xref: /openbmc/linux/kernel/kexec.c (revision 93d90ad7)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt)	"kexec: " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50 
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56 
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59 
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66 
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage *image);
69 #endif
70 
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res = {
73 	.name  = "Crash kernel",
74 	.start = 0,
75 	.end   = 0,
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
77 };
78 struct resource crashk_low_res = {
79 	.name  = "Crash kernel",
80 	.start = 0,
81 	.end   = 0,
82 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 };
84 
85 int kexec_should_crash(struct task_struct *p)
86 {
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
92 /*
93  * When kexec transitions to the new kernel there is a one-to-one
94  * mapping between physical and virtual addresses.  On processors
95  * where you can disable the MMU this is trivial, and easy.  For
96  * others it is still a simple predictable page table to setup.
97  *
98  * In that environment kexec copies the new kernel to its final
99  * resting place.  This means I can only support memory whose
100  * physical address can fit in an unsigned long.  In particular
101  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102  * If the assembly stub has more restrictive requirements
103  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104  * defined more restrictively in <asm/kexec.h>.
105  *
106  * The code for the transition from the current kernel to the
107  * the new kernel is placed in the control_code_buffer, whose size
108  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109  * page of memory is necessary, but some architectures require more.
110  * Because this memory must be identity mapped in the transition from
111  * virtual to physical addresses it must live in the range
112  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113  * modifiable.
114  *
115  * The assembly stub in the control code buffer is passed a linked list
116  * of descriptor pages detailing the source pages of the new kernel,
117  * and the destination addresses of those source pages.  As this data
118  * structure is not used in the context of the current OS, it must
119  * be self-contained.
120  *
121  * The code has been made to work with highmem pages and will use a
122  * destination page in its final resting place (if it happens
123  * to allocate it).  The end product of this is that most of the
124  * physical address space, and most of RAM can be used.
125  *
126  * Future directions include:
127  *  - allocating a page table with the control code buffer identity
128  *    mapped, to simplify machine_kexec and make kexec_on_panic more
129  *    reliable.
130  */
131 
132 /*
133  * KIMAGE_NO_DEST is an impossible destination address..., for
134  * allocating pages whose destination address we do not care about.
135  */
136 #define KIMAGE_NO_DEST (-1UL)
137 
138 static int kimage_is_destination_range(struct kimage *image,
139 				       unsigned long start, unsigned long end);
140 static struct page *kimage_alloc_page(struct kimage *image,
141 				       gfp_t gfp_mask,
142 				       unsigned long dest);
143 
144 static int copy_user_segment_list(struct kimage *image,
145 				  unsigned long nr_segments,
146 				  struct kexec_segment __user *segments)
147 {
148 	int ret;
149 	size_t segment_bytes;
150 
151 	/* Read in the segments */
152 	image->nr_segments = nr_segments;
153 	segment_bytes = nr_segments * sizeof(*segments);
154 	ret = copy_from_user(image->segment, segments, segment_bytes);
155 	if (ret)
156 		ret = -EFAULT;
157 
158 	return ret;
159 }
160 
161 static int sanity_check_segment_list(struct kimage *image)
162 {
163 	int result, i;
164 	unsigned long nr_segments = image->nr_segments;
165 
166 	/*
167 	 * Verify we have good destination addresses.  The caller is
168 	 * responsible for making certain we don't attempt to load
169 	 * the new image into invalid or reserved areas of RAM.  This
170 	 * just verifies it is an address we can use.
171 	 *
172 	 * Since the kernel does everything in page size chunks ensure
173 	 * the destination addresses are page aligned.  Too many
174 	 * special cases crop of when we don't do this.  The most
175 	 * insidious is getting overlapping destination addresses
176 	 * simply because addresses are changed to page size
177 	 * granularity.
178 	 */
179 	result = -EADDRNOTAVAIL;
180 	for (i = 0; i < nr_segments; i++) {
181 		unsigned long mstart, mend;
182 
183 		mstart = image->segment[i].mem;
184 		mend   = mstart + image->segment[i].memsz;
185 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186 			return result;
187 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188 			return result;
189 	}
190 
191 	/* Verify our destination addresses do not overlap.
192 	 * If we alloed overlapping destination addresses
193 	 * through very weird things can happen with no
194 	 * easy explanation as one segment stops on another.
195 	 */
196 	result = -EINVAL;
197 	for (i = 0; i < nr_segments; i++) {
198 		unsigned long mstart, mend;
199 		unsigned long j;
200 
201 		mstart = image->segment[i].mem;
202 		mend   = mstart + image->segment[i].memsz;
203 		for (j = 0; j < i; j++) {
204 			unsigned long pstart, pend;
205 			pstart = image->segment[j].mem;
206 			pend   = pstart + image->segment[j].memsz;
207 			/* Do the segments overlap ? */
208 			if ((mend > pstart) && (mstart < pend))
209 				return result;
210 		}
211 	}
212 
213 	/* Ensure our buffer sizes are strictly less than
214 	 * our memory sizes.  This should always be the case,
215 	 * and it is easier to check up front than to be surprised
216 	 * later on.
217 	 */
218 	result = -EINVAL;
219 	for (i = 0; i < nr_segments; i++) {
220 		if (image->segment[i].bufsz > image->segment[i].memsz)
221 			return result;
222 	}
223 
224 	/*
225 	 * Verify we have good destination addresses.  Normally
226 	 * the caller is responsible for making certain we don't
227 	 * attempt to load the new image into invalid or reserved
228 	 * areas of RAM.  But crash kernels are preloaded into a
229 	 * reserved area of ram.  We must ensure the addresses
230 	 * are in the reserved area otherwise preloading the
231 	 * kernel could corrupt things.
232 	 */
233 
234 	if (image->type == KEXEC_TYPE_CRASH) {
235 		result = -EADDRNOTAVAIL;
236 		for (i = 0; i < nr_segments; i++) {
237 			unsigned long mstart, mend;
238 
239 			mstart = image->segment[i].mem;
240 			mend = mstart + image->segment[i].memsz - 1;
241 			/* Ensure we are within the crash kernel limits */
242 			if ((mstart < crashk_res.start) ||
243 			    (mend > crashk_res.end))
244 				return result;
245 		}
246 	}
247 
248 	return 0;
249 }
250 
251 static struct kimage *do_kimage_alloc_init(void)
252 {
253 	struct kimage *image;
254 
255 	/* Allocate a controlling structure */
256 	image = kzalloc(sizeof(*image), GFP_KERNEL);
257 	if (!image)
258 		return NULL;
259 
260 	image->head = 0;
261 	image->entry = &image->head;
262 	image->last_entry = &image->head;
263 	image->control_page = ~0; /* By default this does not apply */
264 	image->type = KEXEC_TYPE_DEFAULT;
265 
266 	/* Initialize the list of control pages */
267 	INIT_LIST_HEAD(&image->control_pages);
268 
269 	/* Initialize the list of destination pages */
270 	INIT_LIST_HEAD(&image->dest_pages);
271 
272 	/* Initialize the list of unusable pages */
273 	INIT_LIST_HEAD(&image->unusable_pages);
274 
275 	return image;
276 }
277 
278 static void kimage_free_page_list(struct list_head *list);
279 
280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281 			     unsigned long nr_segments,
282 			     struct kexec_segment __user *segments,
283 			     unsigned long flags)
284 {
285 	int ret;
286 	struct kimage *image;
287 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288 
289 	if (kexec_on_panic) {
290 		/* Verify we have a valid entry point */
291 		if ((entry < crashk_res.start) || (entry > crashk_res.end))
292 			return -EADDRNOTAVAIL;
293 	}
294 
295 	/* Allocate and initialize a controlling structure */
296 	image = do_kimage_alloc_init();
297 	if (!image)
298 		return -ENOMEM;
299 
300 	image->start = entry;
301 
302 	ret = copy_user_segment_list(image, nr_segments, segments);
303 	if (ret)
304 		goto out_free_image;
305 
306 	ret = sanity_check_segment_list(image);
307 	if (ret)
308 		goto out_free_image;
309 
310 	 /* Enable the special crash kernel control page allocation policy. */
311 	if (kexec_on_panic) {
312 		image->control_page = crashk_res.start;
313 		image->type = KEXEC_TYPE_CRASH;
314 	}
315 
316 	/*
317 	 * Find a location for the control code buffer, and add it
318 	 * the vector of segments so that it's pages will also be
319 	 * counted as destination pages.
320 	 */
321 	ret = -ENOMEM;
322 	image->control_code_page = kimage_alloc_control_pages(image,
323 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324 	if (!image->control_code_page) {
325 		pr_err("Could not allocate control_code_buffer\n");
326 		goto out_free_image;
327 	}
328 
329 	if (!kexec_on_panic) {
330 		image->swap_page = kimage_alloc_control_pages(image, 0);
331 		if (!image->swap_page) {
332 			pr_err("Could not allocate swap buffer\n");
333 			goto out_free_control_pages;
334 		}
335 	}
336 
337 	*rimage = image;
338 	return 0;
339 out_free_control_pages:
340 	kimage_free_page_list(&image->control_pages);
341 out_free_image:
342 	kfree(image);
343 	return ret;
344 }
345 
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348 {
349 	struct fd f = fdget(fd);
350 	int ret;
351 	struct kstat stat;
352 	loff_t pos;
353 	ssize_t bytes = 0;
354 
355 	if (!f.file)
356 		return -EBADF;
357 
358 	ret = vfs_getattr(&f.file->f_path, &stat);
359 	if (ret)
360 		goto out;
361 
362 	if (stat.size > INT_MAX) {
363 		ret = -EFBIG;
364 		goto out;
365 	}
366 
367 	/* Don't hand 0 to vmalloc, it whines. */
368 	if (stat.size == 0) {
369 		ret = -EINVAL;
370 		goto out;
371 	}
372 
373 	*buf = vmalloc(stat.size);
374 	if (!*buf) {
375 		ret = -ENOMEM;
376 		goto out;
377 	}
378 
379 	pos = 0;
380 	while (pos < stat.size) {
381 		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382 				    stat.size - pos);
383 		if (bytes < 0) {
384 			vfree(*buf);
385 			ret = bytes;
386 			goto out;
387 		}
388 
389 		if (bytes == 0)
390 			break;
391 		pos += bytes;
392 	}
393 
394 	if (pos != stat.size) {
395 		ret = -EBADF;
396 		vfree(*buf);
397 		goto out;
398 	}
399 
400 	*buf_len = pos;
401 out:
402 	fdput(f);
403 	return ret;
404 }
405 
406 /* Architectures can provide this probe function */
407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408 					 unsigned long buf_len)
409 {
410 	return -ENOEXEC;
411 }
412 
413 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414 {
415 	return ERR_PTR(-ENOEXEC);
416 }
417 
418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419 {
420 }
421 
422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423 					unsigned long buf_len)
424 {
425 	return -EKEYREJECTED;
426 }
427 
428 /* Apply relocations of type RELA */
429 int __weak
430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431 				 unsigned int relsec)
432 {
433 	pr_err("RELA relocation unsupported.\n");
434 	return -ENOEXEC;
435 }
436 
437 /* Apply relocations of type REL */
438 int __weak
439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440 			     unsigned int relsec)
441 {
442 	pr_err("REL relocation unsupported.\n");
443 	return -ENOEXEC;
444 }
445 
446 /*
447  * Free up memory used by kernel, initrd, and comand line. This is temporary
448  * memory allocation which is not needed any more after these buffers have
449  * been loaded into separate segments and have been copied elsewhere.
