xref: /openbmc/linux/kernel/kexec.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * kexec.c - kexec_load system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/security.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/syscalls.h>
19 #include <linux/vmalloc.h>
20 #include <linux/slab.h>
21 
22 #include "kexec_internal.h"
23 
24 static int copy_user_segment_list(struct kimage *image,
25 				  unsigned long nr_segments,
26 				  struct kexec_segment __user *segments)
27 {
28 	int ret;
29 	size_t segment_bytes;
30 
31 	/* Read in the segments */
32 	image->nr_segments = nr_segments;
33 	segment_bytes = nr_segments * sizeof(*segments);
34 	ret = copy_from_user(image->segment, segments, segment_bytes);
35 	if (ret)
36 		ret = -EFAULT;
37 
38 	return ret;
39 }
40 
41 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
42 			     unsigned long nr_segments,
43 			     struct kexec_segment __user *segments,
44 			     unsigned long flags)
45 {
46 	int ret;
47 	struct kimage *image;
48 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
49 
50 	if (kexec_on_panic) {
51 		/* Verify we have a valid entry point */
52 		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
53 		    (entry > phys_to_boot_phys(crashk_res.end)))
54 			return -EADDRNOTAVAIL;
55 	}
56 
57 	/* Allocate and initialize a controlling structure */
58 	image = do_kimage_alloc_init();
59 	if (!image)
60 		return -ENOMEM;
61 
62 	image->start = entry;
63 
64 	ret = copy_user_segment_list(image, nr_segments, segments);
65 	if (ret)
66 		goto out_free_image;
67 
68 	if (kexec_on_panic) {
69 		/* Enable special crash kernel control page alloc policy. */
70 		image->control_page = crashk_res.start;
71 		image->type = KEXEC_TYPE_CRASH;
72 	}
73 
74 	ret = sanity_check_segment_list(image);
75 	if (ret)
76 		goto out_free_image;
77 
78 	/*
79 	 * Find a location for the control code buffer, and add it
80 	 * the vector of segments so that it's pages will also be
81 	 * counted as destination pages.
82 	 */
83 	ret = -ENOMEM;
84 	image->control_code_page = kimage_alloc_control_pages(image,
85 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
86 	if (!image->control_code_page) {
87 		pr_err("Could not allocate control_code_buffer\n");
88 		goto out_free_image;
89 	}
90 
91 	if (!kexec_on_panic) {
92 		image->swap_page = kimage_alloc_control_pages(image, 0);
93 		if (!image->swap_page) {
94 			pr_err("Could not allocate swap buffer\n");
95 			goto out_free_control_pages;
96 		}
97 	}
98 
99 	*rimage = image;
100 	return 0;
101 out_free_control_pages:
102 	kimage_free_page_list(&image->control_pages);
103 out_free_image:
104 	kfree(image);
105 	return ret;
106 }
107 
108 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
109 		struct kexec_segment __user *segments, unsigned long flags)
110 {
111 	struct kimage **dest_image, *image;
112 	unsigned long i;
113 	int ret;
114 
115 	if (flags & KEXEC_ON_CRASH) {
116 		dest_image = &kexec_crash_image;
117 		if (kexec_crash_image)
118 			arch_kexec_unprotect_crashkres();
119 	} else {
120 		dest_image = &kexec_image;
121 	}
122 
123 	if (nr_segments == 0) {
124 		/* Uninstall image */
125 		kimage_free(xchg(dest_image, NULL));
126 		return 0;
127 	}
128 	if (flags & KEXEC_ON_CRASH) {
129 		/*
130 		 * Loading another kernel to switch to if this one
131 		 * crashes.  Free any current crash dump kernel before
132 		 * we corrupt it.
133 		 */
134 		kimage_free(xchg(&kexec_crash_image, NULL));
135 	}
136 
137 	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
138 	if (ret)
139 		return ret;
140 
141 	if (flags & KEXEC_PRESERVE_CONTEXT)
142 		image->preserve_context = 1;
143 
144 	ret = machine_kexec_prepare(image);
145 	if (ret)
146 		goto out;
147 
148 	/*
149 	 * Some architecture(like S390) may touch the crash memory before
150 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
151 	 */
152 	ret = kimage_crash_copy_vmcoreinfo(image);
153 	if (ret)
154 		goto out;
155 
156 	for (i = 0; i < nr_segments; i++) {
157 		ret = kimage_load_segment(image, &image->segment[i]);
158 		if (ret)
159 			goto out;
160 	}
161 
162 	kimage_terminate(image);
163 
164 	/* Install the new kernel and uninstall the old */
165 	image = xchg(dest_image, image);
166 
167 out:
168 	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
169 		arch_kexec_protect_crashkres();
170 
171 	kimage_free(image);
172 	return ret;
173 }
174 
175 /*
176  * Exec Kernel system call: for obvious reasons only root may call it.
