xref: /openbmc/linux/kernel/kexec.c (revision 8a525f5e)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/sections.h>
40 
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu *crash_notes;
43 
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47 size_t vmcoreinfo_size;
48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49 
50 /* Location of the reserved area for the crash kernel */
51 struct resource crashk_res = {
52 	.name  = "Crash kernel",
53 	.start = 0,
54 	.end   = 0,
55 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
56 };
57 struct resource crashk_low_res = {
58 	.name  = "Crash kernel low",
59 	.start = 0,
60 	.end   = 0,
61 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
62 };
63 
64 int kexec_should_crash(struct task_struct *p)
65 {
66 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
67 		return 1;
68 	return 0;
69 }
70 
71 /*
72  * When kexec transitions to the new kernel there is a one-to-one
73  * mapping between physical and virtual addresses.  On processors
74  * where you can disable the MMU this is trivial, and easy.  For
75  * others it is still a simple predictable page table to setup.
76  *
77  * In that environment kexec copies the new kernel to its final
78  * resting place.  This means I can only support memory whose
79  * physical address can fit in an unsigned long.  In particular
80  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81  * If the assembly stub has more restrictive requirements
82  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83  * defined more restrictively in <asm/kexec.h>.
84  *
85  * The code for the transition from the current kernel to the
86  * the new kernel is placed in the control_code_buffer, whose size
87  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
88  * page of memory is necessary, but some architectures require more.
89  * Because this memory must be identity mapped in the transition from
90  * virtual to physical addresses it must live in the range
91  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
92  * modifiable.
93  *
94  * The assembly stub in the control code buffer is passed a linked list
95  * of descriptor pages detailing the source pages of the new kernel,
96  * and the destination addresses of those source pages.  As this data
97  * structure is not used in the context of the current OS, it must
98  * be self-contained.
99  *
100  * The code has been made to work with highmem pages and will use a
101  * destination page in its final resting place (if it happens
102  * to allocate it).  The end product of this is that most of the
103  * physical address space, and most of RAM can be used.
104  *
105  * Future directions include:
106  *  - allocating a page table with the control code buffer identity
107  *    mapped, to simplify machine_kexec and make kexec_on_panic more
108  *    reliable.
109  */
110 
111 /*
112  * KIMAGE_NO_DEST is an impossible destination address..., for
113  * allocating pages whose destination address we do not care about.
114  */
115 #define KIMAGE_NO_DEST (-1UL)
116 
117 static int kimage_is_destination_range(struct kimage *image,
118 				       unsigned long start, unsigned long end);
119 static struct page *kimage_alloc_page(struct kimage *image,
120 				       gfp_t gfp_mask,
121 				       unsigned long dest);
122 
123 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
124 	                    unsigned long nr_segments,
125                             struct kexec_segment __user *segments)
126 {
127 	size_t segment_bytes;
128 	struct kimage *image;
129 	unsigned long i;
130 	int result;
131 
132 	/* Allocate a controlling structure */
133 	result = -ENOMEM;
134 	image = kzalloc(sizeof(*image), GFP_KERNEL);
135 	if (!image)
136 		goto out;
137 
138 	image->head = 0;
139 	image->entry = &image->head;
140 	image->last_entry = &image->head;
141 	image->control_page = ~0; /* By default this does not apply */
142 	image->start = entry;
143 	image->type = KEXEC_TYPE_DEFAULT;
144 
145 	/* Initialize the list of control pages */
146 	INIT_LIST_HEAD(&image->control_pages);
147 
148 	/* Initialize the list of destination pages */
149 	INIT_LIST_HEAD(&image->dest_pages);
150 
151 	/* Initialize the list of unusable pages */
152 	INIT_LIST_HEAD(&image->unuseable_pages);
153 
154 	/* Read in the segments */
155 	image->nr_segments = nr_segments;
156 	segment_bytes = nr_segments * sizeof(*segments);
157 	result = copy_from_user(image->segment, segments, segment_bytes);
158 	if (result) {
159 		result = -EFAULT;
160 		goto out;
161 	}
162 
163 	/*
164 	 * Verify we have good destination addresses.  The caller is
165 	 * responsible for making certain we don't attempt to load
166 	 * the new image into invalid or reserved areas of RAM.  This
167 	 * just verifies it is an address we can use.
