1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/console.h> 32 #include <linux/vmalloc.h> 33 #include <linux/swap.h> 34 #include <linux/syscore_ops.h> 35 36 #include <asm/page.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/sections.h> 40 41 /* Per cpu memory for storing cpu states in case of system crash. */ 42 note_buf_t __percpu *crash_notes; 43 44 /* vmcoreinfo stuff */ 45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 47 size_t vmcoreinfo_size; 48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 49 50 /* Flag to indicate we are going to kexec a new kernel */ 51 bool kexec_in_progress = false; 52 53 /* Location of the reserved area for the crash kernel */ 54 struct resource crashk_res = { 55 .name = "Crash kernel", 56 .start = 0, 57 .end = 0, 58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 59 }; 60 struct resource crashk_low_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 65 }; 66 67 int kexec_should_crash(struct task_struct *p) 68 { 69 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 70 return 1; 71 return 0; 72 } 73 74 /* 75 * When kexec transitions to the new kernel there is a one-to-one 76 * mapping between physical and virtual addresses. On processors 77 * where you can disable the MMU this is trivial, and easy. For 78 * others it is still a simple predictable page table to setup. 79 * 80 * In that environment kexec copies the new kernel to its final 81 * resting place. This means I can only support memory whose 82 * physical address can fit in an unsigned long. In particular 83 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 84 * If the assembly stub has more restrictive requirements 85 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 86 * defined more restrictively in <asm/kexec.h>. 87 * 88 * The code for the transition from the current kernel to the 89 * the new kernel is placed in the control_code_buffer, whose size 90 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 91 * page of memory is necessary, but some architectures require more. 92 * Because this memory must be identity mapped in the transition from 93 * virtual to physical addresses it must live in the range 94 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 95 * modifiable. 96 * 97 * The assembly stub in the control code buffer is passed a linked list 98 * of descriptor pages detailing the source pages of the new kernel, 99 * and the destination addresses of those source pages. As this data 100 * structure is not used in the context of the current OS, it must 101 * be self-contained. 102 * 103 * The code has been made to work with highmem pages and will use a 104 * destination page in its final resting place (if it happens 105 * to allocate it). The end product of this is that most of the 106 * physical address space, and most of RAM can be used. 107 * 108 * Future directions include: 109 * - allocating a page table with the control code buffer identity 110 * mapped, to simplify machine_kexec and make kexec_on_panic more 111 * reliable. 112 */ 113 114 /* 115 * KIMAGE_NO_DEST is an impossible destination address..., for 116 * allocating pages whose destination address we do not care about. 117 */ 118 #define KIMAGE_NO_DEST (-1UL) 119 120 static int kimage_is_destination_range(struct kimage *image, 121 unsigned long start, unsigned long end); 122 static struct page *kimage_alloc_page(struct kimage *image, 123 gfp_t gfp_mask, 124 unsigned long dest); 125 126 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 127 unsigned long nr_segments, 128 struct kexec_segment __user *segments) 129 { 130 size_t segment_bytes; 131 struct kimage *image; 132 unsigned long i; 133 int result; 134 135 /* Allocate a controlling structure */ 136 result = -ENOMEM; 137 image = kzalloc(sizeof(*image), GFP_KERNEL); 138 if (!image) 139 goto out; 140 141 image->head = 0; 142 image->entry = &image->head; 143 image->last_entry = &image->head; 144 image->control_page = ~0; /* By default this does not apply */ 145 image->start = entry; 146 image->type = KEXEC_TYPE_DEFAULT; 147 148 /* Initialize the list of control pages */ 149 INIT_LIST_HEAD(&image->control_pages); 150 151 /* Initialize the list of destination pages */ 152 INIT_LIST_HEAD(&image->dest_pages); 153 154 /* Initialize the list of unusable pages */ 155 INIT_LIST_HEAD(&image->unuseable_pages); 156 157 /* Read in the segments */ 158 image->nr_segments = nr_segments; 159 segment_bytes = nr_segments * sizeof(*segments); 160 result = copy_from_user(image->segment, segments, segment_bytes); 161 if (result) { 162 result = -EFAULT; 163 goto out; 164 } 165 166 /* 167 * Verify we have good destination addresses. The caller is 168 * responsible for making certain we don't attempt to load 169 * the new image into invalid or reserved areas of RAM. This 170 * just verifies it is an address we can use. 171 * 172 * Since the kernel does everything in page size chunks ensure 173 * the destination addresses are page aligned. Too many 174 * special cases crop of when we don't do this. The most 175 * insidious is getting overlapping destination addresses 176 * simply because addresses are changed to page size 177 * granularity. 178 */ 179 result = -EADDRNOTAVAIL; 180 for (i = 0; i < nr_segments; i++) { 181 unsigned long mstart, mend; 182 183 mstart = image->segment[i].mem; 184 mend = mstart + image->segment[i].memsz; 185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 186 goto out; 187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 188 goto out; 189 } 190 191 /* Verify our destination addresses do not overlap. 192 * If we alloed overlapping destination addresses 193 * through very weird things can happen with no 194 * easy explanation as one segment stops on another. 