xref: /openbmc/linux/kernel/kexec.c (revision 8e9356c6)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/sections.h>
40 
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu *crash_notes;
43 
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47 size_t vmcoreinfo_size;
48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49 
50 /* Flag to indicate we are going to kexec a new kernel */
51 bool kexec_in_progress = false;
52 
53 /* Location of the reserved area for the crash kernel */
54 struct resource crashk_res = {
55 	.name  = "Crash kernel",
56 	.start = 0,
57 	.end   = 0,
58 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
59 };
60 struct resource crashk_low_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
65 };
66 
67 int kexec_should_crash(struct task_struct *p)
68 {
69 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
70 		return 1;
71 	return 0;
72 }
73 
74 /*
75  * When kexec transitions to the new kernel there is a one-to-one
76  * mapping between physical and virtual addresses.  On processors
77  * where you can disable the MMU this is trivial, and easy.  For
78  * others it is still a simple predictable page table to setup.
79  *
80  * In that environment kexec copies the new kernel to its final
81  * resting place.  This means I can only support memory whose
82  * physical address can fit in an unsigned long.  In particular
83  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
84  * If the assembly stub has more restrictive requirements
85  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
86  * defined more restrictively in <asm/kexec.h>.
87  *
88  * The code for the transition from the current kernel to the
89  * the new kernel is placed in the control_code_buffer, whose size
90  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
91  * page of memory is necessary, but some architectures require more.
92  * Because this memory must be identity mapped in the transition from
93  * virtual to physical addresses it must live in the range
94  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
95  * modifiable.
96  *
97  * The assembly stub in the control code buffer is passed a linked list
98  * of descriptor pages detailing the source pages of the new kernel,
99  * and the destination addresses of those source pages.  As this data
100  * structure is not used in the context of the current OS, it must
101  * be self-contained.
102  *
103  * The code has been made to work with highmem pages and will use a
104  * destination page in its final resting place (if it happens
105  * to allocate it).  The end product of this is that most of the
106  * physical address space, and most of RAM can be used.
107  *
108  * Future directions include:
109  *  - allocating a page table with the control code buffer identity
110  *    mapped, to simplify machine_kexec and make kexec_on_panic more
111  *    reliable.
112  */
113 
114 /*
115  * KIMAGE_NO_DEST is an impossible destination address..., for
116  * allocating pages whose destination address we do not care about.
117  */
118 #define KIMAGE_NO_DEST (-1UL)
119 
120 static int kimage_is_destination_range(struct kimage *image,
121 				       unsigned long start, unsigned long end);
122 static struct page *kimage_alloc_page(struct kimage *image,
123 				       gfp_t gfp_mask,
124 				       unsigned long dest);
125 
126 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
127 	                    unsigned long nr_segments,
128                             struct kexec_segment __user *segments)
129 {
130 	size_t segment_bytes;
131 	struct kimage *image;
132 	unsigned long i;
133 	int result;
134 
135 	/* Allocate a controlling structure */
136 	result = -ENOMEM;
137 	image = kzalloc(sizeof(*image), GFP_KERNEL);
138 	if (!image)
139 		goto out;
140 
141 	image->head = 0;
142 	image->entry = &image->head;
143 	image->last_entry = &image->head;
144 	image->control_page = ~0; /* By default this does not apply */
145 	image->start = entry;
146 	image->type = KEXEC_TYPE_DEFAULT;
147 
148 	/* Initialize the list of control pages */
149 	INIT_LIST_HEAD(&image->control_pages);
150 
151 	/* Initialize the list of destination pages */
152 	INIT_LIST_HEAD(&image->dest_pages);
153 
154 	/* Initialize the list of unusable pages */
155 	INIT_LIST_HEAD(&image->unuseable_pages);
156 
157 	/* Read in the segments */
158 	image->nr_segments = nr_segments;
159 	segment_bytes = nr_segments * sizeof(*segments);
160 	result = copy_from_user(image->segment, segments, segment_bytes);
161 	if (result) {
162 		result = -EFAULT;
163 		goto out;
164 	}
165 
166 	/*
167 	 * Verify we have good destination addresses.  The caller is
168 	 * responsible for making certain we don't attempt to load
169 	 * the new image into invalid or reserved areas of RAM.  This
170 	 * just verifies it is an address we can use.
171 	 *
172 	 * Since the kernel does everything in page size chunks ensure
173 	 * the destination addresses are page aligned.  Too many
174 	 * special cases crop of when we don't do this.  The most
175 	 * insidious is getting overlapping destination addresses
176 	 * simply because addresses are changed to page size
177 	 * granularity.
178 	 */
179 	result = -EADDRNOTAVAIL;
180 	for (i = 0; i < nr_segments; i++) {
181 		unsigned long mstart, mend;
182 
183 		mstart = image->segment[i].mem;
184 		mend   = mstart + image->segment[i].memsz;
185 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186 			goto out;
187 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188 			goto out;
189 	}
190 
191 	/* Verify our destination addresses do not overlap.
192 	 * If we alloed overlapping destination addresses
193 	 * through very weird things can happen with no
194 	 * easy explanation as one segment stops on another.
195 	 */
196 	result = -EINVAL;
197 	for (i = 0; i < nr_segments; i++) {
198 		unsigned long mstart, mend;
199 		unsigned long j;
200 
201 		mstart = image->segment[i].mem;
202 		mend   = mstart + image->segment[i].memsz;
203 		for (j = 0; j < i; j++) {
204 			unsigned long pstart, pend;
205 			pstart = image->segment[j].mem;
206 			pend   = pstart + image->segment[j].memsz;
207 			/* Do the segments overlap ? */
208 			if ((mend > pstart) && (mstart < pend))
209 				goto out;
210 		}
211 	}
212 
213 	/* Ensure our buffer sizes are strictly less than
214 	 * our memory sizes.  This should always be the case,
215 	 * and it is easier to check up front than to be surprised
216 	 * later on.
217 	 */
218 	result = -EINVAL;
219 	for (i = 0; i < nr_segments; i++) {
220 		if (image->segment[i].bufsz > image->segment[i].memsz)
221 			goto out;
222 	}
223 
224 	result = 0;
225 out:
226 	if (result == 0)
227 		*rimage = image;
228 	else
229 		kfree(image);
230 
231 	return result;
232 
233 }
234 
235 static void kimage_free_page_list(struct list_head *list);
236 
237 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
238 				unsigned long nr_segments,
239 				struct kexec_segment __user *segments)
240 {
241 	int result;
242 	struct kimage *image;
243 
244 	/* Allocate and initialize a controlling structure */
245 	image = NULL;
246 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
247 	if (result)
248 		goto out;
249 
250 	/*
251 	 * Find a location for the control code buffer, and add it
252 	 * the vector of segments so that it's pages will also be
253 	 * counted as destination pages.