168 	 *
169 	 * Since the kernel does everything in page size chunks ensure
170 	 * the destination addresses are page aligned.  Too many
171 	 * special cases crop of when we don't do this.  The most
172 	 * insidious is getting overlapping destination addresses
173 	 * simply because addresses are changed to page size
174 	 * granularity.
175 	 */
176 	result = -EADDRNOTAVAIL;
177 	for (i = 0; i < nr_segments; i++) {
178 		unsigned long mstart, mend;
179 
180 		mstart = image->segment[i].mem;
181 		mend   = mstart + image->segment[i].memsz;
182 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 			goto out;
184 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 			goto out;
186 	}
187 
188 	/* Verify our destination addresses do not overlap.
189 	 * If we alloed overlapping destination addresses
190 	 * through very weird things can happen with no
191 	 * easy explanation as one segment stops on another.
192 	 */
193 	result = -EINVAL;
194 	for (i = 0; i < nr_segments; i++) {
195 		unsigned long mstart, mend;
196 		unsigned long j;
197 
198 		mstart = image->segment[i].mem;
199 		mend   = mstart + image->segment[i].memsz;
200 		for (j = 0; j < i; j++) {
201 			unsigned long pstart, pend;
202 			pstart = image->segment[j].mem;
203 			pend   = pstart + image->segment[j].memsz;
204 			/* Do the segments overlap ? */
205 			if ((mend > pstart) && (mstart < pend))
206 				goto out;
207 		}
208 	}
209 
210 	/* Ensure our buffer sizes are strictly less than
211 	 * our memory sizes.  This should always be the case,
212 	 * and it is easier to check up front than to be surprised
213 	 * later on.
214 	 */
215 	result = -EINVAL;
216 	for (i = 0; i < nr_segments; i++) {
217 		if (image->segment[i].bufsz > image->segment[i].memsz)
218 			goto out;
219 	}
220 
221 	result = 0;
222 out:
223 	if (result == 0)
224 		*rimage = image;
225 	else
226 		kfree(image);
227 
228 	return result;
229 
230 }
231 
232 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
233 				unsigned long nr_segments,
234 				struct kexec_segment __user *segments)
235 {
236 	int result;
237 	struct kimage *image;
238 
239 	/* Allocate and initialize a controlling structure */
240 	image = NULL;
241 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
242 	if (result)
243 		goto out;
244 
245 	*rimage = image;
246 
247 	/*
248 	 * Find a location for the control code buffer, and add it
249 	 * the vector of segments so that it's pages will also be
250 	 * counted as destination pages.
251 	 */
252 	result = -ENOMEM;
253 	image->control_code_page = kimage_alloc_control_pages(image,
254 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
255 	if (!image->control_code_page) {
256 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
257 		goto out;
258 	}
259 
260 	image->swap_page = kimage_alloc_control_pages(image, 0);
261 	if (!image->swap_page) {
262 		printk(KERN_ERR "Could not allocate swap buffer\n");
263 		goto out;
264 	}
265 
266 	result = 0;
267  out:
268 	if (result == 0)
269 		*rimage = image;
270 	else
271 		kfree(image);
272 
273 	return result;
274 }
275 
276 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
277 				unsigned long nr_segments,
278 				struct kexec_segment __user *segments)
279 {
280 	int result;
281 	struct kimage *image;
282 	unsigned long i;
283 
284 	image = NULL;
285 	/* Verify we have a valid entry point */
286 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
287 		result = -EADDRNOTAVAIL;
288 		goto out;
289 	}
290 
291 	/* Allocate and initialize a controlling structure */
292 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
293 	if (result)
294 		goto out;
295 
296 	/* Enable the special crash kernel control page
297 	 * allocation policy.