195 */ 196 result = -EINVAL; 197 for (i = 0; i < nr_segments; i++) { 198 unsigned long mstart, mend; 199 unsigned long j; 200 201 mstart = image->segment[i].mem; 202 mend = mstart + image->segment[i].memsz; 203 for (j = 0; j < i; j++) { 204 unsigned long pstart, pend; 205 pstart = image->segment[j].mem; 206 pend = pstart + image->segment[j].memsz; 207 /* Do the segments overlap ? */ 208 if ((mend > pstart) && (mstart < pend)) 209 goto out; 210 } 211 } 212 213 /* Ensure our buffer sizes are strictly less than 214 * our memory sizes. This should always be the case, 215 * and it is easier to check up front than to be surprised 216 * later on. 217 */ 218 result = -EINVAL; 219 for (i = 0; i < nr_segments; i++) { 220 if (image->segment[i].bufsz > image->segment[i].memsz) 221 goto out; 222 } 223 224 result = 0; 225 out: 226 if (result == 0) 227 *rimage = image; 228 else 229 kfree(image); 230 231 return result; 232 233 } 234 235 static void kimage_free_page_list(struct list_head *list); 236 237 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 238 unsigned long nr_segments, 239 struct kexec_segment __user *segments) 240 { 241 int result; 242 struct kimage *image; 243 244 /* Allocate and initialize a controlling structure */ 245 image = NULL; 246 result = do_kimage_alloc(&image, entry, nr_segments, segments); 247 if (result) 248 goto out; 249 250 /* 251 * Find a location for the control code buffer, and add it 252 * the vector of segments so that it's pages will also be 253 * counted as destination pages. 254 */ 255 result = -ENOMEM; 256 image->control_code_page = kimage_alloc_control_pages(image, 257 get_order(KEXEC_CONTROL_PAGE_SIZE)); 258 if (!image->control_code_page) { 259 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 260 goto out_free; 261 } 262 263 image->swap_page = kimage_alloc_control_pages(image, 0); 264 if (!image->swap_page) { 265 printk(KERN_ERR "Could not allocate swap buffer\n"); 266 goto out_free; 267 } 268 269 *rimage = image; 270 return 0; 271 272 out_free: 273 kimage_free_page_list(&image->control_pages); 274 kfree(image); 275 out: 276 return result; 277 } 278 279 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 280 unsigned long nr_segments, 281 struct kexec_segment __user *segments) 282 { 283 int result; 284 struct kimage *image; 285 unsigned long i; 286 287 image = NULL; 288 /* Verify we have a valid entry point */ 289 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 290 result = -EADDRNOTAVAIL; 291 goto out; 292 } 293 294 /* Allocate and initialize a controlling structure */ 295 result = do_kimage_alloc(&image, entry, nr_segments, segments); 296 if (result) 297 goto out; 298 299 /* Enable the special crash kernel control page 300 * allocation policy. 301 */ 302 image->control_page = crashk_res.start; 303 image->type = KEXEC_TYPE_CRASH; 304 305 /* 306 * Verify we have good destination addresses. Normally 307 * the caller is responsible for making certain we don't 308 * attempt to load the new image into invalid or reserved 309 * areas of RAM. But crash kernels are preloaded into a 310 * reserved area of ram. We must ensure the addresses 311 * are in the reserved area otherwise preloading the 312 * kernel could corrupt things. 313 */ 314 result = -EADDRNOTAVAIL; 315 for (i = 0; i < nr_segments; i++) { 316 unsigned long mstart, mend; 317 318 mstart = image->segment[i].mem; 319 mend = mstart + image->segment[i].memsz - 1; 320 /* Ensure we are within the crash kernel limits */ 321 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 322 goto out_free; 323 } 324 325 /* 326 * Find a location for the control code buffer, and add 327 * the vector of segments so that it's pages will also be 328 * counted as destination pages. 329 */ 330 result = -ENOMEM; 331 image->control_code_page = kimage_alloc_control_pages(image, 332 get_order(KEXEC_CONTROL_PAGE_SIZE)); 333 if (!image->control_code_page) { 334 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 335 goto out_free; 336 } 337 338 *rimage = image; 339 return 0; 340 341 out_free: 342 kfree(image); 343 out: 344 return result; 345 } 346 347 static int kimage_is_destination_range(struct kimage *image, 348 unsigned long start, 349 unsigned long end) 350 { 351 unsigned long i; 352 353 for (i = 0; i < image->nr_segments; i++) { 354 unsigned long mstart, mend; 355 356 mstart = image->segment[i].mem; 357 mend = mstart + image->segment[i].memsz; 358 if ((end > mstart) && (start < mend)) 359 return 1; 360 } 361 362 return 0; 363 } 364 365 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 366 { 367 struct page *pages; 368 369 pages = alloc_pages(gfp_mask, order); 370 if (pages) { 371 unsigned int count, i; 372 pages->mapping = NULL; 373 set_page_private(pages, order); 374 count = 1 << order; 375 for (i = 0; i < count; i++) 376 SetPageReserved(pages + i); 377 } 378 379 return pages; 380 } 381 382 static void kimage_free_pages(struct page *page) 383 { 384 unsigned int order, count, i; 385 386 order = page_private(page); 387 count = 1 << order; 388 for (i = 0; i < count; i++) 389 ClearPageReserved(page + i); 390 __free_pages(page, order); 391 } 392 393 static void kimage_free_page_list(struct list_head *list) 394 { 395 struct list_head *pos, *next; 396 397 list_for_each_safe(pos, next, list) { 398 struct page *page; 399 400 page = list_entry(pos, struct page, lru); 401 list_del(&page->lru); 402 kimage_free_pages(page); 403 } 404 } 405 406 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 407 unsigned int order) 408 { 409 /* Control pages are special, they are the intermediaries 410 * that are needed while we copy the rest of the pages 411 * to their final resting place. As such they must 412 * not conflict with either the destination addresses 413 * or memory the kernel is already using. 414 * 415 * The only case where we really need more than one of 416 * these are for architectures where we cannot disable 417 * the MMU and must instead generate an identity mapped 418 * page table for all of the memory. 