254 	 */
255 	result = -ENOMEM;
256 	image->control_code_page = kimage_alloc_control_pages(image,
257 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
258 	if (!image->control_code_page) {
259 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
260 		goto out_free;
261 	}
262 
263 	image->swap_page = kimage_alloc_control_pages(image, 0);
264 	if (!image->swap_page) {
265 		printk(KERN_ERR "Could not allocate swap buffer\n");
266 		goto out_free;
267 	}
268 
269 	*rimage = image;
270 	return 0;
271 
272 out_free:
273 	kimage_free_page_list(&image->control_pages);
274 	kfree(image);
275 out:
276 	return result;
277 }
278 
279 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
280 				unsigned long nr_segments,
281 				struct kexec_segment __user *segments)
282 {
283 	int result;
284 	struct kimage *image;
285 	unsigned long i;
286 
287 	image = NULL;
288 	/* Verify we have a valid entry point */
289 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
290 		result = -EADDRNOTAVAIL;
291 		goto out;
292 	}
293 
294 	/* Allocate and initialize a controlling structure */
295 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
296 	if (result)
297 		goto out;
298 
299 	/* Enable the special crash kernel control page
300 	 * allocation policy.
301 	 */
302 	image->control_page = crashk_res.start;
303 	image->type = KEXEC_TYPE_CRASH;
304 
305 	/*
306 	 * Verify we have good destination addresses.  Normally
307 	 * the caller is responsible for making certain we don't
308 	 * attempt to load the new image into invalid or reserved
309 	 * areas of RAM.  But crash kernels are preloaded into a
310 	 * reserved area of ram.  We must ensure the addresses
311 	 * are in the reserved area otherwise preloading the
312 	 * kernel could corrupt things.
313 	 */
314 	result = -EADDRNOTAVAIL;
315 	for (i = 0; i < nr_segments; i++) {
316 		unsigned long mstart, mend;
317 
318 		mstart = image->segment[i].mem;
319 		mend = mstart + image->segment[i].memsz - 1;
320 		/* Ensure we are within the crash kernel limits */
321 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
322 			goto out_free;
323 	}
324 
325 	/*
326 	 * Find a location for the control code buffer, and add
327 	 * the vector of segments so that it's pages will also be
328 	 * counted as destination pages.
329 	 */
330 	result = -ENOMEM;
331 	image->control_code_page = kimage_alloc_control_pages(image,
332 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
333 	if (!image->control_code_page) {
334 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
335 		goto out_free;
336 	}
337 
338 	*rimage = image;
339 	return 0;
340 
341 out_free:
342 	kfree(image);
343 out:
344 	return result;
345 }
346 
347 static int kimage_is_destination_range(struct kimage *image,
348 					unsigned long start,
349 					unsigned long end)
350 {
351 	unsigned long i;
352 
353 	for (i = 0; i < image->nr_segments; i++) {
354 		unsigned long mstart, mend;
355 
356 		mstart = image->segment[i].mem;
357 		mend = mstart + image->segment[i].memsz;
358 		if ((end > mstart) && (start < mend))
359 			return 1;
360 	}
361 
362 	return 0;
363 }
364 
365 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
366 {
367 	struct page *pages;
368 
369 	pages = alloc_pages(gfp_mask, order);
370 	if (pages) {
371 		unsigned int count, i;
372 		pages->mapping = NULL;
373 		set_page_private(pages, order);
374 		count = 1 << order;
375 		for (i = 0; i < count; i++)
376 			SetPageReserved(pages + i);
377 	}
378 
379 	return pages;
380 }
381 
382 static void kimage_free_pages(struct page *page)
383 {
384 	unsigned int order, count, i;
385 
386 	order = page_private(page);
387 	count = 1 << order;
388 	for (i = 0; i < count; i++)
389 		ClearPageReserved(page + i);
390 	__free_pages(page, order);
391 }
392 
393 static void kimage_free_page_list(struct list_head *list)
394 {
395 	struct list_head *pos, *next;
396 
397 	list_for_each_safe(pos, next, list) {
398 		struct page *page;
399 
400 		page = list_entry(pos, struct page, lru);
401 		list_del(&page->lru);
402 		kimage_free_pages(page);
403 	}
404 }
405 
406 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
407 							unsigned int order)
408 {
409 	/* Control pages are special, they are the intermediaries
410 	 * that are needed while we copy the rest of the pages
411 	 * to their final resting place.  As such they must
412 	 * not conflict with either the destination addresses
413 	 * or memory the kernel is already using.
414 	 *
415 	 * The only case where we really need more than one of
416 	 * these are for architectures where we cannot disable
417 	 * the MMU and must instead generate an identity mapped
418 	 * page table for all of the memory.
419 	 *
420 	 * At worst this runs in O(N) of the image size.
421 	 */
422 	struct list_head extra_pages;
423 	struct page *pages;
424 	unsigned int count;
425 
426 	count = 1 << order;
427 	INIT_LIST_HEAD(&extra_pages);
428 
429 	/* Loop while I can allocate a page and the page allocated
430 	 * is a destination page.
431 	 */
432 	do {
433 		unsigned long pfn, epfn, addr, eaddr;
434 
435 		pages = kimage_alloc_pages(GFP_KERNEL, order);
436 		if (!pages)
437 			break;
438 		pfn   = page_to_pfn(pages);
439 		epfn  = pfn + count;
440 		addr  = pfn << PAGE_SHIFT;
441 		eaddr = epfn << PAGE_SHIFT;
442 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
443 			      kimage_is_destination_range(image, addr, eaddr)) {
444 			list_add(&pages->lru, &extra_pages);
445 			pages = NULL;
446 		}
447 	} while (!pages);
448 
449 	if (pages) {
450 		/* Remember the allocated page... */
451 		list_add(&pages->lru, &image->control_pages);
452 
453 		/* Because the page is already in it's destination
454 		 * location we will never allocate another page at
455 		 * that address.  Therefore kimage_alloc_pages
456 		 * will not return it (again) and we don't need
457 		 * to give it an entry in image->segment[].
458 		 */
459 	}
460 	/* Deal with the destination pages I have inadvertently allocated.
461 	 *
462 	 * Ideally I would convert multi-page allocations into single
463 	 * page allocations, and add everything to image->dest_pages.
464 	 *
465 	 * For now it is simpler to just free the pages.
