot disable 410 * the MMU and must instead generate an identity mapped 411 * page table for all of the memory. 412 * 413 * At worst this runs in O(N) of the image size. 414 */ 415 struct list_head extra_pages; 416 struct page *pages; 417 unsigned int count; 418 419 count = 1 << order; 420 INIT_LIST_HEAD(&extra_pages); 421 422 /* Loop while I can allocate a page and the page allocated 423 * is a destination page. 424 */ 425 do { 426 unsigned long pfn, epfn, addr, eaddr; 427 428 pages = kimage_alloc_pages(GFP_KERNEL, order); 429 if (!pages) 430 break; 431 pfn = page_to_pfn(pages); 432 epfn = pfn + count; 433 addr = pfn << PAGE_SHIFT; 434 eaddr = epfn << PAGE_SHIFT; 435 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 436 kimage_is_destination_range(image, addr, eaddr)) { 437 list_add(&pages->lru, &extra_pages); 438 pages = NULL; 439 } 440 } while (!pages); 441 442 if (pages) { 443 /* Remember the allocated page... */ 444 list_add(&pages->lru, &image->control_pages); 445 446 /* Because the page is already in it's destination 447 * location we will never allocate another page at 448 * that address. Therefore kimage_alloc_pages 449 * will not return it (again) and we don't need 450 * to give it an entry in image->segment[]. 451 */ 452 } 453 /* Deal with the destination pages I have inadvertently allocated. 454 * 455 * Ideally I would convert multi-page allocations into single 456 * page allocations, and add everything to image->dest_pages. 457 * 458 * For now it is simpler to just free the pages. 459 */ 460 kimage_free_page_list(&extra_pages); 461 462 return pages; 463 } 464 465 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 466 unsigned int order) 467 { 468 /* Control pages are special, they are the intermediaries 469 * that are needed while we copy the rest of the pages 470 * to their final resting place. As such they must 471 * not conflict with either the destination addresses 472 * or memory the kernel is already using. 473 * 474 * Control pages are also the only pags we must allocate 475 * when loading a crash kernel. All of the other pages 476 * are specified by the segments and we just memcpy 477 * into them directly. 478 * 479 * The only case where we really need more than one of 480 * these are for architectures where we cannot disable 481 * the MMU and must instead generate an identity mapped 482 * page table for all of the memory. 483 * 484 * Given the low demand this implements a very simple 485 * allocator that finds the first hole of the appropriate 486 * size in the reserved memory region, and allocates all 487 * of the memory up to and including the hole. 488 */ 489 unsigned long hole_start, hole_end, size; 490 struct page *pages; 491 492 pages = NULL; 493 size = (1 << order) << PAGE_SHIFT; 494 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 495 hole_end = hole_start + size - 1; 496 while (hole_end <= crashk_res.end) { 497 unsigned long i; 498 499 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 500 break; 501 if (hole_end > crashk_res.end) 502 break; 503 /* See if I overlap any of the segments */ 504 for (i = 0; i < image->nr_segments; i++) { 505 unsigned long mstart, mend; 506 507 mstart = image->segment[i].mem; 508 mend = mstart + image->segment[i].memsz - 1; 509 if ((hole_end >= mstart) && (hole_start <= mend)) { 510 /* Advance the hole to the end of the segment */ 511 hole_start = (mend + (size - 1)) & ~(size - 1); 512 hole_end = hole_start + size - 1; 513 break; 514 } 515 } 516 /* If I don't overlap any segments I have found my hole! */ 517 if (i == image->nr_segments) { 518 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 519 break; 520 } 521 } 522 if (pages) 523 image->control_page = hole_end; 524 525 return pages; 526 } 527 528 529 struct page *kimage_alloc_control_pages(struct kimage *image, 530 unsigned int order) 531 { 532 struct page *pages = NULL; 533 534 switch (image->type) { 535 case KEXEC_TYPE_DEFAULT: 536 pages = kimage_alloc_normal_control_pages(image, order); 537 break; 538 case KEXEC_TYPE_CRASH: 539 pages = kimage_alloc_crash_control_pages(image, order); 540 break; 541 } 542 543 return pages; 544 } 545 546 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 547 { 548 if (*image->entry != 0) 549 image->entry++; 550 551 if (image->entry == image->last_entry) { 552 kimage_entry_t *ind_page; 553 struct page *page; 554 555 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 556 if (!page) 557 return -ENOMEM; 558 559 ind_page = page_address(page); 560 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 561 image->entry = ind_page; 562 image->last_entry = ind_page + 563 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 564 } 565 *image->entry = entry; 566 image->entry++; 567 *image->entry = 0; 568 569 return 0; 570 } 571 572 static int kimage_set_destination(struct kimage *image, 573 unsigned long destination) 574 { 575 int result; 576 577 destination &= PAGE_MASK; 578 result = kimage_add_entry(image, destination | IND_DESTINATION); 579 if (result == 0) 580 image->destination = destination; 581 582 return result; 583 } 584 585 586 static int kimage_add_page(struct kimage *image, unsigned long page) 587 { 588 int result; 589 590 page &= PAGE_MASK; 591 result = kimage_add_entry(image, page | IND_SOURCE); 592 if (result == 0) 593 image->destination += PAGE_SIZE; 594 595 return result; 596 } 597 598 599 static void kimage_free_extra_pages(struct kimage *image) 600 { 601 /* Walk through and free any extra destination pages I may have */ 602 kimage_free_page_list(&image->dest_pages); 603 604 /* Walk through and free any unusable pages I have cached */ 605 kimage_free_page_list(&image->unuseable_pages); 606 607 } 608 static void kimage_terminate(struct kimage *image) 609 { 610 if (*image->entry != 0) 611 image->entry++; 612 613 *image->entry = IND_DONE; 614 } 615 616 #define for_each_kimage_entry(image, ptr, entry) \ 617 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 618 ptr = (entry & IND_INDIRECTION)? \ 619 phys_to_virt((entry & PAGE_MASK)): ptr +1) 620 621 static void kimage_free_entry(kimage_entry_t entry) 622 { 623 struct page *page; 624 625 page = pfn_to_page(entry >> PAGE_SHIFT); 626 kimage_free_pages(page); 627 } 628 629 static void kimage_free(struct kimage *image) 630 { 631 kimage_entry_t *ptr, entry; 632 kimage_entry_t ind = 0; 633 634 if (!image) 635 return; 636 637 kimage_free_extra_pages(image); 638 for_each_kimage_entry(image, ptr, entry) { 639 if (entry & IND_INDIRECTION) { 640 /* Free the previous indirection page */ 641 if (ind & IND_INDIRECTION) 642 kimage_free_entry(ind); 643 /* Save this indirection page until we are 644 * done with it. 645 */ 646 ind = entry; 647 } 648 else if (entry & IND_SOURCE) 649 kimage_free_entry(entry); 650 } 651 /* Free the final indirection page */ 652 if (ind & IND_INDIRECTION) 653 kimage_free_entry(ind); 654 655 /* Handle any machine specific cleanup */ 656 machine_kexec_cleanup(image); 657 658 /* Free the kexec control pages... */ 659 kimage_free_page_list(&image->control_pages); 660 kfree(image); 661 } 662 663 static kimage_entry_t *kimage_dst_used(struct kimage *image, 664 unsigned long page) 665 { 666 kimage_entry_t *ptr, entry; 667 unsigned long destination = 0; 668 669 for_each_kimage_entry(image, ptr, entry) { 670 if (entry & IND_DESTINATION) 671 destination = entry & PAGE_MASK; 672 else if (entry & IND_SOURCE) { 673 if (page == destination) 674 return ptr; 675 destination += PAGE_SIZE; 676 } 677 } 678 679 return NULL; 680 } 681 682 static struct page *kimage_alloc_page(struct kimage *image, 683 gfp_t gfp_mask, 684 unsigned long destination) 685 { 686 /* 687 * Here we implement safeguards to ensure that a source page 688 * is not copied to its destination page before the data on 689 * the destination page is no longer useful. 690 * 691 * To do this we maintain the invariant that a source page is 692 * either its own destination page, or it is not a 693 * destination page at all. 694 * 695 * That is slightly stronger than required, but the proof 696 * that no problems will not occur is trivial, and the 697 * implementation is simply to verify. 