419 * 420 * At worst this runs in O(N) of the image size. 421 */ 422 struct list_head extra_pages; 423 struct page *pages; 424 unsigned int count; 425 426 count = 1 << order; 427 INIT_LIST_HEAD(&extra_pages); 428 429 /* Loop while I can allocate a page and the page allocated 430 * is a destination page. 431 */ 432 do { 433 unsigned long pfn, epfn, addr, eaddr; 434 435 pages = kimage_alloc_pages(GFP_KERNEL, order); 436 if (!pages) 437 break; 438 pfn = page_to_pfn(pages); 439 epfn = pfn + count; 440 addr = pfn << PAGE_SHIFT; 441 eaddr = epfn << PAGE_SHIFT; 442 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 443 kimage_is_destination_range(image, addr, eaddr)) { 444 list_add(&pages->lru, &extra_pages); 445 pages = NULL; 446 } 447 } while (!pages); 448 449 if (pages) { 450 /* Remember the allocated page... */ 451 list_add(&pages->lru, &image->control_pages); 452 453 /* Because the page is already in it's destination 454 * location we will never allocate another page at 455 * that address. Therefore kimage_alloc_pages 456 * will not return it (again) and we don't need 457 * to give it an entry in image->segment[]. 458 */ 459 } 460 /* Deal with the destination pages I have inadvertently allocated. 461 * 462 * Ideally I would convert multi-page allocations into single 463 * page allocations, and add everything to image->dest_pages. 464 * 465 * For now it is simpler to just free the pages. 466 */ 467 kimage_free_page_list(&extra_pages); 468 469 return pages; 470 } 471 472 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 473 unsigned int order) 474 { 475 /* Control pages are special, they are the intermediaries 476 * that are needed while we copy the rest of the pages 477 * to their final resting place. As such they must 478 * not conflict with either the destination addresses 479 * or memory the kernel is already using. 480 * 481 * Control pages are also the only pags we must allocate 482 * when loading a crash kernel. All of the other pages 483 * are specified by the segments and we just memcpy 484 * into them directly. 485 * 486 * The only case where we really need more than one of 487 * these are for architectures where we cannot disable 488 * the MMU and must instead generate an identity mapped 489 * page table for all of the memory. 490 * 491 * Given the low demand this implements a very simple 492 * allocator that finds the first hole of the appropriate 493 * size in the reserved memory region, and allocates all 494 * of the memory up to and including the hole. 495 */ 496 unsigned long hole_start, hole_end, size; 497 struct page *pages; 498 499 pages = NULL; 500 size = (1 << order) << PAGE_SHIFT; 501 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 502 hole_end = hole_start + size - 1; 503 while (hole_end <= crashk_res.end) { 504 unsigned long i; 505 506 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 507 break; 508 /* See if I overlap any of the segments */ 509 for (i = 0; i < image->nr_segments; i++) { 510 unsigned long mstart, mend; 511 512 mstart = image->segment[i].mem; 513 mend = mstart + image->segment[i].memsz - 1; 514 if ((hole_end >= mstart) && (hole_start <= mend)) { 515 /* Advance the hole to the end of the segment */ 516 hole_start = (mend + (size - 1)) & ~(size - 1); 517 hole_end = hole_start + size - 1; 518 break; 519 } 520 } 521 /* If I don't overlap any segments I have found my hole! */ 522 if (i == image->nr_segments) { 523 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 524 break; 525 } 526 } 527 if (pages) 528 image->control_page = hole_end; 529 530 return pages; 531 } 532 533 534 struct page *kimage_alloc_control_pages(struct kimage *image, 535 unsigned int order) 536 { 537 struct page *pages = NULL; 538 539 switch (image->type) { 540 case KEXEC_TYPE_DEFAULT: 541 pages = kimage_alloc_normal_control_pages(image, order); 542 break; 543 case KEXEC_TYPE_CRASH: 544 pages = kimage_alloc_crash_control_pages(image, order); 545 break; 546 } 547 548 return pages; 549 } 550 551 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 552 { 553 if (*image->entry != 0) 554 image->entry++; 555 556 if (image->entry == image->last_entry) { 557 kimage_entry_t *ind_page; 558 struct page *page; 559 560 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 561 if (!page) 562 return -ENOMEM; 563 564 ind_page = page_address(page); 565 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 566 image->entry = ind_page; 567 image->last_entry = ind_page + 568 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 569 } 570 *image->entry = entry; 571 image->entry++; 572 *image->entry = 0; 573 574 return 0; 575 } 576 577 static int kimage_set_destination(struct kimage *image, 578 unsigned long destination) 579 { 580 int result; 581 582 destination &= PAGE_MASK; 583 result = kimage_add_entry(image, destination | IND_DESTINATION); 584 if (result == 0) 585 image->destination = destination; 586 587 return result; 588 } 589 590 591 static int kimage_add_page(struct kimage *image, unsigned long page) 592 { 593 int result; 594 595 page &= PAGE_MASK; 596 result = kimage_add_entry(image, page | IND_SOURCE); 597 if (result == 0) 598 image->destination += PAGE_SIZE; 599 600 return result; 601 } 602 603 604 static void kimage_free_extra_pages(struct kimage *image) 605 { 606 /* Walk through and free any extra destination pages I may have */ 607 kimage_free_page_list(&image->dest_pages); 608 609 /* Walk through and free any unusable pages I have cached */ 610 kimage_free_page_list(&image->unuseable_pages); 611 612 } 613 static void kimage_terminate(struct kimage *image) 614 { 615 if (*image->entry != 0) 616 image->entry++; 617 618 *image->entry = IND_DONE; 619 } 620 621 #define for_each_kimage_entry(image, ptr, entry) \ 622 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 623 ptr = (entry & IND_INDIRECTION)? \ 624 phys_to_virt((entry & PAGE_MASK)): ptr +1) 625 626 