466 	 */
467 	kimage_free_page_list(&extra_pages);
468 
469 	return pages;
470 }
471 
472 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
473 						      unsigned int order)
474 {
475 	/* Control pages are special, they are the intermediaries
476 	 * that are needed while we copy the rest of the pages
477 	 * to their final resting place.  As such they must
478 	 * not conflict with either the destination addresses
479 	 * or memory the kernel is already using.
480 	 *
481 	 * Control pages are also the only pags we must allocate
482 	 * when loading a crash kernel.  All of the other pages
483 	 * are specified by the segments and we just memcpy
484 	 * into them directly.
485 	 *
486 	 * The only case where we really need more than one of
487 	 * these are for architectures where we cannot disable
488 	 * the MMU and must instead generate an identity mapped
489 	 * page table for all of the memory.
490 	 *
491 	 * Given the low demand this implements a very simple
492 	 * allocator that finds the first hole of the appropriate
493 	 * size in the reserved memory region, and allocates all
494 	 * of the memory up to and including the hole.
495 	 */
496 	unsigned long hole_start, hole_end, size;
497 	struct page *pages;
498 
499 	pages = NULL;
500 	size = (1 << order) << PAGE_SHIFT;
501 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
502 	hole_end   = hole_start + size - 1;
503 	while (hole_end <= crashk_res.end) {
504 		unsigned long i;
505 
506 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
507 			break;
508 		/* See if I overlap any of the segments */
509 		for (i = 0; i < image->nr_segments; i++) {
510 			unsigned long mstart, mend;
511 
512 			mstart = image->segment[i].mem;
513 			mend   = mstart + image->segment[i].memsz - 1;
514 			if ((hole_end >= mstart) && (hole_start <= mend)) {
515 				/* Advance the hole to the end of the segment */
516 				hole_start = (mend + (size - 1)) & ~(size - 1);
517 				hole_end   = hole_start + size - 1;
518 				break;
519 			}
520 		}
521 		/* If I don't overlap any segments I have found my hole! */
522 		if (i == image->nr_segments) {
523 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
524 			break;
525 		}
526 	}
527 	if (pages)
528 		image->control_page = hole_end;
529 
530 	return pages;
531 }
532 
533 
534 struct page *kimage_alloc_control_pages(struct kimage *image,
535 					 unsigned int order)
536 {
537 	struct page *pages = NULL;
538 
539 	switch (image->type) {
540 	case KEXEC_TYPE_DEFAULT:
541 		pages = kimage_alloc_normal_control_pages(image, order);
542 		break;
543 	case KEXEC_TYPE_CRASH:
544 		pages = kimage_alloc_crash_control_pages(image, order);
545 		break;
546 	}
547 
548 	return pages;
549 }
550 
551 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
552 {
553 	if (*image->entry != 0)
554 		image->entry++;
555 
556 	if (image->entry == image->last_entry) {
557 		kimage_entry_t *ind_page;
558 		struct page *page;
559 
560 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
561 		if (!page)
562 			return -ENOMEM;
563 
564 		ind_page = page_address(page);
565 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
566 		image->entry = ind_page;
567 		image->last_entry = ind_page +
568 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
569 	}
570 	*image->entry = entry;
571 	image->entry++;
572 	*image->entry = 0;
573 
574 	return 0;
575 }
576 
577 static int kimage_set_destination(struct kimage *image,
578 				   unsigned long destination)
579 {
580 	int result;
581 
582 	destination &= PAGE_MASK;
583 	result = kimage_add_entry(image, destination | IND_DESTINATION);
584 	if (result == 0)
585 		image->destination = destination;
586 
587 	return result;
588 }
589 
590 
591 static int kimage_add_page(struct kimage *image, unsigned long page)
592 {
593 	int result;
594 
595 	page &= PAGE_MASK;
596 	result = kimage_add_entry(image, page | IND_SOURCE);
597 	if (result == 0)
598 		image->destination += PAGE_SIZE;
599 
600 	return result;
601 }
602 
603 
604 static void kimage_free_extra_pages(struct kimage *image)
605 {
606 	/* Walk through and free any extra destination pages I may have */
607 	kimage_free_page_list(&image->dest_pages);
608 
609 	/* Walk through and free any unusable pages I have cached */
610 	kimage_free_page_list(&image->unuseable_pages);
611 
612 }
613 static void kimage_terminate(struct kimage *image)
614 {
615 	if (*image->entry != 0)
616 		image->entry++;
617 
618 	*image->entry = IND_DONE;
619 }
620 
621 #define for_each_kimage_entry(image, ptr, entry) \
622 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
623 		ptr = (entry & IND_INDIRECTION)? \
624 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
625 
626 static void kimage_free_entry(kimage_entry_t entry)
627 {
628 	struct page *page;
629 
630 	page = pfn_to_page(entry >> PAGE_SHIFT);
631 	kimage_free_pages(page);
632 }
633 
634 static void kimage_free(struct kimage *image)
635 {
636 	kimage_entry_t *ptr, entry;
637 	kimage_entry_t ind = 0;
638 
639 	if (!image)
640 		return;
641 
642 	kimage_free_extra_pages(image);
643 	for_each_kimage_entry(image, ptr, entry) {
644 		if (entry & IND_INDIRECTION) {
645 			/* Free the previous indirection page */
646 			if (ind & IND_INDIRECTION)
647 				kimage_free_entry(ind);
648 			/* Save this indirection page until we are
649 			 * done with it.
650 			 */
651 			ind = entry;
652 		}
653 		else if (entry & IND_SOURCE)
654 			kimage_free_entry(entry);
655 	}
656 	/* Free the final indirection page */
657 	if (ind & IND_INDIRECTION)
658 		kimage_free_entry(ind);
659 
660 	/* Handle any machine specific cleanup */
661 	machine_kexec_cleanup(image);
662 
663 	/* Free the kexec control pages... */
664 	kimage_free_page_list(&image->control_pages);
665 	kfree(image);
666 }
667 
668 static kimage_entry_t *kimage_dst_used(struct kimage *image,
669 					unsigned long page)
670 {
671 	kimage_entry_t *ptr, entry;
672 	unsigned long destination = 0;
673 
674 	for_each_kimage_entry(image, ptr, entry) {
675 		if (entry & IND_DESTINATION)
676 			destination = entry & PAGE_MASK;
677 		else if (entry & IND_SOURCE) {
678 			if (page == destination)
679 				return ptr;
680 			destination += PAGE_SIZE;
681 		}
682 	}
683 
684 	return NULL;
685 }
686 
687 static struct page *kimage_alloc_page(struct kimage *image,
688 					gfp_t gfp_mask,
689 					unsigned long destination)
690 {
691 	/*
692 	 * Here we implement safeguards to ensure that a source page
693 	 * is not copied to its destination page before the data on
694 	 * the destination page is no longer useful.