450  */
451 static void kimage_file_post_load_cleanup(struct kimage *image)
452 {
453 	struct purgatory_info *pi = &image->purgatory_info;
454 
455 	vfree(image->kernel_buf);
456 	image->kernel_buf = NULL;
457 
458 	vfree(image->initrd_buf);
459 	image->initrd_buf = NULL;
460 
461 	kfree(image->cmdline_buf);
462 	image->cmdline_buf = NULL;
463 
464 	vfree(pi->purgatory_buf);
465 	pi->purgatory_buf = NULL;
466 
467 	vfree(pi->sechdrs);
468 	pi->sechdrs = NULL;
469 
470 	/* See if architecture has anything to cleanup post load */
471 	arch_kimage_file_post_load_cleanup(image);
472 
473 	/*
474 	 * Above call should have called into bootloader to free up
475 	 * any data stored in kimage->image_loader_data. It should
476 	 * be ok now to free it up.
477 	 */
478 	kfree(image->image_loader_data);
479 	image->image_loader_data = NULL;
480 }
481 
482 /*
483  * In file mode list of segments is prepared by kernel. Copy relevant
484  * data from user space, do error checking, prepare segment list
485  */
486 static int
487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488 			     const char __user *cmdline_ptr,
489 			     unsigned long cmdline_len, unsigned flags)
490 {
491 	int ret = 0;
492 	void *ldata;
493 
494 	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495 				&image->kernel_buf_len);
496 	if (ret)
497 		return ret;
498 
499 	/* Call arch image probe handlers */
500 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501 					    image->kernel_buf_len);
502 
503 	if (ret)
504 		goto out;
505 
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508 					   image->kernel_buf_len);
509 	if (ret) {
510 		pr_debug("kernel signature verification failed.\n");
511 		goto out;
512 	}
513 	pr_debug("kernel signature verification successful.\n");
514 #endif
515 	/* It is possible that there no initramfs is being loaded */
516 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517 		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518 					&image->initrd_buf_len);
519 		if (ret)
520 			goto out;
521 	}
522 
523 	if (cmdline_len) {
524 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525 		if (!image->cmdline_buf) {
526 			ret = -ENOMEM;
527 			goto out;
528 		}
529 
530 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531 				     cmdline_len);
532 		if (ret) {
533 			ret = -EFAULT;
534 			goto out;
535 		}
536 
537 		image->cmdline_buf_len = cmdline_len;
538 
539 		/* command line should be a string with last byte null */
540 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541 			ret = -EINVAL;
542 			goto out;
543 		}
544 	}
545 
546 	/* Call arch image load handlers */
547 	ldata = arch_kexec_kernel_image_load(image);
548 
549 	if (IS_ERR(ldata)) {
550 		ret = PTR_ERR(ldata);
551 		goto out;
552 	}
553 
554 	image->image_loader_data = ldata;
555 out:
556 	/* In case of error, free up all allocated memory in this function */
557 	if (ret)
558 		kimage_file_post_load_cleanup(image);
559 	return ret;
560 }
561 
562 static int
563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564 		       int initrd_fd, const char __user *cmdline_ptr,
565 		       unsigned long cmdline_len, unsigned long flags)
566 {
567 	int ret;
568 	struct kimage *image;
569 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570 
571 	image = do_kimage_alloc_init();
572 	if (!image)
573 		return -ENOMEM;
574 
575 	image->file_mode = 1;
576 
577 	if (kexec_on_panic) {
578 		/* Enable special crash kernel control page alloc policy. */
579 		image->control_page = crashk_res.start;
580 		image->type = KEXEC_TYPE_CRASH;
581 	}
582 
583 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584 					   cmdline_ptr, cmdline_len, flags);
585 	if (ret)
586 		goto out_free_image;
587 
588 	ret = sanity_check_segment_list(image);
589 	if (ret)
590 		goto out_free_post_load_bufs;
591 
592 	ret = -ENOMEM;
593 	image->control_code_page = kimage_alloc_control_pages(image,
594 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
595 	if (!image->control_code_page) {
596 		pr_err("Could not allocate control_code_buffer\n");
597 		goto out_free_post_load_bufs;
598 	}
599 
600 	if (!kexec_on_panic) {
601 		image->swap_page = kimage_alloc_control_pages(image, 0);
602 		if (!image->swap_page) {
603 			pr_err("Could not allocate swap buffer\n");
604 			goto out_free_control_pages;
605 		}
606 	}
607 
608 	*rimage = image;
609 	return 0;
610 out_free_control_pages:
611 	kimage_free_page_list(&image->control_pages);
612 out_free_post_load_bufs:
613 	kimage_file_post_load_cleanup(image);
614 out_free_image:
615 	kfree(image);
616 	return ret;
617 }
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620 #endif /* CONFIG_KEXEC_FILE */
621 
622 static int kimage_is_destination_range(struct kimage *image,
623 					unsigned long start,
624 					unsigned long end)
625 {
626 	unsigned long i;
627 
628 	for (i = 0; i < image->nr_segments; i++) {
629 		unsigned long mstart, mend;
630 
631 		mstart = image->segment[i].mem;
632 		mend = mstart + image->segment[i].memsz;
633 		if ((end > mstart) && (start < mend))
634 			return 1;
635 	}
636 
637 	return 0;
638 }
639 
640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641 {
642 	struct page *pages;
643 
644 	pages = alloc_pages(gfp_mask, order);
645 	if (pages) {
646 		unsigned int count, i;
647 		pages->mapping = NULL;
648 		set_page_private(pages, order);
649 		count = 1 << order;
650 		for (i = 0; i < count; i++)
651 			SetPageReserved(pages + i);
652 	}
653 
654 	return pages;
655 }
656 
657 static void kimage_free_pages(struct page *page)
658 {
659 	unsigned int order, count, i;
660 
661 	order = page_private(page);
662 	count = 1 << order;
663 	for (i = 0; i < count; i++)
664 		ClearPageReserved(page + i);
665 	__free_pages(page, order);
666 }
667 
668 static void kimage_free_page_list(struct list_head *list)
669 {
670 	struct list_head *pos, *next;
671 
672 	list_for_each_safe(pos, next, list) {
673 		struct page *page;
674 
675 		page = list_entry(pos, struct page, lru);
676 		list_del(&page->lru);
677 		kimage_free_pages(page);
678 	}
679 }
680 
681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682 							unsigned int order)
683 {
684 	/* Control pages are special, they are the intermediaries
685 	 * that are needed while we copy the rest of the pages
686 	 * to their final resting place.  As such they must
687 	 * not conflict with either the destination addresses
688 	 * or memory the kernel is already using.
689 	 *
690 	 * The only case where we really need more than one of
691 	 * these are for architectures where we cannot disable
692 	 * the MMU and must instead generate an identity mapped
693 	 * page table for all of the memory.
694 	 *
695 	 * At worst this runs in O(N) of the image size.
696 	 */
697 	struct list_head extra_pages;
698 	struct page *pages;
699 	unsigned int count;
700 
701 	count = 1 << order;
702 	INIT_LIST_HEAD(&extra_pages);
703 
704 	/* Loop while I can allocate a page and the page allocated
705 	 * is a destination page.
706 	 */
707 	do {
708 		unsigned long pfn, epfn, addr, eaddr;
709 
710 		pages = kimage_alloc_pages(GFP_KERNEL, order);
711 		if (!pages)
712 			break;
713 		pfn   = page_to_pfn(pages);
714 		epfn  = pfn + count;
715 		addr  = pfn << PAGE_SHIFT;
716 		eaddr = epfn << PAGE_SHIFT;
717 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
718 			      kimage_is_destination_range(image, addr, eaddr)) {
719 			list_add(&pages->lru, &extra_pages);
720 			pages = NULL;
721 		}
722 	} while (!pages);
723 
724 	if (pages) {
725 		/* Remember the allocated page... */
726 		list_add(&pages->lru, &image->control_pages);
727 
728 		/* Because the page is already in it's destination
729 		 * location we will never allocate another page at
730 		 * that address.  Therefore kimage_alloc_pages
731 		 * will not return it (again) and we don't need
732 		 * to give it an entry in image->segment[].
733 		 */
734 	}
735 	/* Deal with the destination pages I have inadvertently allocated.
736 	 *
737 	 * Ideally I would convert multi-page allocations into single
738 	 * page allocations, and add everything to image->dest_pages.
739 	 *
740 	 * For now it is simpler to just free the pages.
741 	 */
742 	kimage_free_page_list(&extra_pages);
743 
744 	return pages;
745 }
746 
747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748 						      unsigned int order)
749 {
750 	/* Control pages are special, they are the intermediaries
751 	 * that are needed while we copy the rest of the pages
752 	 * to their final resting place.  As such they must
753 	 * not conflict with either the destination addresses
754 	 * or memory the kernel is already using.
755 	 *
756 	 * Control pages are also the only pags we must allocate
757 	 * when loading a crash kernel.  All of the other pages
758 	 * are specified by the segments and we just memcpy
759 	 * into them directly.
760 	 *
761 	 * The only case where we really need more than one of
762 	 * these are for architectures where we cannot disable
763 	 * the MMU and must instead generate an identity mapped
764 	 * page table for all of the memory.
765 	 *
766 	 * Given the low demand this implements a very simple
767 	 * allocator that finds the first hole of the appropriate
768 	 * size in the reserved memory region, and allocates all
769 	 * of the memory up to and including the hole.