static void kimage_free_entry(kimage_entry_t entry) 627 { 628 struct page *page; 629 630 page = pfn_to_page(entry >> PAGE_SHIFT); 631 kimage_free_pages(page); 632 } 633 634 static void kimage_free(struct kimage *image) 635 { 636 kimage_entry_t *ptr, entry; 637 kimage_entry_t ind = 0; 638 639 if (!image) 640 return; 641 642 kimage_free_extra_pages(image); 643 for_each_kimage_entry(image, ptr, entry) { 644 if (entry & IND_INDIRECTION) { 645 /* Free the previous indirection page */ 646 if (ind & IND_INDIRECTION) 647 kimage_free_entry(ind); 648 /* Save this indirection page until we are 649 * done with it. 650 */ 651 ind = entry; 652 } 653 else if (entry & IND_SOURCE) 654 kimage_free_entry(entry); 655 } 656 /* Free the final indirection page */ 657 if (ind & IND_INDIRECTION) 658 kimage_free_entry(ind); 659 660 /* Handle any machine specific cleanup */ 661 machine_kexec_cleanup(image); 662 663 /* Free the kexec control pages... */ 664 kimage_free_page_list(&image->control_pages); 665 kfree(image); 666 } 667 668 static kimage_entry_t *kimage_dst_used(struct kimage *image, 669 unsigned long page) 670 { 671 kimage_entry_t *ptr, entry; 672 unsigned long destination = 0; 673 674 for_each_kimage_entry(image, ptr, entry) { 675 if (entry & IND_DESTINATION) 676 destination = entry & PAGE_MASK; 677 else if (entry & IND_SOURCE) { 678 if (page == destination) 679 return ptr; 680 destination += PAGE_SIZE; 681 } 682 } 683 684 return NULL; 685 } 686 687 static struct page *kimage_alloc_page(struct kimage *image, 688 gfp_t gfp_mask, 689 unsigned long destination) 690 { 691 /* 692 * Here we implement safeguards to ensure that a source page 693 * is not copied to its destination page before the data on 694 * the destination page is no longer useful. 695 * 696 * To do this we maintain the invariant that a source page is 697 * either its own destination page, or it is not a 698 * destination page at all. 699 * 700 * That is slightly stronger than required, but the proof 701 * that no problems will not occur is trivial, and the 702 * implementation is simply to verify. 703 * 704 * When allocating all pages normally this algorithm will run 705 * in O(N) time, but in the worst case it will run in O(N^2) 706 * time. If the runtime is a problem the data structures can 707 * be fixed. 708 */ 709 struct page *page; 710 unsigned long addr; 711 712 /* 713 * Walk through the list of destination pages, and see if I 714 * have a match. 715 */ 716 list_for_each_entry(page, &image->dest_pages, lru) { 717 addr = page_to_pfn(page) << PAGE_SHIFT; 718 if (addr == destination) { 719 list_del(&page->lru); 720 return page; 721 } 722 } 723 page = NULL; 724 while (1) { 725 kimage_entry_t *old; 726 727 /* Allocate a page, if we run out of memory give up */ 728 page = kimage_alloc_pages(gfp_mask, 0); 729 if (!page) 730 return NULL; 731 /* If the page cannot be used file it away */ 732 if (page_to_pfn(page) > 733 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 734 list_add(&page->lru, &image->unuseable_pages); 735 continue; 736 } 737 addr = page_to_pfn(page) << PAGE_SHIFT; 738 739 /* If it is the destination page we want use it */ 740 if (addr == destination) 741 break; 742 743 /* If the page is not a destination page use it */ 744 if (!kimage_is_destination_range(image, addr, 745 addr + PAGE_SIZE)) 746 break; 747 748 /* 749 * I know that the page is someones destination page. 750 * See if there is already a source page for this 751 * destination page. And if so swap the source pages. 752 */ 753 old = kimage_dst_used(image, addr); 754 if (old) { 755 /* If so move it */ 756 unsigned long old_addr; 757 struct page *old_page; 758 759 old_addr = *old & PAGE_MASK; 760 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 761 copy_highpage(page, old_page); 762 *old = addr | (*old & ~PAGE_MASK); 763 764 /* The old page I have found cannot be a 765 * destination page, so return it if it's 766 * gfp_flags honor the ones passed in. 767 */ 768 if (!(gfp_mask & __GFP_HIGHMEM) && 769 PageHighMem(old_page)) { 770 kimage_free_pages(old_page); 771 continue; 772 } 773 addr = old_addr; 774 page = old_page; 775 break; 776 } 777 else { 778 /* Place the page on the destination list I 779 * will use it later. 780 */ 781 list_add(&page->lru, &image->dest_pages); 782 } 783 } 784 785 return page; 786 } 787 788 static int kimage_load_normal_segment(struct kimage *image, 789 struct kexec_segment *segment) 790 { 791 unsigned long maddr; 792 size_t ubytes, mbytes; 793 int result; 794 unsigned char __user *buf; 795 796 result = 0; 797 buf = segment->buf; 798 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 800 maddr = segment->mem; 801 802 result = kimage_set_destination(image, maddr); 803 if (result < 0) 804 goto out; 805 806 while (mbytes) { 807 struct page *page; 808 char *ptr; 809 size_t uchunk, mchunk; 810 811 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 812 if (!page) { 813 result = -ENOMEM; 814 goto out; 815 } 816 result = kimage_add_page(image, page_to_pfn(page) 817 << PAGE_SHIFT); 818 if (result < 0) 819 goto out; 820 821 ptr = kmap(page); 822 /* Start with a clear page */ 823 clear_page(ptr); 824 ptr += maddr & ~PAGE_MASK; 825 mchunk = min_t(size_t, mbytes, 826 PAGE_SIZE - (maddr & ~PAGE_MASK)); 827 uchunk = min(ubytes, mchunk); 828 829 result = copy_from_user(ptr, buf, uchunk); 830 kunmap(page); 831 if (result) { 832 result = -EFAULT; 833 goto out; 834 } 835 ubytes -= uchunk; 836 maddr += mchunk; 837 buf += mchunk; 838 mbytes -= mchunk; 839 } 840 out: 841 return result; 842 } 843 844 static int kimage_load_crash_segment(struct kimage *image, 845 struct kexec_segment *segment) 846 { 847 /* For crash dumps kernels we simply copy the data from 848 * user space to it's destination. 