177  *
178  * This call breaks up into three pieces.
179  * - A generic part which loads the new kernel from the current
180  *   address space, and very carefully places the data in the
181  *   allocated pages.
182  *
183  * - A generic part that interacts with the kernel and tells all of
184  *   the devices to shut down.  Preventing on-going dmas, and placing
185  *   the devices in a consistent state so a later kernel can
186  *   reinitialize them.
187  *
188  * - A machine specific part that includes the syscall number
189  *   and then copies the image to it's final destination.  And
190  *   jumps into the image at entry.
191  *
192  * kexec does not sync, or unmount filesystems so if you need
193  * that to happen you need to do that yourself.
194  */
195 
196 static inline int kexec_load_check(unsigned long nr_segments,
197 				   unsigned long flags)
198 {
199 	int result;
200 
201 	/* We only trust the superuser with rebooting the system. */
202 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
203 		return -EPERM;
204 
205 	/* Permit LSMs and IMA to fail the kexec */
206 	result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
207 	if (result < 0)
208 		return result;
209 
210 	/*
211 	 * Verify we have a legal set of flags
212 	 * This leaves us room for future extensions.
213 	 */
214 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
215 		return -EINVAL;
216 
217 	/* Put an artificial cap on the number
218 	 * of segments passed to kexec_load.
219 	 */
220 	if (nr_segments > KEXEC_SEGMENT_MAX)
221 		return -EINVAL;
222 
223 	return 0;
224 }
225 
226 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
227 		struct kexec_segment __user *, segments, unsigned long, flags)
228 {
229 	int result;
230 
231 	result = kexec_load_check(nr_segments, flags);
232 	if (result)
233 		return result;
234 
235 	/* Verify we are on the appropriate architecture */
236 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
237 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
238 		return -EINVAL;
239 
240 	/* Because we write directly to the reserved memory
241 	 * region when loading crash kernels we need a mutex here to
242 	 * prevent multiple crash  kernels from attempting to load
243 	 * simultaneously, and to prevent a crash kernel from loading
244 	 * over the top of a in use crash kernel.
245 	 *
246 	 * KISS: always take the mutex.
247 	 */
248 	if (!mutex_trylock(&kexec_mutex))
249 		return -EBUSY;
250 
251 	result = do_kexec_load(entry, nr_segments, segments, flags);
252 
253 	mutex_unlock(&kexec_mutex);
254 
255 	return result;
256 }
257 
258 #ifdef CONFIG_COMPAT
259 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
260 		       compat_ulong_t, nr_segments,
261 		       struct compat_kexec_segment __user *, segments,
262 		       compat_ulong_t, flags)
263 {
264 	struct compat_kexec_segment in;
265 	struct kexec_segment out, __user *ksegments;
266 	unsigned long i, result;
267 
268 	result = kexec_load_check(nr_segments, flags);
269 	if (result)
270 		return result;
271 
272 	/* Don't allow clients that don't understand the native
273 	 * architecture to do anything.
274 	 */
275 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
276 		return -EINVAL;
277 
278 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
279 	for (i = 0; i < nr_segments; i++) {
280 		result = copy_from_user(&in, &segments[i], sizeof(in));
281 		if (result)
282 			return -EFAULT;
283 
284 		out.buf   = compat_ptr(in.buf);
285 		out.bufsz = in.bufsz;
286 		out.mem   = in.mem;
287 		out.memsz = in.memsz;
288 
289 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
290 		if (result)
291 			return -EFAULT;
292 	}
293 
294 	/* Because we write directly to the reserved memory
295 	 * region when loading crash kernels we need a mutex here to
296 	 * prevent multiple crash  kernels from attempting to load
297 	 * simultaneously, and to prevent a crash kernel from loading
298 	 * over the top of a in use crash kernel.
299 	 *
300 	 * KISS: always take the mutex.
301 	 */
302 	if (!mutex_trylock(&kexec_mutex))
303 		return -EBUSY;
304 
305 	result = do_kexec_load(entry, nr_segments, ksegments, flags);
306 
307 	mutex_unlock(&kexec_mutex);
308 
309 	return result;
310 }
311 #endif
312