298 	 */
299 	image->control_page = crashk_res.start;
300 	image->type = KEXEC_TYPE_CRASH;
301 
302 	/*
303 	 * Verify we have good destination addresses.  Normally
304 	 * the caller is responsible for making certain we don't
305 	 * attempt to load the new image into invalid or reserved
306 	 * areas of RAM.  But crash kernels are preloaded into a
307 	 * reserved area of ram.  We must ensure the addresses
308 	 * are in the reserved area otherwise preloading the
309 	 * kernel could corrupt things.
310 	 */
311 	result = -EADDRNOTAVAIL;
312 	for (i = 0; i < nr_segments; i++) {
313 		unsigned long mstart, mend;
314 
315 		mstart = image->segment[i].mem;
316 		mend = mstart + image->segment[i].memsz - 1;
317 		/* Ensure we are within the crash kernel limits */
318 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
319 			goto out;
320 	}
321 
322 	/*
323 	 * Find a location for the control code buffer, and add
324 	 * the vector of segments so that it's pages will also be
325 	 * counted as destination pages.
326 	 */
327 	result = -ENOMEM;
328 	image->control_code_page = kimage_alloc_control_pages(image,
329 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
330 	if (!image->control_code_page) {
331 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
332 		goto out;
333 	}
334 
335 	result = 0;
336 out:
337 	if (result == 0)
338 		*rimage = image;
339 	else
340 		kfree(image);
341 
342 	return result;
343 }
344 
345 static int kimage_is_destination_range(struct kimage *image,
346 					unsigned long start,
347 					unsigned long end)
348 {
349 	unsigned long i;
350 
351 	for (i = 0; i < image->nr_segments; i++) {
352 		unsigned long mstart, mend;
353 
354 		mstart = image->segment[i].mem;
355 		mend = mstart + image->segment[i].memsz;
356 		if ((end > mstart) && (start < mend))
357 			return 1;
358 	}
359 
360 	return 0;
361 }
362 
363 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
364 {
365 	struct page *pages;
366 
367 	pages = alloc_pages(gfp_mask, order);
368 	if (pages) {
369 		unsigned int count, i;
370 		pages->mapping = NULL;
371 		set_page_private(pages, order);
372 		count = 1 << order;
373 		for (i = 0; i < count; i++)
374 			SetPageReserved(pages + i);
375 	}
376 
377 	return pages;
378 }
379 
380 static void kimage_free_pages(struct page *page)
381 {
382 	unsigned int order, count, i;
383 
384 	order = page_private(page);
385 	count = 1 << order;
386 	for (i = 0; i < count; i++)
387 		ClearPageReserved(page + i);
388 	__free_pages(page, order);
389 }
390 
391 static void kimage_free_page_list(struct list_head *list)
392 {
393 	struct list_head *pos, *next;
394 
395 	list_for_each_safe(pos, next, list) {
396 		struct page *page;
397 
398 		page = list_entry(pos, struct page, lru);
399 		list_del(&page->lru);
400 		kimage_free_pages(page);
401 	}
402 }
403 
404 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
405 							unsigned int order)
406 {
407 	/* Control pages are special, they are the intermediaries
408 	 * that are needed while we copy the rest of the pages
409 	 * to their final resting place.  As such they must
410 	 * not conflict with either the destination addresses
411 	 * or memory the kernel is already using.
412 	 *
413 	 * The only case where we really need more than one of
414 	 * these are for architectures where we cannot disable
415 	 * the MMU and must instead generate an identity mapped
416 	 * page table for all of the memory.
417 	 *
418 	 * At worst this runs in O(N) of the image size.
419 	 */
420 	struct list_head extra_pages;
421 	struct page *pages;
422 	unsigned int count;
423 
424 	count = 1 << order;
425 	INIT_LIST_HEAD(&extra_pages);
426 
427 	/* Loop while I can allocate a page and the page allocated
428 	 * is a destination page.