849 * We do things a page at a time for the sake of kmap. 850 */ 851 unsigned long maddr; 852 size_t ubytes, mbytes; 853 int result; 854 unsigned char __user *buf; 855 856 result = 0; 857 buf = segment->buf; 858 ubytes = segment->bufsz; 859 mbytes = segment->memsz; 860 maddr = segment->mem; 861 while (mbytes) { 862 struct page *page; 863 char *ptr; 864 size_t uchunk, mchunk; 865 866 page = pfn_to_page(maddr >> PAGE_SHIFT); 867 if (!page) { 868 result = -ENOMEM; 869 goto out; 870 } 871 ptr = kmap(page); 872 ptr += maddr & ~PAGE_MASK; 873 mchunk = min_t(size_t, mbytes, 874 PAGE_SIZE - (maddr & ~PAGE_MASK)); 875 uchunk = min(ubytes, mchunk); 876 if (mchunk > uchunk) { 877 /* Zero the trailing part of the page */ 878 memset(ptr + uchunk, 0, mchunk - uchunk); 879 } 880 result = copy_from_user(ptr, buf, uchunk); 881 kexec_flush_icache_page(page); 882 kunmap(page); 883 if (result) { 884 result = -EFAULT; 885 goto out; 886 } 887 ubytes -= uchunk; 888 maddr += mchunk; 889 buf += mchunk; 890 mbytes -= mchunk; 891 } 892 out: 893 return result; 894 } 895 896 static int kimage_load_segment(struct kimage *image, 897 struct kexec_segment *segment) 898 { 899 int result = -ENOMEM; 900 901 switch (image->type) { 902 case KEXEC_TYPE_DEFAULT: 903 result = kimage_load_normal_segment(image, segment); 904 break; 905 case KEXEC_TYPE_CRASH: 906 result = kimage_load_crash_segment(image, segment); 907 break; 908 } 909 910 return result; 911 } 912 913 /* 914 * Exec Kernel system call: for obvious reasons only root may call it. 915 * 916 * This call breaks up into three pieces. 917 * - A generic part which loads the new kernel from the current 918 * address space, and very carefully places the data in the 919 * allocated pages. 920 * 921 * - A generic part that interacts with the kernel and tells all of 922 * the devices to shut down. Preventing on-going dmas, and placing 923 * the devices in a consistent state so a later kernel can 924 * reinitialize them. 925 * 926 * - A machine specific part that includes the syscall number 927 * and then copies the image to it's final destination. And 928 * jumps into the image at entry. 929 * 930 * kexec does not sync, or unmount filesystems so if you need 931 * that to happen you need to do that yourself. 932 */ 933 struct kimage *kexec_image; 934 struct kimage *kexec_crash_image; 935 936 static DEFINE_MUTEX(kexec_mutex); 937 938 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 939 struct kexec_segment __user *, segments, unsigned long, flags) 940 { 941 struct kimage **dest_image, *image; 942 int result; 943 944 /* We only trust the superuser with rebooting the system. */ 945 if (!capable(CAP_SYS_BOOT)) 946 return -EPERM; 947 948 /* 949 * Verify we have a legal set of flags 950 * This leaves us room for future extensions. 951 */ 952 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 953 return -EINVAL; 954 955 /* Verify we are on the appropriate architecture */ 956 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 957 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 958 return -EINVAL; 959 960 /* Put an artificial cap on the number 961 * of segments passed to kexec_load. 962 */ 963 if (nr_segments > KEXEC_SEGMENT_MAX) 964 return -EINVAL; 965 966 image = NULL; 967 result = 0; 968 969 /* Because we write directly to the reserved memory 970 * region when loading crash kernels we need a mutex here to 971 * prevent multiple crash kernels from attempting to load 972 * simultaneously, and to prevent a crash kernel from loading 973 * over the top of a in use crash kernel. 974 * 975 * KISS: always take the mutex. 976 */ 977 if (!mutex_trylock(&kexec_mutex)) 978 return -EBUSY; 979 980 dest_image = &kexec_image; 981 if (flags & KEXEC_ON_CRASH) 982 dest_image = &kexec_crash_image; 983 if (nr_segments > 0) { 984 unsigned long i; 985 986 /* Loading another kernel to reboot into */ 987 if ((flags & KEXEC_ON_CRASH) == 0) 988 result = kimage_normal_alloc(&image, entry, 989 nr_segments, segments); 990 /* Loading another kernel to switch to if this one crashes */ 991 else if (flags & KEXEC_ON_CRASH) { 992 /* Free any current crash dump kernel before 993 * we corrupt it. 994 */ 995 kimage_free(xchg(&kexec_crash_image, NULL)); 996 result = kimage_crash_alloc(&image, entry, 997 nr_segments, segments); 998 crash_map_reserved_pages(); 999 } 1000 if (result) 1001 goto out; 1002 1003 if (flags & KEXEC_PRESERVE_CONTEXT) 1004 image->preserve_context = 1; 1005 result = machine_kexec_prepare(image); 1006 if (result) 1007 goto out; 1008 1009 for (i = 0; i < nr_segments; i++) { 1010 result = kimage_load_segment(image, &image->segment[i]); 1011 if (result) 1012 goto out; 1013 } 1014 kimage_terminate(image); 1015 if (flags & KEXEC_ON_CRASH) 1016 crash_unmap_reserved_pages(); 1017 } 1018 /* Install the new kernel, and Uninstall the old */ 1019 image = xchg(dest_image, image); 1020 1021 out: 1022 mutex_unlock(&kexec_mutex); 1023 kimage_free(image); 1024 1025 return result; 1026 } 1027 1028 /* 1029 * Add and remove page tables for crashkernel memory 1030 * 1031 * Provide an empty default implementation here -- architecture 1032 * code may override this 1033 */ 1034 void __weak crash_map_reserved_pages(void) 1035 {} 1036 1037 void __weak crash_unmap_reserved_pages(void) 1038 {} 1039 1040 #ifdef CONFIG_COMPAT 1041 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1042 unsigned long nr_segments, 1043 struct compat_kexec_segment __user *segments, 1044 unsigned long flags) 1045 { 1046 struct compat_kexec_segment in; 1047 struct kexec_segment out, __user *ksegments; 1048 unsigned long i, result; 1049 1050 /* Don't allow clients that don't understand the native 1051 * architecture to do anything. 