698 * 699 * When allocating all pages normally this algorithm will run 700 * in O(N) time, but in the worst case it will run in O(N^2) 701 * time. If the runtime is a problem the data structures can 702 * be fixed. 703 */ 704 struct page *page; 705 unsigned long addr; 706 707 /* 708 * Walk through the list of destination pages, and see if I 709 * have a match. 710 */ 711 list_for_each_entry(page, &image->dest_pages, lru) { 712 addr = page_to_pfn(page) << PAGE_SHIFT; 713 if (addr == destination) { 714 list_del(&page->lru); 715 return page; 716 } 717 } 718 page = NULL; 719 while (1) { 720 kimage_entry_t *old; 721 722 /* Allocate a page, if we run out of memory give up */ 723 page = kimage_alloc_pages(gfp_mask, 0); 724 if (!page) 725 return NULL; 726 /* If the page cannot be used file it away */ 727 if (page_to_pfn(page) > 728 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 729 list_add(&page->lru, &image->unuseable_pages); 730 continue; 731 } 732 addr = page_to_pfn(page) << PAGE_SHIFT; 733 734 /* If it is the destination page we want use it */ 735 if (addr == destination) 736 break; 737 738 /* If the page is not a destination page use it */ 739 if (!kimage_is_destination_range(image, addr, 740 addr + PAGE_SIZE)) 741 break; 742 743 /* 744 * I know that the page is someones destination page. 745 * See if there is already a source page for this 746 * destination page. And if so swap the source pages. 747 */ 748 old = kimage_dst_used(image, addr); 749 if (old) { 750 /* If so move it */ 751 unsigned long old_addr; 752 struct page *old_page; 753 754 old_addr = *old & PAGE_MASK; 755 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 756 copy_highpage(page, old_page); 757 *old = addr | (*old & ~PAGE_MASK); 758 759 /* The old page I have found cannot be a 760 * destination page, so return it if it's 761 * gfp_flags honor the ones passed in. 762 */ 763 if (!(gfp_mask & __GFP_HIGHMEM) && 764 PageHighMem(old_page)) { 765 kimage_free_pages(old_page); 766 continue; 767 } 768 addr = old_addr; 769 page = old_page; 770 break; 771 } 772 else { 773 /* Place the page on the destination list I 774 * will use it later. 775 */ 776 list_add(&page->lru, &image->dest_pages); 777 } 778 } 779 780 return page; 781 } 782 783 static int kimage_load_normal_segment(struct kimage *image, 784 struct kexec_segment *segment) 785 { 786 unsigned long maddr; 787 unsigned long ubytes, mbytes; 788 int result; 789 unsigned char __user *buf; 790 791 result = 0; 792 buf = segment->buf; 793 ubytes = segment->bufsz; 794 mbytes = segment->memsz; 795 maddr = segment->mem; 796 797 result = kimage_set_destination(image, maddr); 798 if (result < 0) 799 goto out; 800 801 while (mbytes) { 802 struct page *page; 803 char *ptr; 804 size_t uchunk, mchunk; 805 806 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 807 if (!page) { 808 result = -ENOMEM; 809 goto out; 810 } 811 result = kimage_add_page(image, page_to_pfn(page) 812 << PAGE_SHIFT); 813 if (result < 0) 814 goto out; 815 816 ptr = kmap(page); 817 /* Start with a clear page */ 818 clear_page(ptr); 819 ptr += maddr & ~PAGE_MASK; 820 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 821 if (mchunk > mbytes) 822 mchunk = mbytes; 823 824 uchunk = mchunk; 825 if (uchunk > ubytes) 826 uchunk = ubytes; 827 828 result = copy_from_user(ptr, buf, uchunk); 829 kunmap(page); 830 if (result) { 831 result = -EFAULT; 832 goto out; 833 } 834 ubytes -= uchunk; 835 maddr += mchunk; 836 buf += mchunk; 837 mbytes -= mchunk; 838 } 839 out: 840 return result; 841 } 842 843 static int kimage_load_crash_segment(struct kimage *image, 844 struct kexec_segment *segment) 845 { 846 /* For crash dumps kernels we simply copy the data from 847 * user space to it's destination. 