695 	 *
696 	 * To do this we maintain the invariant that a source page is
697 	 * either its own destination page, or it is not a
698 	 * destination page at all.
699 	 *
700 	 * That is slightly stronger than required, but the proof
701 	 * that no problems will not occur is trivial, and the
702 	 * implementation is simply to verify.
703 	 *
704 	 * When allocating all pages normally this algorithm will run
705 	 * in O(N) time, but in the worst case it will run in O(N^2)
706 	 * time.   If the runtime is a problem the data structures can
707 	 * be fixed.
708 	 */
709 	struct page *page;
710 	unsigned long addr;
711 
712 	/*
713 	 * Walk through the list of destination pages, and see if I
714 	 * have a match.
715 	 */
716 	list_for_each_entry(page, &image->dest_pages, lru) {
717 		addr = page_to_pfn(page) << PAGE_SHIFT;
718 		if (addr == destination) {
719 			list_del(&page->lru);
720 			return page;
721 		}
722 	}
723 	page = NULL;
724 	while (1) {
725 		kimage_entry_t *old;
726 
727 		/* Allocate a page, if we run out of memory give up */
728 		page = kimage_alloc_pages(gfp_mask, 0);
729 		if (!page)
730 			return NULL;
731 		/* If the page cannot be used file it away */
732 		if (page_to_pfn(page) >
733 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
734 			list_add(&page->lru, &image->unuseable_pages);
735 			continue;
736 		}
737 		addr = page_to_pfn(page) << PAGE_SHIFT;
738 
739 		/* If it is the destination page we want use it */
740 		if (addr == destination)
741 			break;
742 
743 		/* If the page is not a destination page use it */
744 		if (!kimage_is_destination_range(image, addr,
745 						  addr + PAGE_SIZE))
746 			break;
747 
748 		/*
749 		 * I know that the page is someones destination page.
750 		 * See if there is already a source page for this
751 		 * destination page.  And if so swap the source pages.
752 		 */
753 		old = kimage_dst_used(image, addr);
754 		if (old) {
755 			/* If so move it */
756 			unsigned long old_addr;
757 			struct page *old_page;
758 
759 			old_addr = *old & PAGE_MASK;
760 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
761 			copy_highpage(page, old_page);
762 			*old = addr | (*old & ~PAGE_MASK);
763 
764 			/* The old page I have found cannot be a
765 			 * destination page, so return it if it's
766 			 * gfp_flags honor the ones passed in.
767 			 */
768 			if (!(gfp_mask & __GFP_HIGHMEM) &&
769 			    PageHighMem(old_page)) {
770 				kimage_free_pages(old_page);
771 				continue;
772 			}
773 			addr = old_addr;
774 			page = old_page;
775 			break;
776 		}
777 		else {
778 			/* Place the page on the destination list I
779 			 * will use it later.
780 			 */
781 			list_add(&page->lru, &image->dest_pages);
782 		}
783 	}
784 
785 	return page;
786 }
787 
788 static int kimage_load_normal_segment(struct kimage *image,
789 					 struct kexec_segment *segment)
790 {
791 	unsigned long maddr;
792 	size_t ubytes, mbytes;
793 	int result;
794 	unsigned char __user *buf;
795 
796 	result = 0;
797 	buf = segment->buf;
798 	ubytes = segment->bufsz;
799 	mbytes = segment->memsz;
800 	maddr = segment->mem;
801 
802 	result = kimage_set_destination(image, maddr);
803 	if (result < 0)
804 		goto out;
805 
806 	while (mbytes) {
807 		struct page *page;
808 		char *ptr;
809 		size_t uchunk, mchunk;
810 
811 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
812 		if (!page) {
813 			result  = -ENOMEM;
814 			goto out;
815 		}
816 		result = kimage_add_page(image, page_to_pfn(page)
817 								<< PAGE_SHIFT);
818 		if (result < 0)
819 			goto out;
820 
821 		ptr = kmap(page);
822 		/* Start with a clear page */
823 		clear_page(ptr);
824 		ptr += maddr & ~PAGE_MASK;
825 		mchunk = min_t(size_t, mbytes,
826 				PAGE_SIZE - (maddr & ~PAGE_MASK));
827 		uchunk = min(ubytes, mchunk);
828 
829 		result = copy_from_user(ptr, buf, uchunk);
830 		kunmap(page);
831 		if (result) {
832 			result = -EFAULT;
833 			goto out;
834 		}
835 		ubytes -= uchunk;
836 		maddr  += mchunk;
837 		buf    += mchunk;
838 		mbytes -= mchunk;
839 	}
840 out:
841 	return result;
842 }
843 
844 static int kimage_load_crash_segment(struct kimage *image,
845 					struct kexec_segment *segment)
846 {
847 	/* For crash dumps kernels we simply copy the data from
848 	 * user space to it's destination.
849 	 * We do things a page at a time for the sake of kmap.
850 	 */
851 	unsigned long maddr;
852 	size_t ubytes, mbytes;
853 	int result;
854 	unsigned char __user *buf;
855 
856 	result = 0;
857 	buf = segment->buf;
858 	ubytes = segment->bufsz;
859 	mbytes = segment->memsz;
860 	maddr = segment->mem;
861 	while (mbytes) {
862 		struct page *page;
863 		char *ptr;
864 		size_t uchunk, mchunk;
865 
866 		page = pfn_to_page(maddr >> PAGE_SHIFT);
867 		if (!page) {
868 			result  = -ENOMEM;
869 			goto out;
870 		}
871 		ptr = kmap(page);
872 		ptr += maddr & ~PAGE_MASK;
873 		mchunk = min_t(size_t, mbytes,
874 				PAGE_SIZE - (maddr & ~PAGE_MASK));
875 		uchunk = min(ubytes, mchunk);
876 		if (mchunk > uchunk) {
877 			/* Zero the trailing part of the page */
878 			memset(ptr + uchunk, 0, mchunk - uchunk);
879 		}
880 		result = copy_from_user(ptr, buf, uchunk);
881 		kexec_flush_icache_page(page);
882 		kunmap(page);
883 		if (result) {
884 			result = -EFAULT;
885 			goto out;
886 		}
887 		ubytes -= uchunk;
888 		maddr  += mchunk;
889 		buf    += mchunk;
890 		mbytes -= mchunk;
891 	}
892 out:
893 	return result;
894 }
895 
896 static int kimage_load_segment(struct kimage *image,
897 				struct kexec_segment *segment)
898 {
899 	int result = -ENOMEM;
900 
901 	switch (image->type) {
902 	case KEXEC_TYPE_DEFAULT:
903 		result = kimage_load_normal_segment(image, segment);
904 		break;
905 	case KEXEC_TYPE_CRASH:
906 		result = kimage_load_crash_segment(image, segment);
907 		break;
908 	}
909 
910 	return result;
911 }
912 
913 /*
914  * Exec Kernel system call: for obvious reasons only root may call it.