1052 */ 1053 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1054 return -EINVAL; 1055 1056 if (nr_segments > KEXEC_SEGMENT_MAX) 1057 return -EINVAL; 1058 1059 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1060 for (i=0; i < nr_segments; i++) { 1061 result = copy_from_user(&in, &segments[i], sizeof(in)); 1062 if (result) 1063 return -EFAULT; 1064 1065 out.buf = compat_ptr(in.buf); 1066 out.bufsz = in.bufsz; 1067 out.mem = in.mem; 1068 out.memsz = in.memsz; 1069 1070 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1071 if (result) 1072 return -EFAULT; 1073 } 1074 1075 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1076 } 1077 #endif 1078 1079 void crash_kexec(struct pt_regs *regs) 1080 { 1081 /* Take the kexec_mutex here to prevent sys_kexec_load 1082 * running on one cpu from replacing the crash kernel 1083 * we are using after a panic on a different cpu. 1084 * 1085 * If the crash kernel was not located in a fixed area 1086 * of memory the xchg(&kexec_crash_image) would be 1087 * sufficient. But since I reuse the memory... 1088 */ 1089 if (mutex_trylock(&kexec_mutex)) { 1090 if (kexec_crash_image) { 1091 struct pt_regs fixed_regs; 1092 1093 crash_setup_regs(&fixed_regs, regs); 1094 crash_save_vmcoreinfo(); 1095 machine_crash_shutdown(&fixed_regs); 1096 machine_kexec(kexec_crash_image); 1097 } 1098 mutex_unlock(&kexec_mutex); 1099 } 1100 } 1101 1102 size_t crash_get_memory_size(void) 1103 { 1104 size_t size = 0; 1105 mutex_lock(&kexec_mutex); 1106 if (crashk_res.end != crashk_res.start) 1107 size = resource_size(&crashk_res); 1108 mutex_unlock(&kexec_mutex); 1109 return size; 1110 } 1111 1112 void __weak crash_free_reserved_phys_range(unsigned long begin, 1113 unsigned long end) 1114 { 1115 unsigned long addr; 1116 1117 for (addr = begin; addr < end; addr += PAGE_SIZE) 1118 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1119 } 1120 1121 int crash_shrink_memory(unsigned long new_size) 1122 { 1123 int ret = 0; 1124 unsigned long start, end; 1125 unsigned long old_size; 1126 struct resource *ram_res; 1127 1128 mutex_lock(&kexec_mutex); 1129 1130 if (kexec_crash_image) { 1131 ret = -ENOENT; 1132 goto unlock; 1133 } 1134 start = crashk_res.start; 1135 end = crashk_res.end; 1136 old_size = (end == 0) ? 0 : end - start + 1; 1137 if (new_size >= old_size) { 1138 ret = (new_size == old_size) ? 0 : -EINVAL; 1139 goto unlock; 1140 } 1141 1142 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1143 if (!ram_res) { 1144 ret = -ENOMEM; 1145 goto unlock; 1146 } 1147 1148 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1149 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1150 1151 crash_map_reserved_pages(); 1152 crash_free_reserved_phys_range(end, crashk_res.end); 1153 1154 if ((start == end) && (crashk_res.parent != NULL)) 1155 release_resource(&crashk_res); 1156 1157 ram_res->start = end; 1158 ram_res->end = crashk_res.end; 1159 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1160 ram_res->name = "System RAM"; 1161 1162 crashk_res.end = end - 1; 1163 1164 insert_resource(&iomem_resource, ram_res); 1165 crash_unmap_reserved_pages(); 1166 1167 unlock: 1168 mutex_unlock(&kexec_mutex); 1169 return ret; 1170 } 1171 1172 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1173 size_t data_len) 1174 { 1175 struct elf_note note; 1176 1177 note.n_namesz = strlen(name) + 1; 1178 note.n_descsz = data_len; 1179 note.n_type = type; 1180 memcpy(buf, ¬e, sizeof(note)); 1181 buf += (sizeof(note) + 3)/4; 1182 memcpy(buf, name, note.n_namesz); 1183 buf += (note.n_namesz + 3)/4; 1184 memcpy(buf, data, note.n_descsz); 1185 buf += (note.n_descsz + 3)/4; 1186 1187 return buf; 1188 } 1189 1190 static void final_note(u32 *buf) 1191 { 1192 struct elf_note note; 1193 1194 note.n_namesz = 0; 1195 note.n_descsz = 0; 1196 note.n_type = 0; 1197 memcpy(buf, ¬e, sizeof(note)); 1198 } 1199 1200 void crash_save_cpu(struct pt_regs *regs, int cpu) 1201 { 1202 struct elf_prstatus prstatus; 1203 u32 *buf; 1204 1205 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1206 return; 1207 1208 /* Using ELF notes here is opportunistic. 1209 * I need a well defined structure format 1210 * for the data I pass, and I need tags 1211 * on the data to indicate what information I have 1212 * squirrelled away. ELF notes happen to provide 1213 * all of that, so there is no need to invent something new. 1214 */ 1215 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1216 if (!buf) 1217 return; 1218 memset(&prstatus, 0, sizeof(prstatus)); 1219 prstatus.pr_pid = current->pid; 1220 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1221 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1222 &prstatus, sizeof(prstatus)); 1223 final_note(buf); 1224 } 1225 1226 static int __init crash_notes_memory_init(void) 1227 { 1228 /* Allocate memory for saving cpu registers. */ 1229 crash_notes = alloc_percpu(note_buf_t); 1230 if (!crash_notes) { 1231 printk("Kexec: Memory allocation for saving cpu register" 1232 " states failed\n"); 1233 return -ENOMEM; 1234 } 1235 return 0; 1236 } 1237 module_init(crash_notes_memory_init) 1238 1239 1240 /* 1241 * parsing the "crashkernel" commandline 1242 * 1243 * this code is intended to be called from architecture specific code 1244 */ 1245 1246 1247 /* 1248 * This function parses command lines in the format 1249 * 1250 * crashkernel=ramsize-range:size[,...][@offset] 1251 * 1252 * The function returns 0 on success and -EINVAL on failure. 