848 * We do things a page at a time for the sake of kmap. 849 */ 850 unsigned long maddr; 851 unsigned long ubytes, mbytes; 852 int result; 853 unsigned char __user *buf; 854 855 result = 0; 856 buf = segment->buf; 857 ubytes = segment->bufsz; 858 mbytes = segment->memsz; 859 maddr = segment->mem; 860 while (mbytes) { 861 struct page *page; 862 char *ptr; 863 size_t uchunk, mchunk; 864 865 page = pfn_to_page(maddr >> PAGE_SHIFT); 866 if (!page) { 867 result = -ENOMEM; 868 goto out; 869 } 870 ptr = kmap(page); 871 ptr += maddr & ~PAGE_MASK; 872 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 873 if (mchunk > mbytes) 874 mchunk = mbytes; 875 876 uchunk = mchunk; 877 if (uchunk > ubytes) { 878 uchunk = ubytes; 879 /* Zero the trailing part of the page */ 880 memset(ptr + uchunk, 0, mchunk - uchunk); 881 } 882 result = copy_from_user(ptr, buf, uchunk); 883 kexec_flush_icache_page(page); 884 kunmap(page); 885 if (result) { 886 result = -EFAULT; 887 goto out; 888 } 889 ubytes -= uchunk; 890 maddr += mchunk; 891 buf += mchunk; 892 mbytes -= mchunk; 893 } 894 out: 895 return result; 896 } 897 898 static int kimage_load_segment(struct kimage *image, 899 struct kexec_segment *segment) 900 { 901 int result = -ENOMEM; 902 903 switch (image->type) { 904 case KEXEC_TYPE_DEFAULT: 905 result = kimage_load_normal_segment(image, segment); 906 break; 907 case KEXEC_TYPE_CRASH: 908 result = kimage_load_crash_segment(image, segment); 909 break; 910 } 911 912 return result; 913 } 914 915 /* 916 * Exec Kernel system call: for obvious reasons only root may call it. 917 * 918 * This call breaks up into three pieces. 919 * - A generic part which loads the new kernel from the current 920 * address space, and very carefully places the data in the 921 * allocated pages. 922 * 923 * - A generic part that interacts with the kernel and tells all of 924 * the devices to shut down. Preventing on-going dmas, and placing 925 * the devices in a consistent state so a later kernel can 926 * reinitialize them. 927 * 928 * - A machine specific part that includes the syscall number 929 * and the copies the image to it's final destination. And 930 * jumps into the image at entry. 931 * 932 * kexec does not sync, or unmount filesystems so if you need 933 * that to happen you need to do that yourself. 934 */ 935 struct kimage *kexec_image; 936 struct kimage *kexec_crash_image; 937 938 static DEFINE_MUTEX(kexec_mutex); 939 940 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 941 struct kexec_segment __user *, segments, unsigned long, flags) 942 { 943 struct kimage **dest_image, *image; 944 int result; 945 946 /* We only trust the superuser with rebooting the system. */ 947 if (!capable(CAP_SYS_BOOT)) 948 return -EPERM; 949 950 /* 951 * Verify we have a legal set of flags 952 * This leaves us room for future extensions. 953 */ 954 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 955 return -EINVAL; 956 957 /* Verify we are on the appropriate architecture */ 958 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 959 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 960 return -EINVAL; 961 962 /* Put an artificial cap on the number 963 * of segments passed to kexec_load. 964 */ 965 if (nr_segments > KEXEC_SEGMENT_MAX) 966 return -EINVAL; 967 968 image = NULL; 969 result = 0; 970 971 /* Because we write directly to the reserved memory 972 * region when loading crash kernels we need a mutex here to 973 * prevent multiple crash kernels from attempting to load 974 * simultaneously, and to prevent a crash kernel from loading 975 * over the top of a in use crash kernel. 976 * 977 * KISS: always take the mutex. 978 */ 979 if (!mutex_trylock(&kexec_mutex)) 980 return -EBUSY; 981 982 dest_image = &kexec_image; 983 if (flags & KEXEC_ON_CRASH) 984 dest_image = &kexec_crash_image; 985 if (nr_segments > 0) { 986 unsigned long i; 987 988 /* Loading another kernel to reboot into */ 989 if ((flags & KEXEC_ON_CRASH) == 0) 990 result = kimage_normal_alloc(&image, entry, 991 nr_segments, segments); 992 /* Loading another kernel to switch to if this one crashes */ 993 else if (flags & KEXEC_ON_CRASH) { 994 /* Free any current crash dump kernel before 995 * we corrupt it. 996 */ 997 kimage_free(xchg(&kexec_crash_image, NULL)); 998 result = kimage_crash_alloc(&image, entry, 999 nr_segments, segments); 1000 crash_map_reserved_pages(); 1001 } 1002 if (result) 1003 goto