770 	 */
771 	unsigned long hole_start, hole_end, size;
772 	struct page *pages;
773 
774 	pages = NULL;
775 	size = (1 << order) << PAGE_SHIFT;
776 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777 	hole_end   = hole_start + size - 1;
778 	while (hole_end <= crashk_res.end) {
779 		unsigned long i;
780 
781 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782 			break;
783 		/* See if I overlap any of the segments */
784 		for (i = 0; i < image->nr_segments; i++) {
785 			unsigned long mstart, mend;
786 
787 			mstart = image->segment[i].mem;
788 			mend   = mstart + image->segment[i].memsz - 1;
789 			if ((hole_end >= mstart) && (hole_start <= mend)) {
790 				/* Advance the hole to the end of the segment */
791 				hole_start = (mend + (size - 1)) & ~(size - 1);
792 				hole_end   = hole_start + size - 1;
793 				break;
794 			}
795 		}
796 		/* If I don't overlap any segments I have found my hole! */
797 		if (i == image->nr_segments) {
798 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799 			break;
800 		}
801 	}
802 	if (pages)
803 		image->control_page = hole_end;
804 
805 	return pages;
806 }
807 
808 
809 struct page *kimage_alloc_control_pages(struct kimage *image,
810 					 unsigned int order)
811 {
812 	struct page *pages = NULL;
813 
814 	switch (image->type) {
815 	case KEXEC_TYPE_DEFAULT:
816 		pages = kimage_alloc_normal_control_pages(image, order);
817 		break;
818 	case KEXEC_TYPE_CRASH:
819 		pages = kimage_alloc_crash_control_pages(image, order);
820 		break;
821 	}
822 
823 	return pages;
824 }
825 
826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827 {
828 	if (*image->entry != 0)
829 		image->entry++;
830 
831 	if (image->entry == image->last_entry) {
832 		kimage_entry_t *ind_page;
833 		struct page *page;
834 
835 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
836 		if (!page)
837 			return -ENOMEM;
838 
839 		ind_page = page_address(page);
840 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841 		image->entry = ind_page;
842 		image->last_entry = ind_page +
843 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844 	}
845 	*image->entry = entry;
846 	image->entry++;
847 	*image->entry = 0;
848 
849 	return 0;
850 }
851 
852 static int kimage_set_destination(struct kimage *image,
853 				   unsigned long destination)
854 {
855 	int result;
856 
857 	destination &= PAGE_MASK;
858 	result = kimage_add_entry(image, destination | IND_DESTINATION);
859 	if (result == 0)
860 		image->destination = destination;
861 
862 	return result;
863 }
864 
865 
866 static int kimage_add_page(struct kimage *image, unsigned long page)
867 {
868 	int result;
869 
870 	page &= PAGE_MASK;
871 	result = kimage_add_entry(image, page | IND_SOURCE);
872 	if (result == 0)
873 		image->destination += PAGE_SIZE;
874 
875 	return result;
876 }
877 
878 
879 static void kimage_free_extra_pages(struct kimage *image)
880 {
881 	/* Walk through and free any extra destination pages I may have */
882 	kimage_free_page_list(&image->dest_pages);
883 
884 	/* Walk through and free any unusable pages I have cached */
885 	kimage_free_page_list(&image->unusable_pages);
886 
887 }
888 static void kimage_terminate(struct kimage *image)
889 {
890 	if (*image->entry != 0)
891 		image->entry++;
892 
893 	*image->entry = IND_DONE;
894 }
895 
896 #define for_each_kimage_entry(image, ptr, entry) \
897 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
898 		ptr = (entry & IND_INDIRECTION) ? \
899 			phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
900 
901 static void kimage_free_entry(kimage_entry_t entry)
902 {
903 	struct page *page;
904 
905 	page = pfn_to_page(entry >> PAGE_SHIFT);
906 	kimage_free_pages(page);
907 }
908 
909 static void kimage_free(struct kimage *image)
910 {
911 	kimage_entry_t *ptr, entry;
912 	kimage_entry_t ind = 0;
913 
914 	if (!image)
915 		return;
916 
917 	kimage_free_extra_pages(image);
918 	for_each_kimage_entry(image, ptr, entry) {
919 		if (entry & IND_INDIRECTION) {
920 			/* Free the previous indirection page */
921 			if (ind & IND_INDIRECTION)
922 				kimage_free_entry(ind);
923 			/* Save this indirection page until we are
924 			 * done with it.
925 			 */
926 			ind = entry;
927 		} else if (entry & IND_SOURCE)
928 			kimage_free_entry(entry);
929 	}
930 	/* Free the final indirection page */
931 	if (ind & IND_INDIRECTION)
932 		kimage_free_entry(ind);
933 
934 	/* Handle any machine specific cleanup */
935 	machine_kexec_cleanup(image);
936 
937 	/* Free the kexec control pages... */
938 	kimage_free_page_list(&image->control_pages);
939 
940 	/*
941 	 * Free up any temporary buffers allocated. This might hit if
942 	 * error occurred much later after buffer allocation.
943 	 */
944 	if (image->file_mode)
945 		kimage_file_post_load_cleanup(image);
946 
947 	kfree(image);
948 }
949 
950 static kimage_entry_t *kimage_dst_used(struct kimage *image,
951 					unsigned long page)
952 {
953 	kimage_entry_t *ptr, entry;
954 	unsigned long destination = 0;
955 
956 	for_each_kimage_entry(image, ptr, entry) {
957 		if (entry & IND_DESTINATION)
958 			destination = entry & PAGE_MASK;
959 		else if (entry & IND_SOURCE) {
960 			if (page == destination)
961 				return ptr;
962 			destination += PAGE_SIZE;
963 		}
964 	}
965 
966 	return NULL;
967 }
968 
969 static struct page *kimage_alloc_page(struct kimage *image,
970 					gfp_t gfp_mask,
971 					unsigned long destination)
972 {
973 	/*
974 	 * Here we implement safeguards to ensure that a source page
975 	 * is not copied to its destination page before the data on
976 	 * the destination page is no longer useful.
977 	 *
978 	 * To do this we maintain the invariant that a source page is
979 	 * either its own destination page, or it is not a
980 	 * destination page at all.
981 	 *
982 	 * That is slightly stronger than required, but the proof
983 	 * that no problems will not occur is trivial, and the
984 	 * implementation is simply to verify.
985 	 *
986 	 * When allocating all pages normally this algorithm will run
987 	 * in O(N) time, but in the worst case it will run in O(N^2)
988 	 * time.   If the runtime is a problem the data structures can
989 	 * be fixed.
990 	 */
991 	struct page *page;
992 	unsigned long addr;
993 
994 	/*
995 	 * Walk through the list of destination pages, and see if I
996 	 * have a match.
997 	 */
998 	list_for_each_entry(page, &image->dest_pages, lru) {
999 		addr = page_to_pfn(page) << PAGE_SHIFT;
1000 		if (addr == destination) {
1001 			list_del(&page->lru);
1002 			return page;
1003 		}
1004 	}
1005 	page = NULL;
1006 	while (1) {
1007 		kimage_entry_t *old;
1008 
1009 		/* Allocate a page, if we run out of memory give up */
1010 		page = kimage_alloc_pages(gfp_mask, 0);
1011 		if (!page)
1012 			return NULL;
1013 		/* If the page cannot be used file it away */
1014 		if (page_to_pfn(page) >
1015 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1016 			list_add(&page->lru, &image->unusable_pages);
1017 			continue;
1018 		}
1019 		addr = page_to_pfn(page) << PAGE_SHIFT;
1020 
1021 		/* If it is the destination page we want use it */
1022 		if (addr == destination)
1023 			break;
1024 
1025 		/* If the page is not a destination page use it */
1026 		if (!kimage_is_destination_range(image, addr,
1027 						  addr + PAGE_SIZE))
1028 			break;
1029 
1030 		/*
1031 		 * I know that the page is someones destination page.
1032 		 * See if there is already a source page for this
1033 		 * destination page.  And if so swap the source pages.
1034 		 */
1035 		old = kimage_dst_used(image, addr);
1036 		if (old) {
1037 			/* If so move it */
1038 			unsigned long old_addr;
1039 			struct page *old_page;
1040 
1041 			old_addr = *old & PAGE_MASK;
1042 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1043 			copy_highpage(page, old_page);
1044 			*old = addr | (*old & ~PAGE_MASK);
1045 
1046 			/* The old page I have found cannot be a
1047 			 * destination page, so return it if it's
1048 			 * gfp_flags honor the ones passed in.
1049 			 */
1050 			if (!(gfp_mask & __GFP_HIGHMEM) &&
1051 			    PageHighMem(old_page)) {
1052 				kimage_free_pages(old_page);
1053 				continue;
1054 			}
1055 			addr = old_addr;
1056 			page = old_page;
1057 			break;
1058 		} else {
1059 			/* Place the page on the destination list I
1060 			 * will use it later.
1061 			 */
1062 			list_add(&page->lru, &image->dest_pages);
1063 		}
1064 	}
1065 
1066 	return page;
1067 }
1068 
1069 static int kimage_load_normal_segment(struct kimage *image,
1070 					 struct kexec_segment *segment)
1071 {
1072 	unsigned long maddr;
1073 	size_t ubytes, mbytes;
1074 	int result;
1075 	unsigned char __user *buf = NULL;
1076 	unsigned char *kbuf = NULL;
1077 
1078 	result = 0;
1079 	if (image->file_mode)
1080 		kbuf = segment->kbuf;
1081 	else
1082 		buf = segment->buf;
1083 	ubytes = segment->bufsz;
1084 	mbytes = segment->memsz;
1085 	maddr = segment->mem;
1086 
1087 	result = kimage_set_destination(image, maddr);
1088 	if (result < 0)
1089 		goto out;
1090 
1091 	while (mbytes) {
1092 		struct page *page;
1093 		char *ptr;
1094 		size_t uchunk, mchunk;
1095 
1096 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1097 		if (!page) {
1098 			result  = -ENOMEM;
1099 			goto out;
1100 		}
1101 		result = kimage_add_page(image, page_to_pfn(page)
1102 								<< PAGE_SHIFT);
1103 		if (result < 0)
1104 			goto out;
1105 
1106 		ptr = kmap(page);
1107 		/* Start with a clear page */
1108 		clear_page(ptr);
1109 		ptr += maddr & ~PAGE_MASK;
1110 		mchunk = min_t(size_t, mbytes,
1111 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1112 		uchunk = min(ubytes, mchunk);
1113 
1114 		/* For file based kexec, source pages are in kernel memory */
1115 		if (image->file_mode)
1116 			memcpy(ptr, kbuf, uchunk);
1117 		else
1118 			result = copy_from_user(ptr, buf, uchunk);
1119 		kunmap(page);
1120 		if (result) {
1121 			result = -EFAULT;
1122 			goto out;
1123 		}
1124 		ubytes -= uchunk;
1125 		maddr  += mchunk;
1126 		if (image->file_mode)
1127 			kbuf += mchunk;
1128 		else
1129 			buf += mchunk;
1130 		mbytes -= mchunk;
1131 	}
1132 out:
1133 	return result;
1134 }
1135 
1136 static int kimage_load_crash_segment(struct kimage *image,
1137 					struct kexec_segment *segment)
1138 {
1139 	/* For crash dumps kernels we simply copy the data from
1140 	 * user space to it's destination.