1253 */ 1254 static int __init parse_crashkernel_mem(char *cmdline, 1255 unsigned long long system_ram, 1256 unsigned long long *crash_size, 1257 unsigned long long *crash_base) 1258 { 1259 char *cur = cmdline, *tmp; 1260 1261 /* for each entry of the comma-separated list */ 1262 do { 1263 unsigned long long start, end = ULLONG_MAX, size; 1264 1265 /* get the start of the range */ 1266 start = memparse(cur, &tmp); 1267 if (cur == tmp) { 1268 pr_warning("crashkernel: Memory value expected\n"); 1269 return -EINVAL; 1270 } 1271 cur = tmp; 1272 if (*cur != '-') { 1273 pr_warning("crashkernel: '-' expected\n"); 1274 return -EINVAL; 1275 } 1276 cur++; 1277 1278 /* if no ':' is here, than we read the end */ 1279 if (*cur != ':') { 1280 end = memparse(cur, &tmp); 1281 if (cur == tmp) { 1282 pr_warning("crashkernel: Memory " 1283 "value expected\n"); 1284 return -EINVAL; 1285 } 1286 cur = tmp; 1287 if (end <= start) { 1288 pr_warning("crashkernel: end <= start\n"); 1289 return -EINVAL; 1290 } 1291 } 1292 1293 if (*cur != ':') { 1294 pr_warning("crashkernel: ':' expected\n"); 1295 return -EINVAL; 1296 } 1297 cur++; 1298 1299 size = memparse(cur, &tmp); 1300 if (cur == tmp) { 1301 pr_warning("Memory value expected\n"); 1302 return -EINVAL; 1303 } 1304 cur = tmp; 1305 if (size >= system_ram) { 1306 pr_warning("crashkernel: invalid size\n"); 1307 return -EINVAL; 1308 } 1309 1310 /* match ? */ 1311 if (system_ram >= start && system_ram < end) { 1312 *crash_size = size; 1313 break; 1314 } 1315 } while (*cur++ == ','); 1316 1317 if (*crash_size > 0) { 1318 while (*cur && *cur != ' ' && *cur != '@') 1319 cur++; 1320 if (*cur == '@') { 1321 cur++; 1322 *crash_base = memparse(cur, &tmp); 1323 if (cur == tmp) { 1324 pr_warning("Memory value expected " 1325 "after '@'\n"); 1326 return -EINVAL; 1327 } 1328 } 1329 } 1330 1331 return 0; 1332 } 1333 1334 /* 1335 * That function parses "simple" (old) crashkernel command lines like 1336 * 1337 * crashkernel=size[@offset] 1338 * 1339 * It returns 0 on success and -EINVAL on failure. 1340 */ 1341 static int __init parse_crashkernel_simple(char *cmdline, 1342 unsigned long long *crash_size, 1343 unsigned long long *crash_base) 1344 { 1345 char *cur = cmdline; 1346 1347 *crash_size = memparse(cmdline, &cur); 1348 if (cmdline == cur) { 1349 pr_warning("crashkernel: memory value expected\n"); 1350 return -EINVAL; 1351 } 1352 1353 if (*cur == '@') 1354 *crash_base = memparse(cur+1, &cur); 1355 else if (*cur != ' ' && *cur != '\0') { 1356 pr_warning("crashkernel: unrecognized char\n"); 1357 return -EINVAL; 1358 } 1359 1360 return 0; 1361 } 1362 1363 #define SUFFIX_HIGH 0 1364 #define SUFFIX_LOW 1 1365 #define SUFFIX_NULL 2 1366 static __initdata char *suffix_tbl[] = { 1367 [SUFFIX_HIGH] = ",high", 1368 [SUFFIX_LOW] = ",low", 1369 [SUFFIX_NULL] = NULL, 1370 }; 1371 1372 /* 1373 * That function parses "suffix" crashkernel command lines like 1374 * 1375 * crashkernel=size,[high|low] 1376 * 1377 * It returns 0 on success and -EINVAL on failure. 1378 */ 1379 static int __init parse_crashkernel_suffix(char *cmdline, 1380 unsigned long long *crash_size, 1381 unsigned long long *crash_base, 1382 const char *suffix) 1383 { 1384 char *cur = cmdline; 1385 1386 *crash_size = memparse(cmdline, &cur); 1387 if (cmdline == cur) { 1388 pr_warn("crashkernel: memory value expected\n"); 1389 return -EINVAL; 1390 } 1391 1392 /* check with suffix */ 1393 if (strncmp(cur, suffix, strlen(suffix))) { 1394 pr_warn("crashkernel: unrecognized char\n"); 1395 return -EINVAL; 1396 } 1397 cur += strlen(suffix); 1398 if (*cur != ' ' && *cur != '\0') { 1399 pr_warn("crashkernel: unrecognized char\n"); 1400 return -EINVAL; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static __init char *get_last_crashkernel(char *cmdline, 1407 const char *name, 1408 const char *suffix) 1409 { 1410 char *p = cmdline, *ck_cmdline = NULL; 1411 1412 /* find crashkernel and use the last one if there are more */ 1413 p = strstr(p, name); 1414 while (p) { 1415 char *end_p = strchr(p, ' '); 1416 char *q; 1417 1418 if (!end_p) 1419 end_p = p + strlen(p); 1420 1421 if (!suffix) { 1422 int i; 1423 1424 /* skip the one with any known suffix */ 1425 for (i = 0; suffix_tbl[i]; i++) { 1426 q = end_p - strlen(suffix_tbl[i]); 1427 if (!strncmp(q, suffix_tbl[i], 1428 strlen(suffix_tbl[i]))) 1429 goto next; 1430 } 1431 ck_cmdline = p; 1432 } else { 1433 q = end_p - strlen(suffix); 1434 if (!strncmp(q, suffix, strlen(suffix))) 1435 ck_cmdline = p; 1436 } 1437 next: 1438 p = strstr(p+1, name); 1439 } 1440 1441 if (!ck_cmdline) 1442 return NULL; 1443 1444 return ck_cmdline; 1445 } 1446 1447 static int __init __parse_crashkernel(char *cmdline, 1448 unsigned long long system_ram, 1449 unsigned long long *crash_size, 1450 unsigned long long *crash_base, 1451 const char *name, 1452 const char *suffix) 1453 { 1454 char *first_colon, *first_space; 1455 char *ck_cmdline; 1456 1457 BUG_ON(!crash_size || !crash_base); 1458 *crash_size = 0; 1459 *crash_base = 0; 1460 1461 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1462 1463 if (!ck_cmdline) 1464 return -EINVAL; 1465 1466 ck_cmdline += strlen(name); 1467 1468 if (suffix) 1469 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1470 crash_base, suffix); 1471 /* 1472 * if the commandline contains a ':', then that's the extended 1473 * syntax -- if not, it must be the classic syntax 1474 */ 1475 first_colon = strchr(ck_cmdline, ':'); 1476 first_space = strchr(ck_cmdline, ' '); 1477 if (first_colon && (!first_space || first_colon < first_space)) 1478 return parse_crashkernel_mem(ck_cmdline, system_ram, 1479 crash_size, crash_base); 1480 1481 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1482 } 1483 1484 /* 1485 * That function is the entry point for command line parsing and should be 1486 * called from the arch-specific code. 1487 */ 1488 int __init parse_crashkernel(char *cmdline, 1489 unsigned long long system_ram, 1490 unsigned long long *crash_size, 1491 unsigned long long *crash_base) 1492 { 1493 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1494 "crashkernel=", NULL); 1495 } 1496 1497 int __init parse_crashkernel_high(char *cmdline, 1498 unsigned long long system_ram, 1499 unsigned long long *crash_size, 1500 unsigned long long *crash_base) 1501 { 1502 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1503 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1504 } 1505 1506 int __init parse_crashkernel_low(char *cmdline, 1507 unsigned long long system_ram, 1508 unsigned long long *crash_size, 1509 unsigned long long *crash_base) 1510 { 1511 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1512 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1513 } 1514 1515 static void update_vmcoreinfo_note(void) 1516 { 1517 u32 *buf = vmcoreinfo_note; 1518 1519 if (!vmcoreinfo_size) 1520 return; 1521 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1522 vmcoreinfo_size); 1523 final_note(buf); 1524 } 1525 1526 void crash_save_vmcoreinfo(void) 1527 { 1528 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1529 update_vmcoreinfo_note(); 1530 } 1531 1532 void vmcoreinfo_append_str(const char *fmt, ...) 