out; 1004 1005 if (flags & KEXEC_PRESERVE_CONTEXT) 1006 image->preserve_context = 1; 1007 result = machine_kexec_prepare(image); 1008 if (result) 1009 goto out; 1010 1011 for (i = 0; i < nr_segments; i++) { 1012 result = kimage_load_segment(image, &image->segment[i]); 1013 if (result) 1014 goto out; 1015 } 1016 kimage_terminate(image); 1017 if (flags & KEXEC_ON_CRASH) 1018 crash_unmap_reserved_pages(); 1019 } 1020 /* Install the new kernel, and Uninstall the old */ 1021 image = xchg(dest_image, image); 1022 1023 out: 1024 mutex_unlock(&kexec_mutex); 1025 kimage_free(image); 1026 1027 return result; 1028 } 1029 1030 /* 1031 * Add and remove page tables for crashkernel memory 1032 * 1033 * Provide an empty default implementation here -- architecture 1034 * code may override this 1035 */ 1036 void __weak crash_map_reserved_pages(void) 1037 {} 1038 1039 void __weak crash_unmap_reserved_pages(void) 1040 {} 1041 1042 #ifdef CONFIG_COMPAT 1043 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1044 unsigned long nr_segments, 1045 struct compat_kexec_segment __user *segments, 1046 unsigned long flags) 1047 { 1048 struct compat_kexec_segment in; 1049 struct kexec_segment out, __user *ksegments; 1050 unsigned long i, result; 1051 1052 /* Don't allow clients that don't understand the native 1053 * architecture to do anything. 1054 */ 1055 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1056 return -EINVAL; 1057 1058 if (nr_segments > KEXEC_SEGMENT_MAX) 1059 return -EINVAL; 1060 1061 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1062 for (i=0; i < nr_segments; i++) { 1063 result = copy_from_user(&in, &segments[i], sizeof(in)); 1064 if (result) 1065 return -EFAULT; 1066 1067 out.buf = compat_ptr(in.buf); 1068 out.bufsz = in.bufsz; 1069 out.mem = in.mem; 1070 out.memsz = in.memsz; 1071 1072 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1073 if (result) 1074 return -EFAULT; 1075 } 1076 1077 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1078 } 1079 #endif 1080 1081 void crash_kexec(struct pt_regs *regs) 1082 { 1083 /* Take the kexec_mutex here to prevent sys_kexec_load 1084 * running on one cpu from replacing the crash kernel 1085 * we are using after a panic on a different cpu. 1086 * 1087 * If the crash kernel was not located in a fixed area 1088 * of memory the xchg(&kexec_crash_image) would be 1089 * sufficient. But since I reuse the memory... 1090 */ 1091 if (mutex_trylock(&kexec_mutex)) { 1092 if (kexec_crash_image) { 1093 struct pt_regs fixed_regs; 1094 1095 crash_setup_regs(&fixed_regs, regs); 1096 crash_save_vmcoreinfo(); 1097 machine_crash_shutdown(&fixed_regs); 1098 machine_kexec(kexec_crash_image); 1099 } 1100 mutex_unlock(&kexec_mutex); 1101 } 1102 } 1103 1104 size_t crash_get_memory_size(void) 1105 { 1106 size_t size = 0; 1107 mutex_lock(&kexec_mutex); 1108 if (crashk_res.end != crashk_res.start) 1109 size = resource_size(&crashk_res); 1110 mutex_unlock(&kexec_mutex); 1111 return size; 1112 } 1113 1114 void __weak crash_free_reserved_phys_range(unsigned long begin, 1115 unsigned long end) 1116 { 1117 unsigned long addr; 1118 1119 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1120 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); 1121 init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); 1122 free_page((unsigned long)__va(addr)); 1123 totalram_pages++; 1124 } 1125 } 1126 1127 int crash_shrink_memory(unsigned long new_size) 1128 { 1129 int ret = 0; 1130 unsigned long start, end; 1131 unsigned long old_size; 1132 struct resource *ram_res; 1133 1134 mutex_lock(&kexec_mutex); 1135 1136 if (kexec_crash_image) { 1137 ret = -ENOENT; 1138 goto unlock; 1139 } 1140 start = crashk_res.start; 1141 end = crashk_res.end; 1142 old_size = (end == 0) ? 0 : end - start + 1; 1143 if (new_size >= old_size) { 1144 ret = (new_size == old_size) ? 