429 	 */
430 	do {
431 		unsigned long pfn, epfn, addr, eaddr;
432 
433 		pages = kimage_alloc_pages(GFP_KERNEL, order);
434 		if (!pages)
435 			break;
436 		pfn   = page_to_pfn(pages);
437 		epfn  = pfn + count;
438 		addr  = pfn << PAGE_SHIFT;
439 		eaddr = epfn << PAGE_SHIFT;
440 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
441 			      kimage_is_destination_range(image, addr, eaddr)) {
442 			list_add(&pages->lru, &extra_pages);
443 			pages = NULL;
444 		}
445 	} while (!pages);
446 
447 	if (pages) {
448 		/* Remember the allocated page... */
449 		list_add(&pages->lru, &image->control_pages);
450 
451 		/* Because the page is already in it's destination
452 		 * location we will never allocate another page at
453 		 * that address.  Therefore kimage_alloc_pages
454 		 * will not return it (again) and we don't need
455 		 * to give it an entry in image->segment[].
456 		 */
457 	}
458 	/* Deal with the destination pages I have inadvertently allocated.
459 	 *
460 	 * Ideally I would convert multi-page allocations into single
461 	 * page allocations, and add everything to image->dest_pages.
462 	 *
463 	 * For now it is simpler to just free the pages.
464 	 */
465 	kimage_free_page_list(&extra_pages);
466 
467 	return pages;
468 }
469 
470 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
471 						      unsigned int order)
472 {
473 	/* Control pages are special, they are the intermediaries
474 	 * that are needed while we copy the rest of the pages
475 	 * to their final resting place.  As such they must
476 	 * not conflict with either the destination addresses
477 	 * or memory the kernel is already using.
478 	 *
479 	 * Control pages are also the only pags we must allocate
480 	 * when loading a crash kernel.  All of the other pages
481 	 * are specified by the segments and we just memcpy
482 	 * into them directly.
483 	 *
484 	 * The only case where we really need more than one of
485 	 * these are for architectures where we cannot disable
486 	 * the MMU and must instead generate an identity mapped
487 	 * page table for all of the memory.
488 	 *
489 	 * Given the low demand this implements a very simple
490 	 * allocator that finds the first hole of the appropriate
491 	 * size in the reserved memory region, and allocates all
492 	 * of the memory up to and including the hole.
493 	 */
494 	unsigned long hole_start, hole_end, size;
495 	struct page *pages;
496 
497 	pages = NULL;
498 	size = (1 << order) << PAGE_SHIFT;
499 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
500 	hole_end   = hole_start + size - 1;
501 	while (hole_end <= crashk_res.end) {
502 		unsigned long i;
503 
504 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
505 			break;
506 		/* See if I overlap any of the segments */
507 		for (i = 0; i < image->nr_segments; i++) {
508 			unsigned long mstart, mend;
509 
510 			mstart = image->segment[i].mem;
511 			mend   = mstart + image->segment[i].memsz - 1;
512 			if ((hole_end >= mstart) && (hole_start <= mend)) {
513 				/* Advance the hole to the end of the segment */
514 				hole_start = (mend + (size - 1)) & ~(size - 1);
515 				hole_end   = hole_start + size - 1;
516 				break;
517 			}
518 		}
519 		/* If I don't overlap any segments I have found my hole! */
520 		if (i == image->nr_segments) {
521 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
522 			break;
523 		}
524 	}
525 	if (pages)
526 		image->control_page = hole_end;
527 
528 	return pages;
529 }
530 
531 
532 struct page *kimage_alloc_control_pages(struct kimage *image,
533 					 unsigned int order)
534 {
535 	struct page *pages = NULL;
536 
537 	switch (image->type) {
538 	case KEXEC_TYPE_DEFAULT:
539 		pages = kimage_alloc_normal_control_pages(image, order);
540 		break;
541 	case KEXEC_TYPE_CRASH:
542 		pages = kimage_alloc_crash_control_pages(image, order);
543 		break;
544 	}