1141 	 * We do things a page at a time for the sake of kmap.
1142 	 */
1143 	unsigned long maddr;
1144 	size_t ubytes, mbytes;
1145 	int result;
1146 	unsigned char __user *buf = NULL;
1147 	unsigned char *kbuf = NULL;
1148 
1149 	result = 0;
1150 	if (image->file_mode)
1151 		kbuf = segment->kbuf;
1152 	else
1153 		buf = segment->buf;
1154 	ubytes = segment->bufsz;
1155 	mbytes = segment->memsz;
1156 	maddr = segment->mem;
1157 	while (mbytes) {
1158 		struct page *page;
1159 		char *ptr;
1160 		size_t uchunk, mchunk;
1161 
1162 		page = pfn_to_page(maddr >> PAGE_SHIFT);
1163 		if (!page) {
1164 			result  = -ENOMEM;
1165 			goto out;
1166 		}
1167 		ptr = kmap(page);
1168 		ptr += maddr & ~PAGE_MASK;
1169 		mchunk = min_t(size_t, mbytes,
1170 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1171 		uchunk = min(ubytes, mchunk);
1172 		if (mchunk > uchunk) {
1173 			/* Zero the trailing part of the page */
1174 			memset(ptr + uchunk, 0, mchunk - uchunk);
1175 		}
1176 
1177 		/* For file based kexec, source pages are in kernel memory */
1178 		if (image->file_mode)
1179 			memcpy(ptr, kbuf, uchunk);
1180 		else
1181 			result = copy_from_user(ptr, buf, uchunk);
1182 		kexec_flush_icache_page(page);
1183 		kunmap(page);
1184 		if (result) {
1185 			result = -EFAULT;
1186 			goto out;
1187 		}
1188 		ubytes -= uchunk;
1189 		maddr  += mchunk;
1190 		if (image->file_mode)
1191 			kbuf += mchunk;
1192 		else
1193 			buf += mchunk;
1194 		mbytes -= mchunk;
1195 	}
1196 out:
1197 	return result;
1198 }
1199 
1200 static int kimage_load_segment(struct kimage *image,
1201 				struct kexec_segment *segment)
1202 {
1203 	int result = -ENOMEM;
1204 
1205 	switch (image->type) {
1206 	case KEXEC_TYPE_DEFAULT:
1207 		result = kimage_load_normal_segment(image, segment);
1208 		break;
1209 	case KEXEC_TYPE_CRASH:
1210 		result = kimage_load_crash_segment(image, segment);
1211 		break;
1212 	}
1213 
1214 	return result;
1215 }
1216 
1217 /*
1218  * Exec Kernel system call: for obvious reasons only root may call it.
1219  *
1220  * This call breaks up into three pieces.
1221  * - A generic part which loads the new kernel from the current
1222  *   address space, and very carefully places the data in the
1223  *   allocated pages.
1224  *
1225  * - A generic part that interacts with the kernel and tells all of
1226  *   the devices to shut down.  Preventing on-going dmas, and placing
1227  *   the devices in a consistent state so a later kernel can
1228  *   reinitialize them.
1229  *
1230  * - A machine specific part that includes the syscall number
1231  *   and then copies the image to it's final destination.  And
1232  *   jumps into the image at entry.
1233  *
1234  * kexec does not sync, or unmount filesystems so if you need
1235  * that to happen you need to do that yourself.
1236  */
1237 struct kimage *kexec_image;
1238 struct kimage *kexec_crash_image;
1239 int kexec_load_disabled;
1240 
1241 static DEFINE_MUTEX(kexec_mutex);
1242 
1243 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1244 		struct kexec_segment __user *, segments, unsigned long, flags)
1245 {
1246 	struct kimage **dest_image, *image;
1247 	int result;
1248 
1249 	/* We only trust the superuser with rebooting the system. */
1250 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1251 		return -EPERM;
1252 
1253 	/*
1254 	 * Verify we have a legal set of flags
1255 	 * This leaves us room for future extensions.
1256 	 */
1257 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1258 		return -EINVAL;
1259 
1260 	/* Verify we are on the appropriate architecture */
1261 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1262 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1263 		return -EINVAL;
1264 
1265 	/* Put an artificial cap on the number
1266 	 * of segments passed to kexec_load.
1267 	 */
1268 	if (nr_segments > KEXEC_SEGMENT_MAX)
1269 		return -EINVAL;
1270 
1271 	image = NULL;
1272 	result = 0;
1273 
1274 	/* Because we write directly to the reserved memory
1275 	 * region when loading crash kernels we need a mutex here to
1276 	 * prevent multiple crash  kernels from attempting to load
1277 	 * simultaneously, and to prevent a crash kernel from loading
1278 	 * over the top of a in use crash kernel.
1279 	 *
1280 	 * KISS: always take the mutex.
1281 	 */
1282 	if (!mutex_trylock(&kexec_mutex))
1283 		return -EBUSY;
1284 
1285 	dest_image = &kexec_image;
1286 	if (flags & KEXEC_ON_CRASH)
1287 		dest_image = &kexec_crash_image;
1288 	if (nr_segments > 0) {
1289 		unsigned long i;
1290 
1291 		/* Loading another kernel to reboot into */
1292 		if ((flags & KEXEC_ON_CRASH) == 0)
1293 			result = kimage_alloc_init(&image, entry, nr_segments,
1294 						   segments, flags);
1295 		/* Loading another kernel to switch to if this one crashes */
1296 		else if (flags & KEXEC_ON_CRASH) {
1297 			/* Free any current crash dump kernel before
1298 			 * we corrupt it.
1299 			 */
1300 			kimage_free(xchg(&kexec_crash_image, NULL));
1301 			result = kimage_alloc_init(&image, entry, nr_segments,
1302 						   segments, flags);
1303 			crash_map_reserved_pages();
1304 		}
1305 		if (result)
1306 			goto out;
1307 
1308 		if (flags & KEXEC_PRESERVE_CONTEXT)
1309 			image->preserve_context = 1;
1310 		result = machine_kexec_prepare(image);
1311 		if (result)
1312 			goto out;
1313 
1314 		for (i = 0; i < nr_segments; i++) {
1315 			result = kimage_load_segment(image, &image->segment[i]);
1316 			if (result)
1317 				goto out;
1318 		}
1319 		kimage_terminate(image);
1320 		if (flags & KEXEC_ON_CRASH)
1321 			crash_unmap_reserved_pages();
1322 	}
1323 	/* Install the new kernel, and  Uninstall the old */
1324 	image = xchg(dest_image, image);
1325 
1326 out:
1327 	mutex_unlock(&kexec_mutex);
1328 	kimage_free(image);
1329 
1330 	return result;
1331 }
1332 
1333 /*
1334  * Add and remove page tables for crashkernel memory
1335  *
1336  * Provide an empty default implementation here -- architecture
1337  * code may override this
1338  */
1339 void __weak crash_map_reserved_pages(void)
1340 {}
1341 
1342 void __weak crash_unmap_reserved_pages(void)
1343 {}
1344 
1345 #ifdef CONFIG_COMPAT
1346 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1347 		       compat_ulong_t, nr_segments,
1348 		       struct compat_kexec_segment __user *, segments,
1349 		       compat_ulong_t, flags)
1350 {
1351 	struct compat_kexec_segment in;
1352 	struct kexec_segment out, __user *ksegments;
1353 	unsigned long i, result;
1354 
1355 	/* Don't allow clients that don't understand the native
1356 	 * architecture to do anything.
1357 	 */
1358 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1359 		return -EINVAL;
1360 
1361 	if (nr_segments > KEXEC_SEGMENT_MAX)
1362 		return -EINVAL;
1363 
1364 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1365 	for (i = 0; i < nr_segments; i++) {
1366 		result = copy_from_user(&in, &segments[i], sizeof(in));
1367 		if (result)
1368 			return -EFAULT;
1369 
1370 		out.buf   = compat_ptr(in.buf);
1371 		out.bufsz = in.bufsz;
1372 		out.mem   = in.mem;
1373 		out.memsz = in.memsz;
1374 
1375 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1376 		if (result)
1377 			return -EFAULT;
1378 	}
1379 
1380 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1381 }
1382 #endif
1383 
1384 #ifdef CONFIG_KEXEC_FILE
1385 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1386 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1387 		unsigned long, flags)
1388 {
1389 	int ret = 0, i;
1390 	struct kimage **dest_image, *image;
1391 
1392 	/* We only trust the superuser with rebooting the system. */
1393 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1394 		return -EPERM;
1395 
1396 	/* Make sure we have a legal set of flags */
1397 	if (flags != (flags & KEXEC_FILE_FLAGS))
1398 		return -EINVAL;
1399 
1400 	image = NULL;
1401 
1402 	if (!mutex_trylock(&kexec_mutex))
1403 		return -EBUSY;
1404 
1405 	dest_image = &kexec_image;
1406 	if (flags & KEXEC_FILE_ON_CRASH)
1407 		dest_image = &kexec_crash_image;
1408 
1409 	if (flags & KEXEC_FILE_UNLOAD)
1410 		goto exchange;
1411 
1412 	/*
1413 	 * In case of crash, new kernel gets loaded in reserved region. It is
1414 	 * same memory where old crash kernel might be loaded. Free any
1415 	 * current crash dump kernel before we corrupt it.
1416 	 */
1417 	if (flags & KEXEC_FILE_ON_CRASH)
1418 		kimage_free(xchg(&kexec_crash_image, NULL));
1419 
1420 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1421 				     cmdline_len, flags);
1422 	if (ret)
1423 		goto out;
1424 
1425 	ret = machine_kexec_prepare(image);
1426 	if (ret)
1427 		goto out;
1428 
1429 	ret = kexec_calculate_store_digests(image);
1430 	if (ret)
1431 		goto out;
1432 
1433 	for (i = 0; i < image->nr_segments; i++) {
1434 		struct kexec_segment *ksegment;
1435 
1436 		ksegment = &image->segment[i];
1437 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1438 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1439 			 ksegment->memsz);
1440 
1441 		ret = kimage_load_segment(image, &image->segment[i]);
1442 		if (ret)
1443 			goto out;
1444 	}
1445 
1446 	kimage_terminate(image);
1447 
1448 	/*
1449 	 * Free up any temporary buffers allocated which are not needed
1450 	 * after image has been loaded
1451 	 */
1452 	kimage_file_post_load_cleanup(image);
1453 exchange:
1454 	image = xchg(dest_image, image);
1455 out:
1456 	mutex_unlock(&kexec_mutex);
1457 	kimage_free(image);
1458 	return ret;
1459 }
1460 
1461 #endif /* CONFIG_KEXEC_FILE */
1462 
1463 void crash_kexec(struct pt_regs *regs)
1464 {
1465 	/* Take the kexec_mutex here to prevent sys_kexec_load
1466 	 * running on one cpu from replacing the crash kernel
1467 	 * we are using after a panic on a different cpu.