0 : -EINVAL; 1145 goto unlock; 1146 } 1147 1148 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1149 if (!ram_res) { 1150 ret = -ENOMEM; 1151 goto unlock; 1152 } 1153 1154 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1155 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1156 1157 crash_map_reserved_pages(); 1158 crash_free_reserved_phys_range(end, crashk_res.end); 1159 1160 if ((start == end) && (crashk_res.parent != NULL)) 1161 release_resource(&crashk_res); 1162 1163 ram_res->start = end; 1164 ram_res->end = crashk_res.end; 1165 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1166 ram_res->name = "System RAM"; 1167 1168 crashk_res.end = end - 1; 1169 1170 insert_resource(&iomem_resource, ram_res); 1171 crash_unmap_reserved_pages(); 1172 1173 unlock: 1174 mutex_unlock(&kexec_mutex); 1175 return ret; 1176 } 1177 1178 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1179 size_t data_len) 1180 { 1181 struct elf_note note; 1182 1183 note.n_namesz = strlen(name) + 1; 1184 note.n_descsz = data_len; 1185 note.n_type = type; 1186 memcpy(buf, ¬e, sizeof(note)); 1187 buf += (sizeof(note) + 3)/4; 1188 memcpy(buf, name, note.n_namesz); 1189 buf += (note.n_namesz + 3)/4; 1190 memcpy(buf, data, note.n_descsz); 1191 buf += (note.n_descsz + 3)/4; 1192 1193 return buf; 1194 } 1195 1196 static void final_note(u32 *buf) 1197 { 1198 struct elf_note note; 1199 1200 note.n_namesz = 0; 1201 note.n_descsz = 0; 1202 note.n_type = 0; 1203 memcpy(buf, ¬e, sizeof(note)); 1204 } 1205 1206 void crash_save_cpu(struct pt_regs *regs, int cpu) 1207 { 1208 struct elf_prstatus prstatus; 1209 u32 *buf; 1210 1211 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1212 return; 1213 1214 /* Using ELF notes here is opportunistic. 1215 * I need a well defined structure format 1216 * for the data I pass, and I need tags 1217 * on the data to indicate what information I have 1218 * squirrelled away. ELF notes happen to provide 1219 * all of that, so there is no need to invent something new. 1220 */ 1221 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1222 if (!buf) 1223 return; 1224 memset(&prstatus, 0, sizeof(prstatus)); 1225 prstatus.pr_pid = current->pid; 1226 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1227 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1228 &prstatus, sizeof(prstatus)); 1229 final_note(buf); 1230 } 1231 1232 static int __init crash_notes_memory_init(void) 1233 { 1234 /* Allocate memory for saving cpu registers. */ 1235 crash_notes = alloc_percpu(note_buf_t); 1236 if (!crash_notes) { 1237 printk("Kexec: Memory allocation for saving cpu register" 1238 " states failed\n"); 1239 return -ENOMEM; 1240 } 1241 return 0; 1242 } 1243 module_init(crash_notes_memory_init) 1244 1245 1246 /* 1247 * parsing the "crashkernel" commandline 1248 * 1249 * this code is intended to be called from architecture specific code 1250 */ 1251 1252 1253 /* 1254 * This function parses command lines in the format 1255 * 1256 * crashkernel=ramsize-range:size[,...][@offset] 1257 * 1258 * The function returns 0 on success and -EINVAL on failure. 1259 */ 1260 static int __init parse_crashkernel_mem(char *cmdline, 1261 unsigned long long system_ram, 1262 unsigned long long *crash_size, 1263 unsigned long long *crash_base) 1264 { 1265 char *cur = cmdline, *tmp; 1266 1267 /* for each entry of the comma-separated list */ 1268 do { 1269 unsigned long long start, end = ULLONG_MAX, size; 1270 1271 /* get the start of the range */ 1272 start = memparse(cur, &tmp); 1273 if (cur == tmp) { 1274 pr_warning("crashkernel: Memory value expected\n"); 1275 return -EINVAL; 1276 } 1277 cur = tmp; 1278 if (*cur != '-') { 1279 pr_warning("crashkernel: '-' expected\n"); 1280 return -EINVAL; 1281 } 1282 cur++; 1283 1284 /* if no ':' is here, than we read the end */ 1285 if (*cur != ':') { 1286 end = memparse(cur, &tmp); 1287 if (cur == tmp) { 1288 pr_warning("crashkernel: Memory " 1289 "value expected\n"); 1290 return -EINVAL; 1291 } 1292 cur = tmp; 1293 if (end <= start) { 1294 pr_warning("crashkernel: end <= start\n"); 1295 return -EINVAL; 1296 } 1297 } 1298 1299 if (*cur != ':') { 1300 pr_warning("crashkernel: ':' expected\n"); 1301 return -EINVAL; 1302 } 1303 cur++; 1304 1305 size = memparse(cur, &tmp); 1306 if (cur == tmp) { 1307 