915  *
916  * This call breaks up into three pieces.
917  * - A generic part which loads the new kernel from the current
918  *   address space, and very carefully places the data in the
919  *   allocated pages.
920  *
921  * - A generic part that interacts with the kernel and tells all of
922  *   the devices to shut down.  Preventing on-going dmas, and placing
923  *   the devices in a consistent state so a later kernel can
924  *   reinitialize them.
925  *
926  * - A machine specific part that includes the syscall number
927  *   and then copies the image to it's final destination.  And
928  *   jumps into the image at entry.
929  *
930  * kexec does not sync, or unmount filesystems so if you need
931  * that to happen you need to do that yourself.
932  */
933 struct kimage *kexec_image;
934 struct kimage *kexec_crash_image;
935 int kexec_load_disabled;
936 
937 static DEFINE_MUTEX(kexec_mutex);
938 
939 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
940 		struct kexec_segment __user *, segments, unsigned long, flags)
941 {
942 	struct kimage **dest_image, *image;
943 	int result;
944 
945 	/* We only trust the superuser with rebooting the system. */
946 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
947 		return -EPERM;
948 
949 	/*
950 	 * Verify we have a legal set of flags
951 	 * This leaves us room for future extensions.
952 	 */
953 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
954 		return -EINVAL;
955 
956 	/* Verify we are on the appropriate architecture */
957 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
958 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
959 		return -EINVAL;
960 
961 	/* Put an artificial cap on the number
962 	 * of segments passed to kexec_load.
963 	 */
964 	if (nr_segments > KEXEC_SEGMENT_MAX)
965 		return -EINVAL;
966 
967 	image = NULL;
968 	result = 0;
969 
970 	/* Because we write directly to the reserved memory
971 	 * region when loading crash kernels we need a mutex here to
972 	 * prevent multiple crash  kernels from attempting to load
973 	 * simultaneously, and to prevent a crash kernel from loading
974 	 * over the top of a in use crash kernel.
975 	 *
976 	 * KISS: always take the mutex.
977 	 */
978 	if (!mutex_trylock(&kexec_mutex))
979 		return -EBUSY;
980 
981 	dest_image = &kexec_image;
982 	if (flags & KEXEC_ON_CRASH)
983 		dest_image = &kexec_crash_image;
984 	if (nr_segments > 0) {
985 		unsigned long i;
986 
987 		/* Loading another kernel to reboot into */
988 		if ((flags & KEXEC_ON_CRASH) == 0)
989 			result = kimage_normal_alloc(&image, entry,
990 							nr_segments, segments);
991 		/* Loading another kernel to switch to if this one crashes */
992 		else if (flags & KEXEC_ON_CRASH) {
993 			/* Free any current crash dump kernel before
994 			 * we corrupt it.
995 			 */
996 			kimage_free(xchg(&kexec_crash_image, NULL));
997 			result = kimage_crash_alloc(&image, entry,
998 						     nr_segments, segments);
999 			crash_map_reserved_pages();
1000 		}
1001 		if (result)
1002 			goto out;
1003 
1004 		if (flags & KEXEC_PRESERVE_CONTEXT)
1005 			image->preserve_context = 1;
1006 		result = machine_kexec_prepare(image);
1007 		if (result)
1008 			goto out;
1009 
1010 		for (i = 0; i < nr_segments; i++) {
1011 			result = kimage_load_segment(image, &image->segment[i]);
1012 			if (result)
1013 				goto out;
1014 		}
1015 		kimage_terminate(image);
1016 		if (flags & KEXEC_ON_CRASH)
1017 			crash_unmap_reserved_pages();
1018 	}
1019 	/* Install the new kernel, and  Uninstall the old */
1020 	image = xchg(dest_image, image);
1021 
1022 out:
1023 	mutex_unlock(&kexec_mutex);
1024 	kimage_free(image);
1025 
1026 	return result;
1027 }
1028 
1029 /*
1030  * Add and remove page tables for crashkernel memory
1031  *
1032  * Provide an empty default implementation here -- architecture
1033  * code may override this
1034  */
1035 void __weak crash_map_reserved_pages(void)
1036 {}
1037 
1038 void __weak crash_unmap_reserved_pages(void)
1039 {}
1040 
1041 #ifdef CONFIG_COMPAT
1042 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1043 				unsigned long nr_segments,
1044 				struct compat_kexec_segment __user *segments,
1045 				unsigned long flags)
1046 {
1047 	struct compat_kexec_segment in;
1048 	struct kexec_segment out, __user *ksegments;
1049 	unsigned long i, result;
1050 
1051 	/* Don't allow clients that don't understand the native
1052 	 * architecture to do anything.
1053 	 */
1054 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1055 		return -EINVAL;
1056 
1057 	if (nr_segments > KEXEC_SEGMENT_MAX)
1058 		return -EINVAL;
1059 
1060 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1061 	for (i=0; i < nr_segments; i++) {
1062 		result = copy_from_user(&in, &segments[i], sizeof(in));
1063 		if (result)
1064 			return -EFAULT;
1065 
1066 		out.buf   = compat_ptr(in.buf);
1067 		out.bufsz = in.bufsz;
1068 		out.mem   = in.mem;
1069 		out.memsz = in.memsz;
1070 
1071 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1072 		if (result)
1073 			return -EFAULT;
1074 	}
1075 
1076 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1077 }
1078 #endif
1079 
1080 void crash_kexec(struct pt_regs *regs)
1081 {
1082 	/* Take the kexec_mutex here to prevent sys_kexec_load
1083 	 * running on one cpu from replacing the crash kernel
1084 	 * we are using after a panic on a different cpu.
1085 	 *
1086 	 * If the crash kernel was not located in a fixed area
1087 	 * of memory the xchg(&kexec_crash_image) would be
1088 	 * sufficient.  But since I reuse the memory...