1468 	 *
1469 	 * If the crash kernel was not located in a fixed area
1470 	 * of memory the xchg(&kexec_crash_image) would be
1471 	 * sufficient.  But since I reuse the memory...
1472 	 */
1473 	if (mutex_trylock(&kexec_mutex)) {
1474 		if (kexec_crash_image) {
1475 			struct pt_regs fixed_regs;
1476 
1477 			crash_setup_regs(&fixed_regs, regs);
1478 			crash_save_vmcoreinfo();
1479 			machine_crash_shutdown(&fixed_regs);
1480 			machine_kexec(kexec_crash_image);
1481 		}
1482 		mutex_unlock(&kexec_mutex);
1483 	}
1484 }
1485 
1486 size_t crash_get_memory_size(void)
1487 {
1488 	size_t size = 0;
1489 	mutex_lock(&kexec_mutex);
1490 	if (crashk_res.end != crashk_res.start)
1491 		size = resource_size(&crashk_res);
1492 	mutex_unlock(&kexec_mutex);
1493 	return size;
1494 }
1495 
1496 void __weak crash_free_reserved_phys_range(unsigned long begin,
1497 					   unsigned long end)
1498 {
1499 	unsigned long addr;
1500 
1501 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1502 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1503 }
1504 
1505 int crash_shrink_memory(unsigned long new_size)
1506 {
1507 	int ret = 0;
1508 	unsigned long start, end;
1509 	unsigned long old_size;
1510 	struct resource *ram_res;
1511 
1512 	mutex_lock(&kexec_mutex);
1513 
1514 	if (kexec_crash_image) {
1515 		ret = -ENOENT;
1516 		goto unlock;
1517 	}
1518 	start = crashk_res.start;
1519 	end = crashk_res.end;
1520 	old_size = (end == 0) ? 0 : end - start + 1;
1521 	if (new_size >= old_size) {
1522 		ret = (new_size == old_size) ? 0 : -EINVAL;
1523 		goto unlock;
1524 	}
1525 
1526 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1527 	if (!ram_res) {
1528 		ret = -ENOMEM;
1529 		goto unlock;
1530 	}
1531 
1532 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1533 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1534 
1535 	crash_map_reserved_pages();
1536 	crash_free_reserved_phys_range(end, crashk_res.end);
1537 
1538 	if ((start == end) && (crashk_res.parent != NULL))
1539 		release_resource(&crashk_res);
1540 
1541 	ram_res->start = end;
1542 	ram_res->end = crashk_res.end;
1543 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1544 	ram_res->name = "System RAM";
1545 
1546 	crashk_res.end = end - 1;
1547 
1548 	insert_resource(&iomem_resource, ram_res);
1549 	crash_unmap_reserved_pages();
1550 
1551 unlock:
1552 	mutex_unlock(&kexec_mutex);
1553 	return ret;
1554 }
1555 
1556 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1557 			    size_t data_len)
1558 {
1559 	struct elf_note note;
1560 
1561 	note.n_namesz = strlen(name) + 1;
1562 	note.n_descsz = data_len;
1563 	note.n_type   = type;
1564 	memcpy(buf, &note, sizeof(note));
1565 	buf += (sizeof(note) + 3)/4;
1566 	memcpy(buf, name, note.n_namesz);
1567 	buf += (note.n_namesz + 3)/4;
1568 	memcpy(buf, data, note.n_descsz);
1569 	buf += (note.n_descsz + 3)/4;
1570 
1571 	return buf;
1572 }
1573 
1574 static void final_note(u32 *buf)
1575 {
1576 	struct elf_note note;
1577 
1578 	note.n_namesz = 0;
1579 	note.n_descsz = 0;
1580 	note.n_type   = 0;
1581 	memcpy(buf, &note, sizeof(note));
1582 }
1583 
1584 void crash_save_cpu(struct pt_regs *regs, int cpu)
1585 {
1586 	struct elf_prstatus prstatus;
1587 	u32 *buf;
1588 
1589 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1590 		return;
1591 
1592 	/* Using ELF notes here is opportunistic.
1593 	 * I need a well defined structure format
1594 	 * for the data I pass, and I need tags
1595 	 * on the data to indicate what information I have
1596 	 * squirrelled away.  ELF notes happen to provide
1597 	 * all of that, so there is no need to invent something new.
1598 	 */
1599 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1600 	if (!buf)
1601 		return;
1602 	memset(&prstatus, 0, sizeof(prstatus));
1603 	prstatus.pr_pid = current->pid;
1604 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1605 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1606 			      &prstatus, sizeof(prstatus));
1607 	final_note(buf);
1608 }
1609 
1610 static int __init crash_notes_memory_init(void)
1611 {
1612 	/* Allocate memory for saving cpu registers. */
1613 	crash_notes = alloc_percpu(note_buf_t);
1614 	if (!crash_notes) {
1615 		pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1616 		return -ENOMEM;
1617 	}
1618 	return 0;
1619 }
1620 subsys_initcall(crash_notes_memory_init);
1621 
1622 
1623 /*
1624  * parsing the "crashkernel" commandline
1625  *
1626  * this code is intended to be called from architecture specific code
1627  */
1628 
1629 
1630 /*
1631  * This function parses command lines in the format
1632  *
1633  *   crashkernel=ramsize-range:size[,...][@offset]
1634  *
1635  * The function returns 0 on success and -EINVAL on failure.
1636  */
1637 static int __init parse_crashkernel_mem(char *cmdline,
1638 					unsigned long long system_ram,
1639 					unsigned long long *crash_size,
1640 					unsigned long long *crash_base)
1641 {
1642 	char *cur = cmdline, *tmp;
1643 
1644 	/* for each entry of the comma-separated list */
1645 	do {
1646 		unsigned long long start, end = ULLONG_MAX, size;
1647 
1648 		/* get the start of the range */
1649 		start = memparse(cur, &tmp);
1650 		if (cur == tmp) {
1651 			pr_warn("crashkernel: Memory value expected\n");
1652 			return -EINVAL;
1653 		}
1654 		cur = tmp;
1655 		if (*cur != '-') {
1656 			pr_warn("crashkernel: '-' expected\n");
1657 			return -EINVAL;
1658 		}
1659 		cur++;
1660 
1661 		/* if no ':' is here, than we read the end */
1662 		if (*cur != ':') {
1663 			end = memparse(cur, &tmp);
1664 			if (cur == tmp) {
1665 				pr_warn("crashkernel: Memory value expected\n");
1666 				return -EINVAL;
1667 			}
1668 			cur = tmp;
1669 			if (end <= start) {
1670 				pr_warn("crashkernel: end <= start\n");
1671 				return -EINVAL;
1672 			}
1673 		}
1674 
1675 		if (*cur != ':') {
1676 			pr_warn("crashkernel: ':' expected\n");
1677 			return -EINVAL;
1678 		}
1679 		cur++;
1680 
1681 		size = memparse(cur, &tmp);
1682 		if (cur == tmp) {
1683 			pr_warn("Memory value expected\n");
1684 			return -EINVAL;
1685 		}
1686 		cur = tmp;
1687 		if (size >= system_ram) {
1688 			pr_warn("crashkernel: invalid size\n");
1689 			return -EINVAL;
1690 		}
1691 
1692 		/* match ? */
1693 		if (system_ram >= start && system_ram < end) {
1694 			*crash_size = size;
1695 			break;
1696 		}
1697 	} while (*cur++ == ',');
1698 
1699 	if (*crash_size > 0) {
1700 		while (*cur && *cur != ' ' && *cur != '@')
1701 			cur++;
1702 		if (*cur == '@') {
1703 			cur++;
1704 			*crash_base = memparse(cur, &tmp);
1705 			if (cur == tmp) {
1706 				pr_warn("Memory value expected after '@'\n");
1707 				return -EINVAL;
1708 			}
1709 		}
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 /*
1716  * That function parses "simple" (old) crashkernel command lines like
1717  *
1718  *	crashkernel=size[@offset]
1719  *
1720  * It returns 0 on success and -EINVAL on failure.
1721  */
1722 static int __init parse_crashkernel_simple(char *cmdline,
1723 					   unsigned long long *crash_size,
1724 					   unsigned long long *crash_base)
1725 {
1726 	char *cur = cmdline;
1727 
1728 	*crash_size = memparse(cmdline, &cur);
1729 	if (cmdline == cur) {
1730 		pr_warn("crashkernel: memory value expected\n");
1731 		return -EINVAL;
1732 	}
1733 
1734 	if (*cur == '@')
1735 		*crash_base = memparse(cur+1, &cur);
1736 	else if (*cur != ' ' && *cur != '\0') {
1737 		pr_warn("crashkernel: unrecognized char\n");
1738 		return -EINVAL;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 #define SUFFIX_HIGH 0
1745 #define SUFFIX_LOW  1
1746 #define SUFFIX_NULL 2
1747 static __initdata char *suffix_tbl[] = {
1748 	[SUFFIX_HIGH] = ",high",
1749 	[SUFFIX_LOW]  = ",low",
1750 	[SUFFIX_NULL] = NULL,
1751 };
1752 
1753 /*
1754  * That function parses "suffix"  crashkernel command lines like
1755  *
1756  *	crashkernel=size,[high|low]
1757  *
1758  * It returns 0 on success and -EINVAL on failure.