1533 { 1534 va_list args; 1535 char buf[0x50]; 1536 size_t r; 1537 1538 va_start(args, fmt); 1539 r = vsnprintf(buf, sizeof(buf), fmt, args); 1540 va_end(args); 1541 1542 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1543 1544 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1545 1546 vmcoreinfo_size += r; 1547 } 1548 1549 /* 1550 * provide an empty default implementation here -- architecture 1551 * code may override this 1552 */ 1553 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1554 {} 1555 1556 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1557 { 1558 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1559 } 1560 1561 static int __init crash_save_vmcoreinfo_init(void) 1562 { 1563 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1564 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1565 1566 VMCOREINFO_SYMBOL(init_uts_ns); 1567 VMCOREINFO_SYMBOL(node_online_map); 1568 #ifdef CONFIG_MMU 1569 VMCOREINFO_SYMBOL(swapper_pg_dir); 1570 #endif 1571 VMCOREINFO_SYMBOL(_stext); 1572 VMCOREINFO_SYMBOL(vmap_area_list); 1573 1574 #ifndef CONFIG_NEED_MULTIPLE_NODES 1575 VMCOREINFO_SYMBOL(mem_map); 1576 VMCOREINFO_SYMBOL(contig_page_data); 1577 #endif 1578 #ifdef CONFIG_SPARSEMEM 1579 VMCOREINFO_SYMBOL(mem_section); 1580 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1581 VMCOREINFO_STRUCT_SIZE(mem_section); 1582 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1583 #endif 1584 VMCOREINFO_STRUCT_SIZE(page); 1585 VMCOREINFO_STRUCT_SIZE(pglist_data); 1586 VMCOREINFO_STRUCT_SIZE(zone); 1587 VMCOREINFO_STRUCT_SIZE(free_area); 1588 VMCOREINFO_STRUCT_SIZE(list_head); 1589 VMCOREINFO_SIZE(nodemask_t); 1590 VMCOREINFO_OFFSET(page, flags); 1591 VMCOREINFO_OFFSET(page, _count); 1592 VMCOREINFO_OFFSET(page, mapping); 1593 VMCOREINFO_OFFSET(page, lru); 1594 VMCOREINFO_OFFSET(page, _mapcount); 1595 VMCOREINFO_OFFSET(page, private); 1596 VMCOREINFO_OFFSET(pglist_data, node_zones); 1597 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1598 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1599 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1600 #endif 1601 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1602 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1603 VMCOREINFO_OFFSET(pglist_data, node_id); 1604 VMCOREINFO_OFFSET(zone, free_area); 1605 VMCOREINFO_OFFSET(zone, vm_stat); 1606 VMCOREINFO_OFFSET(zone, spanned_pages); 1607 VMCOREINFO_OFFSET(free_area, free_list); 1608 VMCOREINFO_OFFSET(list_head, next); 1609 VMCOREINFO_OFFSET(list_head, prev); 1610 VMCOREINFO_OFFSET(vmap_area, va_start); 1611 VMCOREINFO_OFFSET(vmap_area, list); 1612 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1613 log_buf_kexec_setup(); 1614 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1615 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1616 VMCOREINFO_NUMBER(PG_lru); 1617 VMCOREINFO_NUMBER(PG_private); 1618 VMCOREINFO_NUMBER(PG_swapcache); 1619 VMCOREINFO_NUMBER(PG_slab); 1620 #ifdef CONFIG_MEMORY_FAILURE 1621 VMCOREINFO_NUMBER(PG_hwpoison); 1622 #endif 1623 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 1624 1625 arch_crash_save_vmcoreinfo(); 1626 update_vmcoreinfo_note(); 1627 1628 return 0; 1629 } 1630 1631 module_init(crash_save_vmcoreinfo_init) 1632 1633 /* 1634 * Move into place and start executing a preloaded standalone 1635 * executable. If nothing was preloaded return an error. 1636 */ 1637 int kernel_kexec(void) 1638 { 1639 int error = 0; 1640 1641 if (!mutex_trylock(&kexec_mutex)) 1642 return -EBUSY; 1643 if (!kexec_image) { 1644 error = -EINVAL; 1645 goto Unlock; 1646 } 1647 1648 #ifdef CONFIG_KEXEC_JUMP 1649 if (kexec_image->preserve_context) { 1650 lock_system_sleep(); 1651 pm_prepare_console(); 1652 error = freeze_processes(); 1653 if (error) { 1654 error = -EBUSY; 1655 goto Restore_console; 1656 } 1657 suspend_console(); 1658 error = dpm_suspend_start(PMSG_FREEZE); 1659 if (error) 1660 goto Resume_console; 1661 /* At this point, dpm_suspend_start() has been called, 1662 * but *not* dpm_suspend_end(). We *must* call 1663 * dpm_suspend_end() now. Otherwise, drivers for 1664 * some devices (e.g. interrupt controllers) become 1665 * desynchronized with the actual state of the 1666 * hardware at resume time, and evil weirdness ensues. 1667 */ 1668 error = dpm_suspend_end(PMSG_FREEZE); 1669 if (error) 1670 goto Resume_devices; 1671 error = disable_nonboot_cpus(); 1672 if (error) 1673 goto Enable_cpus; 1674 local_irq_disable(); 1675 error = syscore_suspend(); 1676 if (error) 1677 goto Enable_irqs; 1678 } else 1679 #endif 1680 { 1681 kexec_in_progress = true; 1682 kernel_restart_prepare(NULL); 1683 migrate_to_reboot_cpu(); 1684 printk(KERN_EMERG "Starting new kernel\n"); 1685 machine_shutdown(); 1686 } 1687 1688 machine_kexec(kexec_image); 1689 1690 #ifdef CONFIG_KEXEC_JUMP 1691 if (kexec_image->preserve_context) { 1692 syscore_resume(); 1693 Enable_irqs: 1694 local_irq_enable(); 1695 Enable_cpus: 1696 enable_nonboot_cpus(); 1697 dpm_resume_start(PMSG_RESTORE); 1698 Resume_devices: 1699 dpm_resume_end(PMSG_RESTORE); 1700 Resume_console: 1701 resume_console(); 1702 thaw_processes(); 1703 Restore_console: 1704 pm_restore_console(); 1705 unlock_system_sleep(); 1706 } 1707 #endif 1708 1709 Unlock: 1710 mutex_unlock(&kexec_mutex); 1711 return error; 1712 } 1713