1089 	 */
1090 	if (mutex_trylock(&kexec_mutex)) {
1091 		if (kexec_crash_image) {
1092 			struct pt_regs fixed_regs;
1093 
1094 			crash_setup_regs(&fixed_regs, regs);
1095 			crash_save_vmcoreinfo();
1096 			machine_crash_shutdown(&fixed_regs);
1097 			machine_kexec(kexec_crash_image);
1098 		}
1099 		mutex_unlock(&kexec_mutex);
1100 	}
1101 }
1102 
1103 size_t crash_get_memory_size(void)
1104 {
1105 	size_t size = 0;
1106 	mutex_lock(&kexec_mutex);
1107 	if (crashk_res.end != crashk_res.start)
1108 		size = resource_size(&crashk_res);
1109 	mutex_unlock(&kexec_mutex);
1110 	return size;
1111 }
1112 
1113 void __weak crash_free_reserved_phys_range(unsigned long begin,
1114 					   unsigned long end)
1115 {
1116 	unsigned long addr;
1117 
1118 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1119 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1120 }
1121 
1122 int crash_shrink_memory(unsigned long new_size)
1123 {
1124 	int ret = 0;
1125 	unsigned long start, end;
1126 	unsigned long old_size;
1127 	struct resource *ram_res;
1128 
1129 	mutex_lock(&kexec_mutex);
1130 
1131 	if (kexec_crash_image) {
1132 		ret = -ENOENT;
1133 		goto unlock;
1134 	}
1135 	start = crashk_res.start;
1136 	end = crashk_res.end;
1137 	old_size = (end == 0) ? 0 : end - start + 1;
1138 	if (new_size >= old_size) {
1139 		ret = (new_size == old_size) ? 0 : -EINVAL;
1140 		goto unlock;
1141 	}
1142 
1143 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1144 	if (!ram_res) {
1145 		ret = -ENOMEM;
1146 		goto unlock;
1147 	}
1148 
1149 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1150 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1151 
1152 	crash_map_reserved_pages();
1153 	crash_free_reserved_phys_range(end, crashk_res.end);
1154 
1155 	if ((start == end) && (crashk_res.parent != NULL))
1156 		release_resource(&crashk_res);
1157 
1158 	ram_res->start = end;
1159 	ram_res->end = crashk_res.end;
1160 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1161 	ram_res->name = "System RAM";
1162 
1163 	crashk_res.end = end - 1;
1164 
1165 	insert_resource(&iomem_resource, ram_res);
1166 	crash_unmap_reserved_pages();
1167 
1168 unlock:
1169 	mutex_unlock(&kexec_mutex);
1170 	return ret;
1171 }
1172 
1173 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1174 			    size_t data_len)
1175 {
1176 	struct elf_note note;
1177 
1178 	note.n_namesz = strlen(name) + 1;
1179 	note.n_descsz = data_len;
1180 	note.n_type   = type;
1181 	memcpy(buf, &note, sizeof(note));
1182 	buf += (sizeof(note) + 3)/4;
1183 	memcpy(buf, name, note.n_namesz);
1184 	buf += (note.n_namesz + 3)/4;
1185 	memcpy(buf, data, note.n_descsz);
1186 	buf += (note.n_descsz + 3)/4;
1187 
1188 	return buf;
1189 }
1190 
1191 static void final_note(u32 *buf)
1192 {
1193 	struct elf_note note;
1194 
1195 	note.n_namesz = 0;
1196 	note.n_descsz = 0;
1197 	note.n_type   = 0;
1198 	memcpy(buf, &note, sizeof(note));
1199 }
1200 
1201 void crash_save_cpu(struct pt_regs *regs, int cpu)
1202 {
1203 	struct elf_prstatus prstatus;
1204 	u32 *buf;
1205 
1206 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1207 		return;
1208 
1209 	/* Using ELF notes here is opportunistic.
1210 	 * I need a well defined structure format
1211 	 * for the data I pass, and I need tags
1212 	 * on the data to indicate what information I have
1213 	 * squirrelled away.  ELF notes happen to provide
1214 	 * all of that, so there is no need to invent something new.
1215 	 */
1216 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1217 	if (!buf)
1218 		return;
1219 	memset(&prstatus, 0, sizeof(prstatus));
1220 	prstatus.pr_pid = current->pid;
1221 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1222 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1223 		      	      &prstatus, sizeof(prstatus));
1224 	final_note(buf);
1225 }
1226 
1227 static int __init crash_notes_memory_init(void)
1228 {
1229 	/* Allocate memory for saving cpu registers. */
1230 	crash_notes = alloc_percpu(note_buf_t);
1231 	if (!crash_notes) {
1232 		printk("Kexec: Memory allocation for saving cpu register"
1233 		" states failed\n");
1234 		return -ENOMEM;
1235 	}
1236 	return 0;
1237 }
1238 module_init(crash_notes_memory_init)
1239 
1240 
1241 /*
1242  * parsing the "crashkernel" commandline
1243  *
1244  * this code is intended to be called from architecture specific code
1245  */
1246 
1247 
1248 /*
1249  * This function parses command lines in the format
1250  *
1251  *   crashkernel=ramsize-range:size[,...][@offset]
1252  *
1253  * The function returns 0 on success and -EINVAL on failure.
1254  */
1255 static int __init parse_crashkernel_mem(char 			*cmdline,
1256 					unsigned long long	system_ram,
1257 					unsigned long long	*crash_size,
1258 					unsigned long long	*crash_base)
1259 {
1260 	char *cur = cmdline, *tmp;
1261 
1262 	/* for each entry of the comma-separated list */
1263 	do {
1264 		unsigned long long start, end = ULLONG_MAX, size;
1265 
1266 		/* get the start of the range */
1267 		start = memparse(cur, &tmp);
1268 		if (cur == tmp) {
1269 			pr_warning("crashkernel: Memory value expected\n");
1270 			return -EINVAL;
1271 		}
1272 		cur = tmp;
1273 		if (*cur != '-') {
1274 			pr_warning("crashkernel: '-' expected\n");
1275 			return -EINVAL;
1276 		}
1277 		cur++;
1278 
1279 		/* if no ':' is here, than we read the end */
1280 		if (*cur != ':') {
1281 			end = memparse(cur, &tmp);
1282 			if (cur == tmp) {
1283 				pr_warning("crashkernel: Memory "
1284 						"value expected\n");
1285 				return -EINVAL;
1286 			}
1287 			cur = tmp;
1288 			if (end <= start) {
1289 				pr_warning("crashkernel: end <= start\n");
1290 				return -EINVAL;
1291 			}
1292 		}
1293 
1294 		if (*cur != ':') {
1295 			pr_warning("crashkernel: ':' expected\n");
1296 			return -EINVAL;
1297 		}
1298 		cur++;
1299 
1300 		size = memparse(cur, &tmp);
1301 		if (cur == tmp) {
1302 			pr_warning("Memory value expected\n");
1303 			return -EINVAL;
1304 		}
1305 		cur = tmp;
1306 		if (size >= system_ram) {
1307 			pr_warning("crashkernel: invalid size\n");
1308 			return -EINVAL;
1309 		}
1310 
1311 		/* match ? */
1312 		if (system_ram >= start && system_ram < end) {
1313 			*crash_size = size;
1314 			break;
1315 		}
1316 	} while (*cur++ == ',');
1317 
1318 	if (*crash_size > 0) {
1319 		while (*cur && *cur != ' ' && *cur != '@')
1320 			cur++;
1321 		if (*cur == '@') {
1322 			cur++;
1323 			*crash_base = memparse(cur, &tmp);
1324 			if (cur == tmp) {
1325 				pr_warning("Memory value expected "
1326 						"after '@'\n");
1327 				return -EINVAL;
1328 			}
1329 		}
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 /*
1336  * That function parses "simple" (old) crashkernel command lines like
1337  *
1338  * 	crashkernel=size[@offset]
1339  *
1340  * It returns 0 on success and -EINVAL on failure.