545 
546 	return pages;
547 }
548 
549 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
550 {
551 	if (*image->entry != 0)
552 		image->entry++;
553 
554 	if (image->entry == image->last_entry) {
555 		kimage_entry_t *ind_page;
556 		struct page *page;
557 
558 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
559 		if (!page)
560 			return -ENOMEM;
561 
562 		ind_page = page_address(page);
563 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
564 		image->entry = ind_page;
565 		image->last_entry = ind_page +
566 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
567 	}
568 	*image->entry = entry;
569 	image->entry++;
570 	*image->entry = 0;
571 
572 	return 0;
573 }
574 
575 static int kimage_set_destination(struct kimage *image,
576 				   unsigned long destination)
577 {
578 	int result;
579 
580 	destination &= PAGE_MASK;
581 	result = kimage_add_entry(image, destination | IND_DESTINATION);
582 	if (result == 0)
583 		image->destination = destination;
584 
585 	return result;
586 }
587 
588 
589 static int kimage_add_page(struct kimage *image, unsigned long page)
590 {
591 	int result;
592 
593 	page &= PAGE_MASK;
594 	result = kimage_add_entry(image, page | IND_SOURCE);
595 	if (result == 0)
596 		image->destination += PAGE_SIZE;
597 
598 	return result;
599 }
600 
601 
602 static void kimage_free_extra_pages(struct kimage *image)
603 {
604 	/* Walk through and free any extra destination pages I may have */
605 	kimage_free_page_list(&image->dest_pages);
606 
607 	/* Walk through and free any unusable pages I have cached */
608 	kimage_free_page_list(&image->unuseable_pages);
609 
610 }
611 static void kimage_terminate(struct kimage *image)
612 {
613 	if (*image->entry != 0)
614 		image->entry++;
615 
616 	*image->entry = IND_DONE;
617 }
618 
619 #define for_each_kimage_entry(image, ptr, entry) \
620 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
621 		ptr = (entry & IND_INDIRECTION)? \
622 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
623 
624 static void kimage_free_entry(kimage_entry_t entry)
625 {
626 	struct page *page;
627 
628 	page = pfn_to_page(entry >> PAGE_SHIFT);
629 	kimage_free_pages(page);
630 }
631 
632 static void kimage_free(struct kimage *image)
633 {
634 	kimage_entry_t *ptr, entry;
635 	kimage_entry_t ind = 0;
636 
637 	if (!image)
638 		return;
639 
640 	kimage_free_extra_pages(image);
641 	for_each_kimage_entry(image, ptr, entry) {
642 		if (entry & IND_INDIRECTION) {
643 			/* Free the previous indirection page */
644 			if (ind & IND_INDIRECTION)
645 				kimage_free_entry(ind);
646 			/* Save this indirection page until we are
647 			 * done with it.
648 			 */
649 			ind = entry;
650 		}
651 		else if (entry & IND_SOURCE)
652 			kimage_free_entry(entry);
653 	}
654 	/* Free the final indirection page */
655 	if (ind & IND_INDIRECTION)
656 		kimage_free_entry(ind);
657 
658 	/* Handle any machine specific cleanup */
659 	machine_kexec_cleanup(image);
660 
661 	/* Free the kexec control pages... */
662 	kimage_free_page_list(&image->control_pages);
663 	kfree(image);
664 }
665 
666 static kimage_entry_t *kimage_dst_used(struct kimage *image,
667 					unsigned long page)
668 {
669 	kimage_entry_t *ptr, entry;
670 	unsigned long destination = 0;
671 
672 	for_each_kimage_entry(image, ptr, entry) {
673 		if (entry & IND_DESTINATION)
674 			destination = entry & PAGE_MASK;
675 		else if (entry & IND_SOURCE) {
676 			if (page == destination)
677 				return ptr;
678 			destination += PAGE_SIZE;
679 		}
680 	}
681 
682 	return NULL;
683 }
684 
685 static struct page *kimage_alloc_page(struct kimage *image,
686 					gfp_t gfp_mask,
687 					unsigned long destination)
688 {
689 	/*
690 	 * Here we implement safeguards to ensure that a source page
691 	 * is not copied to its destination page before the data on
692 	 * the destination page is no longer useful.