pr_warning("Memory value expected\n"); 1308 return -EINVAL; 1309 } 1310 cur = tmp; 1311 if (size >= system_ram) { 1312 pr_warning("crashkernel: invalid size\n"); 1313 return -EINVAL; 1314 } 1315 1316 /* match ? */ 1317 if (system_ram >= start && system_ram < end) { 1318 *crash_size = size; 1319 break; 1320 } 1321 } while (*cur++ == ','); 1322 1323 if (*crash_size > 0) { 1324 while (*cur && *cur != ' ' && *cur != '@') 1325 cur++; 1326 if (*cur == '@') { 1327 cur++; 1328 *crash_base = memparse(cur, &tmp); 1329 if (cur == tmp) { 1330 pr_warning("Memory value expected " 1331 "after '@'\n"); 1332 return -EINVAL; 1333 } 1334 } 1335 } 1336 1337 return 0; 1338 } 1339 1340 /* 1341 * That function parses "simple" (old) crashkernel command lines like 1342 * 1343 * crashkernel=size[@offset] 1344 * 1345 * It returns 0 on success and -EINVAL on failure. 1346 */ 1347 static int __init parse_crashkernel_simple(char *cmdline, 1348 unsigned long long *crash_size, 1349 unsigned long long *crash_base) 1350 { 1351 char *cur = cmdline; 1352 1353 *crash_size = memparse(cmdline, &cur); 1354 if (cmdline == cur) { 1355 pr_warning("crashkernel: memory value expected\n"); 1356 return -EINVAL; 1357 } 1358 1359 if (*cur == '@') 1360 *crash_base = memparse(cur+1, &cur); 1361 else if (*cur != ' ' && *cur != '\0') { 1362 pr_warning("crashkernel: unrecognized char\n"); 1363 return -EINVAL; 1364 } 1365 1366 return 0; 1367 } 1368 1369 /* 1370 * That function is the entry point for command line parsing and should be 1371 * called from the arch-specific code. 1372 */ 1373 int __init parse_crashkernel(char *cmdline, 1374 unsigned long long system_ram, 1375 unsigned long long *crash_size, 1376 unsigned long long *crash_base) 1377 { 1378 char *p = cmdline, *ck_cmdline = NULL; 1379 char *first_colon, *first_space; 1380 1381 BUG_ON(!crash_size || !crash_base); 1382 *crash_size = 0; 1383 *crash_base = 0; 1384 1385 /* find crashkernel and use the last one if there are more */ 1386 p = strstr(p, "crashkernel="); 1387 while (p) { 1388 ck_cmdline = p; 1389 p = strstr(p+1, "crashkernel="); 1390 } 1391 1392 if (!ck_cmdline) 1393 return -EINVAL; 1394 1395 ck_cmdline += 12; /* strlen("crashkernel=") */ 1396 1397 /* 1398 * if the commandline contains a ':', then that's the extended 1399 * syntax -- if not, it must be the classic syntax 1400 */ 1401 first_colon = strchr(ck_cmdline, ':'); 1402 first_space = strchr(ck_cmdline, ' '); 1403 if (first_colon && (!first_space || first_colon < first_space)) 1404 return parse_crashkernel_mem(ck_cmdline, system_ram, 1405 crash_size, crash_base); 1406 else 1407 return parse_crashkernel_simple(ck_cmdline, crash_size, 1408 crash_base); 1409 1410 return 0; 1411 } 1412 1413 1414 static void update_vmcoreinfo_note(void) 1415 { 1416 u32 *buf = vmcoreinfo_note; 1417 1418 if (!vmcoreinfo_size) 1419 return; 1420 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1421 vmcoreinfo_size); 1422 final_note(buf); 1423 } 1424 1425 void crash_save_vmcoreinfo(void) 1426 { 1427 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1428 update_vmcoreinfo_note(); 1429 } 1430 1431 void vmcoreinfo_append_str(const char *fmt, ...) 1432 { 1433 va_list args; 1434 char buf[0x50]; 1435 int r; 1436 1437 va_start(args, fmt); 1438 r = vsnprintf(buf, sizeof(buf), fmt, args); 1439 va_end(args); 1440 1441 if (r + vmcoreinfo_size > vmcoreinfo_max_size) 1442 r = vmcoreinfo_max_size - vmcoreinfo_size; 1443 1444 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1445 1446 vmcoreinfo_size += r; 1447 } 1448 1449 /* 1450 * provide an empty default implementation here -- architecture 1451 * code may override this 1452 */ 1453 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1454 {} 1455 1456 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1457 { 1458 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1459 } 1460 1461 static int __init crash_save_vmcoreinfo_init(void) 1462 { 1463 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1464 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1465 1466 VMCOREINFO_SYMBOL(init_uts_ns); 