1341  */
1342 static int __init parse_crashkernel_simple(char 		*cmdline,
1343 					   unsigned long long 	*crash_size,
1344 					   unsigned long long 	*crash_base)
1345 {
1346 	char *cur = cmdline;
1347 
1348 	*crash_size = memparse(cmdline, &cur);
1349 	if (cmdline == cur) {
1350 		pr_warning("crashkernel: memory value expected\n");
1351 		return -EINVAL;
1352 	}
1353 
1354 	if (*cur == '@')
1355 		*crash_base = memparse(cur+1, &cur);
1356 	else if (*cur != ' ' && *cur != '\0') {
1357 		pr_warning("crashkernel: unrecognized char\n");
1358 		return -EINVAL;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 #define SUFFIX_HIGH 0
1365 #define SUFFIX_LOW  1
1366 #define SUFFIX_NULL 2
1367 static __initdata char *suffix_tbl[] = {
1368 	[SUFFIX_HIGH] = ",high",
1369 	[SUFFIX_LOW]  = ",low",
1370 	[SUFFIX_NULL] = NULL,
1371 };
1372 
1373 /*
1374  * That function parses "suffix"  crashkernel command lines like
1375  *
1376  *	crashkernel=size,[high|low]
1377  *
1378  * It returns 0 on success and -EINVAL on failure.
1379  */
1380 static int __init parse_crashkernel_suffix(char *cmdline,
1381 					   unsigned long long	*crash_size,
1382 					   unsigned long long	*crash_base,
1383 					   const char *suffix)
1384 {
1385 	char *cur = cmdline;
1386 
1387 	*crash_size = memparse(cmdline, &cur);
1388 	if (cmdline == cur) {
1389 		pr_warn("crashkernel: memory value expected\n");
1390 		return -EINVAL;
1391 	}
1392 
1393 	/* check with suffix */
1394 	if (strncmp(cur, suffix, strlen(suffix))) {
1395 		pr_warn("crashkernel: unrecognized char\n");
1396 		return -EINVAL;
1397 	}
1398 	cur += strlen(suffix);
1399 	if (*cur != ' ' && *cur != '\0') {
1400 		pr_warn("crashkernel: unrecognized char\n");
1401 		return -EINVAL;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static __init char *get_last_crashkernel(char *cmdline,
1408 			     const char *name,
1409 			     const char *suffix)
1410 {
1411 	char *p = cmdline, *ck_cmdline = NULL;
1412 
1413 	/* find crashkernel and use the last one if there are more */
1414 	p = strstr(p, name);
1415 	while (p) {
1416 		char *end_p = strchr(p, ' ');
1417 		char *q;
1418 
1419 		if (!end_p)
1420 			end_p = p + strlen(p);
1421 
1422 		if (!suffix) {
1423 			int i;
1424 
1425 			/* skip the one with any known suffix */
1426 			for (i = 0; suffix_tbl[i]; i++) {
1427 				q = end_p - strlen(suffix_tbl[i]);
1428 				if (!strncmp(q, suffix_tbl[i],
1429 					     strlen(suffix_tbl[i])))
1430 					goto next;
1431 			}
1432 			ck_cmdline = p;
1433 		} else {
1434 			q = end_p - strlen(suffix);
1435 			if (!strncmp(q, suffix, strlen(suffix)))
1436 				ck_cmdline = p;
1437 		}
1438 next:
1439 		p = strstr(p+1, name);
1440 	}
1441 
1442 	if (!ck_cmdline)
1443 		return NULL;
1444 
1445 	return ck_cmdline;
1446 }
1447 
1448 static int __init __parse_crashkernel(char *cmdline,
1449 			     unsigned long long system_ram,
1450 			     unsigned long long *crash_size,
1451 			     unsigned long long *crash_base,
1452 			     const char *name,
1453 			     const char *suffix)
1454 {
1455 	char	*first_colon, *first_space;
1456 	char	*ck_cmdline;
1457 
1458 	BUG_ON(!crash_size || !crash_base);
1459 	*crash_size = 0;
1460 	*crash_base = 0;
1461 
1462 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1463 
1464 	if (!ck_cmdline)
1465 		return -EINVAL;
1466 
1467 	ck_cmdline += strlen(name);
1468 
1469 	if (suffix)
1470 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1471 				crash_base, suffix);
1472 	/*
1473 	 * if the commandline contains a ':', then that's the extended
1474 	 * syntax -- if not, it must be the classic syntax
1475 	 */
1476 	first_colon = strchr(ck_cmdline, ':');
1477 	first_space = strchr(ck_cmdline, ' ');
1478 	if (first_colon && (!first_space || first_colon < first_space))
1479 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1480 				crash_size, crash_base);
1481 
1482 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1483 }
1484 
1485 /*
1486  * That function is the entry point for command line parsing and should be
1487  * called from the arch-specific code.
1488  */
1489 int __init parse_crashkernel(char *cmdline,
1490 			     unsigned long long system_ram,
1491 			     unsigned long long *crash_size,
1492 			     unsigned long long *crash_base)
1493 {
1494 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1495 					"crashkernel=", NULL);
1496 }
1497 
1498 int __init parse_crashkernel_high(char *cmdline,
1499 			     unsigned long long system_ram,
1500 			     unsigned long long *crash_size,
1501 			     unsigned long long *crash_base)
1502 {
1503 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1504 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1505 }
1506 
1507 int __init parse_crashkernel_low(char *cmdline,
1508 			     unsigned long long system_ram,
1509 			     unsigned long long *crash_size,
1510 			     unsigned long long *crash_base)
1511 {
1512 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1513 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1514 }
1515 
1516 static void update_vmcoreinfo_note(void)
1517 {
1518 	u32 *buf = vmcoreinfo_note;
1519 
1520 	if (!vmcoreinfo_size)
1521 		return;
1522 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1523 			      vmcoreinfo_size);
1524 	final_note(buf);
1525 }
1526 
1527 void crash_save_vmcoreinfo(void)
1528 {
1529 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1530 	update_vmcoreinfo_note();
1531 }
1532 
1533 void vmcoreinfo_append_str(const char *fmt, ...)