1759  */
1760 static int __init parse_crashkernel_suffix(char *cmdline,
1761 					   unsigned long long	*crash_size,
1762 					   const char *suffix)
1763 {
1764 	char *cur = cmdline;
1765 
1766 	*crash_size = memparse(cmdline, &cur);
1767 	if (cmdline == cur) {
1768 		pr_warn("crashkernel: memory value expected\n");
1769 		return -EINVAL;
1770 	}
1771 
1772 	/* check with suffix */
1773 	if (strncmp(cur, suffix, strlen(suffix))) {
1774 		pr_warn("crashkernel: unrecognized char\n");
1775 		return -EINVAL;
1776 	}
1777 	cur += strlen(suffix);
1778 	if (*cur != ' ' && *cur != '\0') {
1779 		pr_warn("crashkernel: unrecognized char\n");
1780 		return -EINVAL;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static __init char *get_last_crashkernel(char *cmdline,
1787 			     const char *name,
1788 			     const char *suffix)
1789 {
1790 	char *p = cmdline, *ck_cmdline = NULL;
1791 
1792 	/* find crashkernel and use the last one if there are more */
1793 	p = strstr(p, name);
1794 	while (p) {
1795 		char *end_p = strchr(p, ' ');
1796 		char *q;
1797 
1798 		if (!end_p)
1799 			end_p = p + strlen(p);
1800 
1801 		if (!suffix) {
1802 			int i;
1803 
1804 			/* skip the one with any known suffix */
1805 			for (i = 0; suffix_tbl[i]; i++) {
1806 				q = end_p - strlen(suffix_tbl[i]);
1807 				if (!strncmp(q, suffix_tbl[i],
1808 					     strlen(suffix_tbl[i])))
1809 					goto next;
1810 			}
1811 			ck_cmdline = p;
1812 		} else {
1813 			q = end_p - strlen(suffix);
1814 			if (!strncmp(q, suffix, strlen(suffix)))
1815 				ck_cmdline = p;
1816 		}
1817 next:
1818 		p = strstr(p+1, name);
1819 	}
1820 
1821 	if (!ck_cmdline)
1822 		return NULL;
1823 
1824 	return ck_cmdline;
1825 }
1826 
1827 static int __init __parse_crashkernel(char *cmdline,
1828 			     unsigned long long system_ram,
1829 			     unsigned long long *crash_size,
1830 			     unsigned long long *crash_base,
1831 			     const char *name,
1832 			     const char *suffix)
1833 {
1834 	char	*first_colon, *first_space;
1835 	char	*ck_cmdline;
1836 
1837 	BUG_ON(!crash_size || !crash_base);
1838 	*crash_size = 0;
1839 	*crash_base = 0;
1840 
1841 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1842 
1843 	if (!ck_cmdline)
1844 		return -EINVAL;
1845 
1846 	ck_cmdline += strlen(name);
1847 
1848 	if (suffix)
1849 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1850 				suffix);
1851 	/*
1852 	 * if the commandline contains a ':', then that's the extended
1853 	 * syntax -- if not, it must be the classic syntax
1854 	 */
1855 	first_colon = strchr(ck_cmdline, ':');
1856 	first_space = strchr(ck_cmdline, ' ');
1857 	if (first_colon && (!first_space || first_colon < first_space))
1858 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1859 				crash_size, crash_base);
1860 
1861 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1862 }
1863 
1864 /*
1865  * That function is the entry point for command line parsing and should be
1866  * called from the arch-specific code.
1867  */
1868 int __init parse_crashkernel(char *cmdline,
1869 			     unsigned long long system_ram,
1870 			     unsigned long long *crash_size,
1871 			     unsigned long long *crash_base)
1872 {
1873 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1874 					"crashkernel=", NULL);
1875 }
1876 
1877 int __init parse_crashkernel_high(char *cmdline,
1878 			     unsigned long long system_ram,
1879 			     unsigned long long *crash_size,
1880 			     unsigned long long *crash_base)
1881 {
1882 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1883 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1884 }
1885 
1886 int __init parse_crashkernel_low(char *cmdline,
1887 			     unsigned long long system_ram,
1888 			     unsigned long long *crash_size,
1889 			     unsigned long long *crash_base)
1890 {
1891 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1892 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1893 }
1894 
1895 static void update_vmcoreinfo_note(void)
1896 {
1897 	u32 *buf = vmcoreinfo_note;
1898 
1899 	if (!vmcoreinfo_size)
1900 		return;
1901 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1902 			      vmcoreinfo_size);
1903 	final_note(buf);
1904 }
1905 
1906 void crash_save_vmcoreinfo(void)
1907 {
1908 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1909 	update_vmcoreinfo_note();
1910 }
1911 
1912 void vmcoreinfo_append_str(const char *fmt, ...)
1913 {
1914 	va_list args;
1915 	char buf[0x50];
1916 	size_t r;
1917 
1918 	va_start(args, fmt);
1919 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1920 	va_end(args);
1921 
1922 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1923 
1924 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1925 
1926 	vmcoreinfo_size += r;
1927 }
1928 
1929 /*
1930  * provide an empty default implementation here -- architecture
1931  * code may override this
1932  */
1933 void __weak arch_crash_save_vmcoreinfo(void)
1934 {}
1935 
1936 unsigned long __weak paddr_vmcoreinfo_note(void)
1937 {
1938 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1939 }
1940 
1941 static int __init crash_save_vmcoreinfo_init(void)
1942 {
1943 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1944 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1945 
1946 	VMCOREINFO_SYMBOL(init_uts_ns);
1947 	VMCOREINFO_SYMBOL(node_online_map);
1948 #ifdef CONFIG_MMU
1949 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1950 #endif
1951 	VMCOREINFO_SYMBOL(_stext);
1952 	VMCOREINFO_SYMBOL(vmap_area_list);
1953 
1954 #ifndef CONFIG_NEED_MULTIPLE_NODES
1955 	VMCOREINFO_SYMBOL(mem_map);
1956 	VMCOREINFO_SYMBOL(contig_page_data);
1957 #endif
1958 #ifdef CONFIG_SPARSEMEM
1959 	VMCOREINFO_SYMBOL(mem_section);
1960 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1961 	VMCOREINFO_STRUCT_SIZE(mem_section);
1962 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1963 #endif
1964 	VMCOREINFO_STRUCT_SIZE(page);
1965 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1966 	VMCOREINFO_STRUCT_SIZE(zone);
1967 	VMCOREINFO_STRUCT_SIZE(free_area);
1968 	VMCOREINFO_STRUCT_SIZE(list_head);
1969 	VMCOREINFO_SIZE(nodemask_t);
1970 	VMCOREINFO_OFFSET(page, flags);
1971 	VMCOREINFO_OFFSET(page, _count);
1972 	VMCOREINFO_OFFSET(page, mapping);
1973 	VMCOREINFO_OFFSET(page, lru);
1974 	VMCOREINFO_OFFSET(page, _mapcount);
1975 	VMCOREINFO_OFFSET(page, private);
1976 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1977 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1979 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1980 #endif
1981 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1982 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1983 	VMCOREINFO_OFFSET(pglist_data, node_id);
1984 	VMCOREINFO_OFFSET(zone, free_area);
1985 	VMCOREINFO_OFFSET(zone, vm_stat);
1986 	VMCOREINFO_OFFSET(zone, spanned_pages);
1987 	VMCOREINFO_OFFSET(free_area, free_list);
1988 	VMCOREINFO_OFFSET(list_head, next);
1989 	VMCOREINFO_OFFSET(list_head, prev);
1990 	VMCOREINFO_OFFSET(vmap_area, va_start);
1991 	VMCOREINFO_OFFSET(vmap_area, list);
1992 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1993 	log_buf_kexec_setup();
1994 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1995 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1996 	VMCOREINFO_NUMBER(PG_lru);
1997 	VMCOREINFO_NUMBER(PG_private);
1998 	VMCOREINFO_NUMBER(PG_swapcache);
1999 	VMCOREINFO_NUMBER(PG_slab);
2000 #ifdef CONFIG_MEMORY_FAILURE
2001 	VMCOREINFO_NUMBER(PG_hwpoison);
2002 #endif
2003 	VMCOREINFO_NUMBER(PG_head_mask);
2004 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2005 #ifdef CONFIG_HUGETLBFS
2006 	VMCOREINFO_SYMBOL(free_huge_page);
2007 #endif
2008 
2009 	arch_crash_save_vmcoreinfo();
2010 	update_vmcoreinfo_note();
2011 
2012 	return 0;
2013 }
2014 
2015 subsys_initcall(crash_save_vmcoreinfo_init);
2016 
2017 #ifdef CONFIG_KEXEC_FILE
2018 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2019 				    struct kexec_buf *kbuf)
2020 {
2021 	struct kimage *image = kbuf->image;
2022 	unsigned long temp_start, temp_end;
2023 
2024 	temp_end = min(end, kbuf->buf_max);
2025 	temp_start = temp_end - kbuf->memsz;
2026 
2027 	do {
2028 		/* align down start */
2029 		temp_start = temp_start & (~(kbuf->buf_align - 1));
2030 
2031 		if (temp_start < start || temp_start < kbuf->buf_min)
2032 			return 0;
2033 
2034 		temp_end = temp_start + kbuf->memsz - 1;
2035 
2036 		/*
2037 		 * Make sure this does not conflict with any of existing
2038 		 * segments
2039 		 */
2040 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2041 			temp_start = temp_start - PAGE_SIZE;
2042 			continue;
2043 		}
2044 
2045 		/* We found a suitable memory range */
2046 		break;
2047 	} while (1);
2048 
2049 	/* If we are here, we found a suitable memory range */
2050 	kbuf->mem = temp_start;
2051 
2052 	/* Success, stop navigating through remaining System RAM ranges */
2053 	return 1;
2054 }
2055 
2056 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2057 				     struct kexec_buf *kbuf)
2058 {
2059 	struct kimage *image = kbuf->image;
2060 	unsigned long temp_start, temp_end;
2061 
2062 	temp_start = max(start, kbuf->buf_min);
2063 
2064 	do {
2065 		temp_start = ALIGN(temp_start, kbuf->buf_align);
2066 		temp_end = temp_start + kbuf->memsz - 1;
2067 
2068 		if (temp_end > end || temp_end > kbuf->buf_max)
2069 			return 0;
2070 		/*
2071 		 * Make sure this does not conflict with any of existing
2072 		 * segments
2073 		 */
2074 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2075 			temp_start = temp_start + PAGE_SIZE;
2076 			continue;
2077 		}
2078 
2079 		/* We found a suitable memory range */
2080 		break;
2081 	} while (1);
2082 
2083 	/* If we are here, we found a suitable memory range */
2084 	kbuf->mem = temp_start;
2085 
2086 	/* Success, stop navigating through remaining System RAM ranges */
2087 	return 1;
2088 }
2089 
2090 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2091 {
2092 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2093 	unsigned long sz = end - start + 1;
2094 
2095 	/* Returning 0 will take to next memory range */
2096 	if (sz < kbuf->memsz)
2097 		return 0;
2098 
2099 	if (end < kbuf->buf_min || start > kbuf->buf_max)
2100 		return 0;
2101 
2102 	/*
2103 	 * Allocate memory top down with-in ram range. Otherwise bottom up
2104 	 * allocation.
2105 	 */
2106 	if (kbuf->top_down)
2107 		return locate_mem_hole_top_down(start, end, kbuf);
2108 	return locate_mem_hole_bottom_up(start, end, kbuf);
2109 }
2110 
2111 /*
2112  * Helper function for placing a buffer in a kexec segment. This assumes
2113  * that kexec_mutex is held.