1467 VMCOREINFO_SYMBOL(node_online_map); 1468 #ifdef CONFIG_MMU 1469 VMCOREINFO_SYMBOL(swapper_pg_dir); 1470 #endif 1471 VMCOREINFO_SYMBOL(_stext); 1472 VMCOREINFO_SYMBOL(vmlist); 1473 1474 #ifndef CONFIG_NEED_MULTIPLE_NODES 1475 VMCOREINFO_SYMBOL(mem_map); 1476 VMCOREINFO_SYMBOL(contig_page_data); 1477 #endif 1478 #ifdef CONFIG_SPARSEMEM 1479 VMCOREINFO_SYMBOL(mem_section); 1480 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1481 VMCOREINFO_STRUCT_SIZE(mem_section); 1482 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1483 #endif 1484 VMCOREINFO_STRUCT_SIZE(page); 1485 VMCOREINFO_STRUCT_SIZE(pglist_data); 1486 VMCOREINFO_STRUCT_SIZE(zone); 1487 VMCOREINFO_STRUCT_SIZE(free_area); 1488 VMCOREINFO_STRUCT_SIZE(list_head); 1489 VMCOREINFO_SIZE(nodemask_t); 1490 VMCOREINFO_OFFSET(page, flags); 1491 VMCOREINFO_OFFSET(page, _count); 1492 VMCOREINFO_OFFSET(page, mapping); 1493 VMCOREINFO_OFFSET(page, lru); 1494 VMCOREINFO_OFFSET(pglist_data, node_zones); 1495 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1496 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1497 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1498 #endif 1499 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1500 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1501 VMCOREINFO_OFFSET(pglist_data, node_id); 1502 VMCOREINFO_OFFSET(zone, free_area); 1503 VMCOREINFO_OFFSET(zone, vm_stat); 1504 VMCOREINFO_OFFSET(zone, spanned_pages); 1505 VMCOREINFO_OFFSET(free_area, free_list); 1506 VMCOREINFO_OFFSET(list_head, next); 1507 VMCOREINFO_OFFSET(list_head, prev); 1508 VMCOREINFO_OFFSET(vm_struct, addr); 1509 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1510 log_buf_kexec_setup(); 1511 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1512 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1513 VMCOREINFO_NUMBER(PG_lru); 1514 VMCOREINFO_NUMBER(PG_private); 1515 VMCOREINFO_NUMBER(PG_swapcache); 1516 1517 arch_crash_save_vmcoreinfo(); 1518 update_vmcoreinfo_note(); 1519 1520 return 0; 1521 } 1522 1523 module_init(crash_save_vmcoreinfo_init) 1524 1525 /* 1526 * Move into place and start executing a preloaded standalone 1527 * executable. If nothing was preloaded return an error. 1528 */ 1529 int kernel_kexec(void) 1530 { 1531 int error = 0; 1532 1533 if (!mutex_trylock(&kexec_mutex)) 1534 return -EBUSY; 1535 if (!kexec_image) { 1536 error = -EINVAL; 1537 goto Unlock; 1538 } 1539 1540 #ifdef CONFIG_KEXEC_JUMP 1541 if (kexec_image->preserve_context) { 1542 lock_system_sleep(); 1543 pm_prepare_console(); 1544 error = freeze_processes(); 1545 if (error) { 1546 error = -EBUSY; 1547 goto Restore_console; 1548 } 1549 suspend_console(); 1550 error = dpm_suspend_start(PMSG_FREEZE); 1551 if (error) 1552 goto Resume_console; 1553 /* At this point, dpm_suspend_start() has been called, 1554 * but *not* dpm_suspend_end(). We *must* call 1555 * dpm_suspend_end() now. Otherwise, drivers for 1556 * some devices (e.g. interrupt controllers) become 1557 * desynchronized with the actual state of the 1558 * hardware at resume time, and evil weirdness ensues. 1559 */ 1560 error = dpm_suspend_end(PMSG_FREEZE); 1561 if (error) 1562 goto Resume_devices; 1563 error = disable_nonboot_cpus(); 1564 if (error) 1565 goto Enable_cpus; 1566 local_irq_disable(); 1567 error = syscore_suspend(); 1568 if (error) 1569 goto Enable_irqs; 1570 } else 1571 #endif 1572 { 1573 kernel_restart_prepare(NULL); 1574 printk(KERN_EMERG "Starting new kernel\n"); 1575 machine_shutdown(); 1576 } 1577 1578 machine_kexec(kexec_image); 1579 1580 #ifdef CONFIG_KEXEC_JUMP 1581 if (kexec_image->preserve_context) { 1582 syscore_resume(); 1583 Enable_irqs: 1584 local_irq_enable(); 1585 Enable_cpus: 1586 enable_nonboot_cpus(); 1587 dpm_resume_start(PMSG_RESTORE); 1588 Resume_devices: 1589 dpm_resume_end(PMSG_RESTORE); 1590 Resume_console: 1591 resume_console(); 1592 thaw_processes(); 1593 Restore_console: 1594 pm_restore_console(); 1595 unlock_system_sleep(); 1596 } 1597 #endif 1598 1599 Unlock: 1600 mutex_unlock(&kexec_mutex); 1601 return error; 1602 } 1603