1534 {
1535 	va_list args;
1536 	char buf[0x50];
1537 	size_t r;
1538 
1539 	va_start(args, fmt);
1540 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1541 	va_end(args);
1542 
1543 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1544 
1545 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1546 
1547 	vmcoreinfo_size += r;
1548 }
1549 
1550 /*
1551  * provide an empty default implementation here -- architecture
1552  * code may override this
1553  */
1554 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1555 {}
1556 
1557 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1558 {
1559 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1560 }
1561 
1562 static int __init crash_save_vmcoreinfo_init(void)
1563 {
1564 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1565 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1566 
1567 	VMCOREINFO_SYMBOL(init_uts_ns);
1568 	VMCOREINFO_SYMBOL(node_online_map);
1569 #ifdef CONFIG_MMU
1570 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1571 #endif
1572 	VMCOREINFO_SYMBOL(_stext);
1573 	VMCOREINFO_SYMBOL(vmap_area_list);
1574 
1575 #ifndef CONFIG_NEED_MULTIPLE_NODES
1576 	VMCOREINFO_SYMBOL(mem_map);
1577 	VMCOREINFO_SYMBOL(contig_page_data);
1578 #endif
1579 #ifdef CONFIG_SPARSEMEM
1580 	VMCOREINFO_SYMBOL(mem_section);
1581 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1582 	VMCOREINFO_STRUCT_SIZE(mem_section);
1583 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1584 #endif
1585 	VMCOREINFO_STRUCT_SIZE(page);
1586 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1587 	VMCOREINFO_STRUCT_SIZE(zone);
1588 	VMCOREINFO_STRUCT_SIZE(free_area);
1589 	VMCOREINFO_STRUCT_SIZE(list_head);
1590 	VMCOREINFO_SIZE(nodemask_t);
1591 	VMCOREINFO_OFFSET(page, flags);
1592 	VMCOREINFO_OFFSET(page, _count);
1593 	VMCOREINFO_OFFSET(page, mapping);
1594 	VMCOREINFO_OFFSET(page, lru);
1595 	VMCOREINFO_OFFSET(page, _mapcount);
1596 	VMCOREINFO_OFFSET(page, private);
1597 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1598 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1599 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1600 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1601 #endif
1602 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1603 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1604 	VMCOREINFO_OFFSET(pglist_data, node_id);
1605 	VMCOREINFO_OFFSET(zone, free_area);
1606 	VMCOREINFO_OFFSET(zone, vm_stat);
1607 	VMCOREINFO_OFFSET(zone, spanned_pages);
1608 	VMCOREINFO_OFFSET(free_area, free_list);
1609 	VMCOREINFO_OFFSET(list_head, next);
1610 	VMCOREINFO_OFFSET(list_head, prev);
1611 	VMCOREINFO_OFFSET(vmap_area, va_start);
1612 	VMCOREINFO_OFFSET(vmap_area, list);
1613 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1614 	log_buf_kexec_setup();
1615 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1616 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1617 	VMCOREINFO_NUMBER(PG_lru);
1618 	VMCOREINFO_NUMBER(PG_private);
1619 	VMCOREINFO_NUMBER(PG_swapcache);
1620 	VMCOREINFO_NUMBER(PG_slab);
1621 #ifdef CONFIG_MEMORY_FAILURE
1622 	VMCOREINFO_NUMBER(PG_hwpoison);
1623 #endif
1624 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1625 
1626 	arch_crash_save_vmcoreinfo();
1627 	update_vmcoreinfo_note();
1628 
1629 	return 0;
1630 }
1631 
1632 module_init(crash_save_vmcoreinfo_init)
1633 
1634 /*
1635  * Move into place and start executing a preloaded standalone
1636  * executable.  If nothing was preloaded return an error.
1637  */
1638 int kernel_kexec(void)
1639 {
1640 	int error = 0;
1641 
1642 	if (!mutex_trylock(&kexec_mutex))
1643 		return -EBUSY;
1644 	if (!kexec_image) {
1645 		error = -EINVAL;
1646 		goto Unlock;
1647 	}
1648 
1649 #ifdef CONFIG_KEXEC_JUMP
1650 	if (kexec_image->preserve_context) {
1651 		lock_system_sleep();
1652 		pm_prepare_console();
1653 		error = freeze_processes();
1654 		if (error) {
1655 			error = -EBUSY;
1656 			goto Restore_console;
1657 		}
1658 		suspend_console();
1659 		error = dpm_suspend_start(PMSG_FREEZE);
1660 		if (error)
1661 			goto Resume_console;
1662 		/* At this point, dpm_suspend_start() has been called,
1663 		 * but *not* dpm_suspend_end(). We *must* call
1664 		 * dpm_suspend_end() now.  Otherwise, drivers for
1665 		 * some devices (e.g. interrupt controllers) become
1666 		 * desynchronized with the actual state of the
1667 		 * hardware at resume time, and evil weirdness ensues.
1668 		 */
1669 		error = dpm_suspend_end(PMSG_FREEZE);
1670 		if (error)
1671 			goto Resume_devices;
1672 		error = disable_nonboot_cpus();
1673 		if (error)
1674 			goto Enable_cpus;
1675 		local_irq_disable();
1676 		error = syscore_suspend();
1677 		if (error)
1678 			goto Enable_irqs;
1679 	} else
1680 #endif
1681 	{
1682 		kexec_in_progress = true;
1683 		kernel_restart_prepare(NULL);
1684 		migrate_to_reboot_cpu();
1685 		printk(KERN_EMERG "Starting new kernel\n");
1686 		machine_shutdown();
1687 	}
1688 
1689 	machine_kexec(kexec_image);
1690 
1691 #ifdef CONFIG_KEXEC_JUMP
1692 	if (kexec_image->preserve_context) {
1693 		syscore_resume();
1694  Enable_irqs:
1695 		local_irq_enable();
1696  Enable_cpus:
1697 		enable_nonboot_cpus();
1698 		dpm_resume_start(PMSG_RESTORE);
1699  Resume_devices:
1700 		dpm_resume_end(PMSG_RESTORE);
1701  Resume_console:
1702 		resume_console();
1703 		thaw_processes();
1704  Restore_console:
1705 		pm_restore_console();
1706 		unlock_system_sleep();
1707 	}
1708 #endif
1709 
1710  Unlock:
1711 	mutex_unlock(&kexec_mutex);
1712 	return error;
1713 }
1714