2114  */
2115 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2116 		     unsigned long memsz, unsigned long buf_align,
2117 		     unsigned long buf_min, unsigned long buf_max,
2118 		     bool top_down, unsigned long *load_addr)
2119 {
2120 
2121 	struct kexec_segment *ksegment;
2122 	struct kexec_buf buf, *kbuf;
2123 	int ret;
2124 
2125 	/* Currently adding segment this way is allowed only in file mode */
2126 	if (!image->file_mode)
2127 		return -EINVAL;
2128 
2129 	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2130 		return -EINVAL;
2131 
2132 	/*
2133 	 * Make sure we are not trying to add buffer after allocating
2134 	 * control pages. All segments need to be placed first before
2135 	 * any control pages are allocated. As control page allocation
2136 	 * logic goes through list of segments to make sure there are
2137 	 * no destination overlaps.
2138 	 */
2139 	if (!list_empty(&image->control_pages)) {
2140 		WARN_ON(1);
2141 		return -EINVAL;
2142 	}
2143 
2144 	memset(&buf, 0, sizeof(struct kexec_buf));
2145 	kbuf = &buf;
2146 	kbuf->image = image;
2147 	kbuf->buffer = buffer;
2148 	kbuf->bufsz = bufsz;
2149 
2150 	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2151 	kbuf->buf_align = max(buf_align, PAGE_SIZE);
2152 	kbuf->buf_min = buf_min;
2153 	kbuf->buf_max = buf_max;
2154 	kbuf->top_down = top_down;
2155 
2156 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
2157 	if (image->type == KEXEC_TYPE_CRASH)
2158 		ret = walk_iomem_res("Crash kernel",
2159 				     IORESOURCE_MEM | IORESOURCE_BUSY,
2160 				     crashk_res.start, crashk_res.end, kbuf,
2161 				     locate_mem_hole_callback);
2162 	else
2163 		ret = walk_system_ram_res(0, -1, kbuf,
2164 					  locate_mem_hole_callback);
2165 	if (ret != 1) {
2166 		/* A suitable memory range could not be found for buffer */
2167 		return -EADDRNOTAVAIL;
2168 	}
2169 
2170 	/* Found a suitable memory range */
2171 	ksegment = &image->segment[image->nr_segments];
2172 	ksegment->kbuf = kbuf->buffer;
2173 	ksegment->bufsz = kbuf->bufsz;
2174 	ksegment->mem = kbuf->mem;
2175 	ksegment->memsz = kbuf->memsz;
2176 	image->nr_segments++;
2177 	*load_addr = ksegment->mem;
2178 	return 0;
2179 }
2180 
2181 /* Calculate and store the digest of segments */
2182 static int kexec_calculate_store_digests(struct kimage *image)
2183 {
2184 	struct crypto_shash *tfm;
2185 	struct shash_desc *desc;
2186 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2187 	size_t desc_size, nullsz;
2188 	char *digest;
2189 	void *zero_buf;
2190 	struct kexec_sha_region *sha_regions;
2191 	struct purgatory_info *pi = &image->purgatory_info;
2192 
2193 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2194 	zero_buf_sz = PAGE_SIZE;
2195 
2196 	tfm = crypto_alloc_shash("sha256", 0, 0);
2197 	if (IS_ERR(tfm)) {
2198 		ret = PTR_ERR(tfm);
2199 		goto out;
2200 	}
2201 
2202 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2203 	desc = kzalloc(desc_size, GFP_KERNEL);
2204 	if (!desc) {
2205 		ret = -ENOMEM;
2206 		goto out_free_tfm;
2207 	}
2208 
2209 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2210 	sha_regions = vzalloc(sha_region_sz);
2211 	if (!sha_regions)
2212 		goto out_free_desc;
2213 
2214 	desc->tfm   = tfm;
2215 	desc->flags = 0;
2216 
2217 	ret = crypto_shash_init(desc);
2218 	if (ret < 0)
2219 		goto out_free_sha_regions;
2220 
2221 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2222 	if (!digest) {
2223 		ret = -ENOMEM;
2224 		goto out_free_sha_regions;
2225 	}
2226 
2227 	for (j = i = 0; i < image->nr_segments; i++) {
2228 		struct kexec_segment *ksegment;
2229 
2230 		ksegment = &image->segment[i];
2231 		/*
2232 		 * Skip purgatory as it will be modified once we put digest
2233 		 * info in purgatory.
2234 		 */
2235 		if (ksegment->kbuf == pi->purgatory_buf)
2236 			continue;
2237 
2238 		ret = crypto_shash_update(desc, ksegment->kbuf,
2239 					  ksegment->bufsz);
2240 		if (ret)
2241 			break;
2242 
2243 		/*
2244 		 * Assume rest of the buffer is filled with zero and
2245 		 * update digest accordingly.
2246 		 */
2247 		nullsz = ksegment->memsz - ksegment->bufsz;
2248 		while (nullsz) {
2249 			unsigned long bytes = nullsz;
2250 
2251 			if (bytes > zero_buf_sz)
2252 				bytes = zero_buf_sz;
2253 			ret = crypto_shash_update(desc, zero_buf, bytes);
2254 			if (ret)
2255 				break;
2256 			nullsz -= bytes;
2257 		}
2258 
2259 		if (ret)
2260 			break;
2261 
2262 		sha_regions[j].start = ksegment->mem;
2263 		sha_regions[j].len = ksegment->memsz;
2264 		j++;
2265 	}
2266 
2267 	if (!ret) {
2268 		ret = crypto_shash_final(desc, digest);
2269 		if (ret)
2270 			goto out_free_digest;
2271 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2272 						sha_regions, sha_region_sz, 0);
2273 		if (ret)
2274 			goto out_free_digest;
2275 
2276 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2277 						digest, SHA256_DIGEST_SIZE, 0);
2278 		if (ret)
2279 			goto out_free_digest;
2280 	}
2281 
2282 out_free_digest:
2283 	kfree(digest);
2284 out_free_sha_regions:
2285 	vfree(sha_regions);
2286 out_free_desc:
2287 	kfree(desc);
2288 out_free_tfm:
2289 	kfree(tfm);
2290 out:
2291 	return ret;
2292 }
2293 
2294 /* Actually load purgatory. Lot of code taken from kexec-tools */
2295 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2296 				  unsigned long max, int top_down)
2297 {
2298 	struct purgatory_info *pi = &image->purgatory_info;
2299 	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2300 	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2301 	unsigned char *buf_addr, *src;
2302 	int i, ret = 0, entry_sidx = -1;
2303 	const Elf_Shdr *sechdrs_c;
2304 	Elf_Shdr *sechdrs = NULL;
2305 	void *purgatory_buf = NULL;
2306 
2307 	/*
2308 	 * sechdrs_c points to section headers in purgatory and are read
2309 	 * only. No modifications allowed.
2310 	 */
2311 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2312 
2313 	/*
2314 	 * We can not modify sechdrs_c[] and its fields. It is read only.
2315 	 * Copy it over to a local copy where one can store some temporary
2316 	 * data and free it at the end. We need to modify ->sh_addr and
2317 	 * ->sh_offset fields to keep track of permanent and temporary
2318 	 * locations of sections.
2319 	 */
2320 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2321 	if (!sechdrs)
2322 		return -ENOMEM;
2323 
2324 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2325 
2326 	/*
2327 	 * We seem to have multiple copies of sections. First copy is which
2328 	 * is embedded in kernel in read only section. Some of these sections
2329 	 * will be copied to a temporary buffer and relocated. And these
2330 	 * sections will finally be copied to their final destination at
2331 	 * segment load time.
2332 	 *
2333 	 * Use ->sh_offset to reflect section address in memory. It will
2334 	 * point to original read only copy if section is not allocatable.
2335 	 * Otherwise it will point to temporary copy which will be relocated.
2336 	 *
2337 	 * Use ->sh_addr to contain final address of the section where it
2338 	 * will go during execution time.
2339 	 */
2340 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2341 		if (sechdrs[i].sh_type == SHT_NOBITS)
2342 			continue;
2343 
2344 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2345 						sechdrs[i].sh_offset;
2346 	}
2347 
2348 	/*
2349 	 * Identify entry point section and make entry relative to section
2350 	 * start.
2351 	 */
2352 	entry = pi->ehdr->e_entry;
2353 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2354 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2355 			continue;
2356 
2357 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2358 			continue;
2359 
2360 		/* Make entry section relative */
2361 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2362 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2363 		     pi->ehdr->e_entry)) {
2364 			entry_sidx = i;
2365 			entry -= sechdrs[i].sh_addr;
2366 			break;
2367 		}
2368 	}
2369 
2370 	/* Determine how much memory is needed to load relocatable object. */
2371 	buf_align = 1;
2372 	bss_align = 1;
2373 	buf_sz = 0;
2374 	bss_sz = 0;
2375 
2376 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2377 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2378 			continue;
2379 
2380 		align = sechdrs[i].sh_addralign;
2381 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2382 			if (buf_align < align)
2383 				buf_align = align;
2384 			buf_sz = ALIGN(buf_sz, align);
2385 			buf_sz += sechdrs[i].sh_size;
2386 		} else {
2387 			/* bss section */
2388 			if (bss_align < align)
2389 				bss_align = align;
2390 			bss_sz = ALIGN(bss_sz, align);
2391 			bss_sz += sechdrs[i].sh_size;
2392 		}
2393 	}
2394 
2395 	/* Determine the bss padding required to align bss properly */
2396 	bss_pad = 0;
2397 	if (buf_sz & (bss_align - 1))
2398 		bss_pad = bss_align - (buf_sz & (bss_align - 1));
2399 
2400 	memsz = buf_sz + bss_pad + bss_sz;
2401 
2402 	/* Allocate buffer for purgatory */
2403 	purgatory_buf = vzalloc(buf_sz);
2404 	if (!purgatory_buf) {
2405 		ret = -ENOMEM;
2406 		goto out;
2407 	}
2408 
2409 	if (buf_align < bss_align)
2410 		buf_align = bss_align;
2411 
2412 	/* Add buffer to segment list */
2413 	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2414 				buf_align, min, max, top_down,
2415 				&pi->purgatory_load_addr);
2416 	if (ret)
2417 		goto out;
2418 
2419 	/* Load SHF_ALLOC sections */
2420 	buf_addr = purgatory_buf;
2421 	load_addr = curr_load_addr = pi->purgatory_load_addr;
2422 	bss_addr = load_addr + buf_sz + bss_pad;
2423 
2424 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2425 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2426 			continue;
2427 
2428 		align = sechdrs[i].sh_addralign;
2429 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2430 			curr_load_addr = ALIGN(curr_load_addr, align);
2431 			offset = curr_load_addr - load_addr;
2432 			/* We already modifed ->sh_offset to keep src addr */
2433 			src = (char *) sechdrs[i].sh_offset;
2434 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2435 
2436 			/* Store load address and source address of section */
2437 			sechdrs[i].sh_addr = curr_load_addr;
2438 
2439 			/*
2440 			 * This section got copied to temporary buffer. Update
2441 			 * ->sh_offset accordingly.
2442 			 */
2443 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2444 
2445 			/* Advance to the next address */
2446 			curr_load_addr += sechdrs[i].sh_size;
2447 		} else {
2448 			bss_addr = ALIGN(bss_addr, align);
2449 			sechdrs[i].sh_addr = bss_addr;
2450 			bss_addr += sechdrs[i].sh_size;
2451 		}
2452 	}
2453 
2454 	/* Update entry point based on load address of text section */
2455 	if (entry_sidx >= 0)
2456 		entry += sechdrs[entry_sidx].sh_addr;
2457 
2458 	/* Make kernel jump to purgatory after shutdown */
2459 	image->start = entry;
2460 
2461 	/* Used later to get/set symbol values */
2462 	pi->sechdrs = sechdrs;
2463 
2464 	/*
2465 	 * Used later to identify which section is purgatory and skip it
2466 	 * from checksumming.
2467 	 */
2468 	pi->purgatory_buf = purgatory_buf;
2469 	return ret;
2470 out:
2471 	vfree(sechdrs);
2472 	vfree(purgatory_buf);
2473 	return ret;
2474 }
2475 
2476 static int kexec_apply_relocations(struct kimage *image)
2477 {
2478 	int i, ret;
2479 	struct purgatory_info *pi = &image->purgatory_info;
2480 	Elf_Shdr *sechdrs = pi->sechdrs;
2481 
2482 	/* Apply relocations */
2483 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2484 		Elf_Shdr *section, *symtab;
2485 
2486 		if (sechdrs[i].sh_type != SHT_RELA &&
2487 		    sechdrs[i].sh_type != SHT_REL)
2488 			continue;
2489 
2490 		/*
2491 		 * For section of type SHT_RELA/SHT_REL,
2492 		 * ->sh_link contains section header index of associated
2493 		 * symbol table. And ->sh_info contains section header
2494 		 * index of section to which relocations apply.
2495 		 */
2496 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2497 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2498 			return -ENOEXEC;
2499 
2500 		section = &sechdrs[sechdrs[i].sh_info];
2501 		symtab = &sechdrs[sechdrs[i].sh_link];
2502 
2503 		if (!(section->sh_flags & SHF_ALLOC))
2504 			continue;
2505 
2506 		/*
2507 		 * symtab->sh_link contain section header index of associated
2508 		 * string table.
2509 		 */
2510 		if (symtab->sh_link >= pi->ehdr->e_shnum)
2511 			/* Invalid section number? */
2512 			continue;
2513 
2514 		/*
2515 		 * Respective archicture needs to provide support for applying
2516 		 * relocations of type SHT_RELA/SHT_REL.
2517 		 */
2518 		if (sechdrs[i].sh_type == SHT_RELA)
2519 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
2520 							       sechdrs, i);
2521 		else if (sechdrs[i].sh_type == SHT_REL)
2522 			ret = arch_kexec_apply_relocations(pi->ehdr,
2523 							   sechdrs, i);
2524 		if (ret)
2525 			return ret;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 /* Load relocatable purgatory object and relocate it appropriately */
2532 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2533 			 unsigned long max, int top_down,
2534 			 unsigned long *load_addr)
2535 {
2536 	struct purgatory_info *pi = &image->purgatory_info;
2537 	int ret;
2538 
2539 	if (kexec_purgatory_size <= 0)
2540 		return -EINVAL;
2541 
2542 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2543 		return -ENOEXEC;
2544 
2545 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2546 
2547 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2548 	    || pi->ehdr->e_type != ET_REL
2549 	    || !elf_check_arch(pi->ehdr)
2550 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2551 		return -ENOEXEC;
2552 
2553 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
2554 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2555 	    kexec_purgatory_size - pi->ehdr->e_shoff))
2556 		return -ENOEXEC;
2557 
2558 	ret = __kexec_load_purgatory(image, min, max, top_down);
2559 	if (ret)
2560 		return ret;
2561 
2562 	ret = kexec_apply_relocations(image);
2563 	if (ret)
2564 		goto out;
2565 
2566 	*load_addr = pi->purgatory_load_addr;
2567 	return 0;
2568 out:
2569 	vfree(pi->sechdrs);
2570 	vfree(pi->purgatory_buf);
2571 	return ret;
2572 }
2573 
2574 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2575 					    const char *name)
2576 {
2577 	Elf_Sym *syms;
2578 	Elf_Shdr *sechdrs;
2579 	Elf_Ehdr *ehdr;
2580 	int i, k;
2581 	const char *strtab;
2582 
2583 	if (!pi->sechdrs || !pi->ehdr)
2584 		return NULL;
2585 
2586 	sechdrs = pi->sechdrs;
2587 	ehdr = pi->ehdr;
2588 
2589 	for (i = 0; i < ehdr->e_shnum; i++) {
2590 		if (sechdrs[i].sh_type != SHT_SYMTAB)
2591 			continue;
2592 
2593 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
2594 			/* Invalid strtab section number */
2595 			continue;
2596 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2597 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
2598 
2599 		/* Go through symbols for a match */
2600 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2601 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2602 				continue;
2603 
2604 			if (strcmp(strtab + syms[k].st_name, name) != 0)
2605 				continue;
2606 
2607 			if (syms[k].st_shndx == SHN_UNDEF ||
2608 			    syms[k].st_shndx >= ehdr->e_shnum) {
2609 				pr_debug("Symbol: %s has bad section index %d.\n",
2610 						name, syms[k].st_shndx);
2611 				return NULL;
2612 			}
2613 
2614 			/* Found the symbol we are looking for */
2615 			return &syms[k];
2616 		}
2617 	}
2618 
2619 	return NULL;
2620 }
2621 
2622 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2623 {
2624 	struct purgatory_info *pi = &image->purgatory_info;
2625 	Elf_Sym *sym;
2626 	Elf_Shdr *sechdr;
2627 
2628 	sym = kexec_purgatory_find_symbol(pi, name);
2629 	if (!sym)
2630 		return ERR_PTR(-EINVAL);
2631 
2632 	sechdr = &pi->sechdrs[sym->st_shndx];
2633 
2634 	/*
2635 	 * Returns the address where symbol will finally be loaded after
2636 	 * kexec_load_segment()
2637 	 */
2638 	return (void *)(sechdr->sh_addr + sym->st_value);
2639 }
2640 
2641 /*
2642  * Get or set value of a symbol. If "get_value" is true, symbol value is
2643  * returned in buf otherwise symbol value is set based on value in buf.
2644  */
2645 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2646 				   void *buf, unsigned int size, bool get_value)
2647 {
2648 	Elf_Sym *sym;
2649 	Elf_Shdr *sechdrs;
2650 	struct purgatory_info *pi = &image->purgatory_info;
2651 	char *sym_buf;
2652 
2653 	sym = kexec_purgatory_find_symbol(pi, name);
2654 	if (!sym)
2655 		return -EINVAL;
2656 
2657 	if (sym->st_size != size) {
2658 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2659 		       name, (unsigned long)sym->st_size, size);
2660 		return -EINVAL;
2661 	}
2662 
2663 	sechdrs = pi->sechdrs;
2664 
2665 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2666 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2667 		       get_value ? "get" : "set");
2668 		return -EINVAL;
2669 	}
2670 
2671 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2672 					sym->st_value;
2673 
2674 	if (get_value)
2675 		memcpy((void *)buf, sym_buf, size);
2676 	else
2677 		memcpy((void *)sym_buf, buf, size);
2678 
2679 	return 0;
2680 }
2681 #endif /* CONFIG_KEXEC_FILE */
2682 
2683 /*
2684  * Move into place and start executing a preloaded standalone
2685  * executable.  If nothing was preloaded return an error.
2686  */
2687 int kernel_kexec(void)
2688 {
2689 	int error = 0;
2690 
2691 	if (!mutex_trylock(&kexec_mutex))
2692 		return -EBUSY;
2693 	if (!kexec_image) {
2694 		error = -EINVAL;
2695 		goto Unlock;
2696 	}
2697 
2698 #ifdef CONFIG_KEXEC_JUMP
2699 	if (kexec_image->preserve_context) {
2700 		lock_system_sleep();
2701 		pm_prepare_console();
2702 		error = freeze_processes();
2703 		if (error) {
2704 			error = -EBUSY;
2705 			goto Restore_console;
2706 		}
2707 		suspend_console();
2708 		error = dpm_suspend_start(PMSG_FREEZE);
2709 		if (error)
2710 			goto Resume_console;
2711 		/* At this point, dpm_suspend_start() has been called,
2712 		 * but *not* dpm_suspend_end(). We *must* call
2713 		 * dpm_suspend_end() now.  Otherwise, drivers for
2714 		 * some devices (e.g. interrupt controllers) become
2715 		 * desynchronized with the actual state of the
2716 		 * hardware at resume time, and evil weirdness ensues.
2717 		 */
2718 		error = dpm_suspend_end(PMSG_FREEZE);
2719 		if (error)
2720 			goto Resume_devices;
2721 		error = disable_nonboot_cpus();
2722 		if (error)
2723 			goto Enable_cpus;
2724 		local_irq_disable();
2725 		error = syscore_suspend();
2726 		if (error)
2727 			goto Enable_irqs;
2728 	} else
2729 #endif
2730 	{
2731 		kexec_in_progress = true;
2732 		kernel_restart_prepare(NULL);
2733 		migrate_to_reboot_cpu();
2734 
2735 		/*
2736 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2737 		 * no further code needs to use CPU hotplug (which is true in
2738 		 * the reboot case). However, the kexec path depends on using
2739 		 * CPU hotplug again; so re-enable it here.
2740 		 */
2741 		cpu_hotplug_enable();
2742 		pr_emerg("Starting new kernel\n");
2743 		machine_shutdown();
2744 	}
2745 
2746 	machine_kexec(kexec_image);
2747 
2748 #ifdef CONFIG_KEXEC_JUMP
2749 	if (kexec_image->preserve_context) {
2750 		syscore_resume();
2751  Enable_irqs:
2752 		local_irq_enable();
2753  Enable_cpus:
2754 		enable_nonboot_cpus();
2755 		dpm_resume_start(PMSG_RESTORE);
2756  Resume_devices:
2757 		dpm_resume_end(PMSG_RESTORE);
2758  Resume_console:
2759 		resume_console();
2760 		thaw_processes();
2761  Restore_console:
2762 		pm_restore_console();
2763 		unlock_system_sleep();
2764 	}
2765 #endif
2766 
2767  Unlock:
2768 	mutex_unlock(&kexec_mutex);
2769 	return error;
2770 }
2771