693 	 *
694 	 * To do this we maintain the invariant that a source page is
695 	 * either its own destination page, or it is not a
696 	 * destination page at all.
697 	 *
698 	 * That is slightly stronger than required, but the proof
699 	 * that no problems will not occur is trivial, and the
700 	 * implementation is simply to verify.
701 	 *
702 	 * When allocating all pages normally this algorithm will run
703 	 * in O(N) time, but in the worst case it will run in O(N^2)
704 	 * time.   If the runtime is a problem the data structures can
705 	 * be fixed.
706 	 */
707 	struct page *page;
708 	unsigned long addr;
709 
710 	/*
711 	 * Walk through the list of destination pages, and see if I
712 	 * have a match.
713 	 */
714 	list_for_each_entry(page, &image->dest_pages, lru) {
715 		addr = page_to_pfn(page) << PAGE_SHIFT;
716 		if (addr == destination) {
717 			list_del(&page->lru);
718 			return page;
719 		}
720 	}
721 	page = NULL;
722 	while (1) {
723 		kimage_entry_t *old;
724 
725 		/* Allocate a page, if we run out of memory give up */
726 		page = kimage_alloc_pages(gfp_mask, 0);
727 		if (!page)
728 			return NULL;
729 		/* If the page cannot be used file it away */
730 		if (page_to_pfn(page) >
731 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
732 			list_add(&page->lru, &image->unuseable_pages);
733 			continue;
734 		}
735 		addr = page_to_pfn(page) << PAGE_SHIFT;
736 
737 		/* If it is the destination page we want use it */
738 		if (addr == destination)
739 			break;
740 
741 		/* If the page is not a destination page use it */
742 		if (!kimage_is_destination_range(image, addr,
743 						  addr + PAGE_SIZE))
744 			break;
745 
746 		/*
747 		 * I know that the page is someones destination page.
748 		 * See if there is already a source page for this
749 		 * destination page.  And if so swap the source pages.
750 		 */
751 		old = kimage_dst_used(image, addr);
752 		if (old) {
753 			/* If so move it */
754 			unsigned long old_addr;
755 			struct page *old_page;
756 
757 			old_addr = *old & PAGE_MASK;
758 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
759 			copy_highpage(page, old_page);
760 			*old = addr | (*old & ~PAGE_MASK);
761 
762 			/* The old page I have found cannot be a
763 			 * destination page, so return it if it's
764 			 * gfp_flags honor the ones passed in.
765 			 */
766 			if (!(gfp_mask & __GFP_HIGHMEM) &&
767 			    PageHighMem(old_page)) {
768 				kimage_free_pages(old_page);
769 				continue;
770 			}
771 			addr = old_addr;
772 			page = old_page;
773 			break;
774 		}
775 		else {
776 			/* Place the page on the destination list I
777 			 * will use it later.
778 			 */
779 			list_add(&page->lru, &image->dest_pages);
780 		}
781 	}
782 
783 	return page;
784 }
785 
786 static int kimage_load_normal_segment(struct kimage *image,
787 					 struct kexec_segment *segment)
788 {
789 	unsigned long maddr;
790 	unsigned long ubytes, mbytes;
791 	int result;
792 	unsigned char __user *buf;
793 
794 	result = 0;
795 	buf = segment->buf;
796 	ubytes = segment->bufsz;
797 	mbytes = segment->memsz;
798 	maddr = segment->mem;
799 
800 	result = kimage_set_destination(image, maddr);
801 	if (result < 0)
802 		goto out;
803 
804 	while (mbytes) {
805 		struct page *page;
806 		char *ptr;
807 		size_t uchunk, mchunk;
808 
809 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
810 		if (!page) {
811 			result  = -ENOMEM;
812 			goto out;
813 		}
814 		result = kimage_add_page(image, page_to_pfn(page)
815 								<< PAGE_SHIFT);
816 		if (result < 0)
817 			goto out;
818 
819 		ptr = kmap(page);
820 		/* Start with a clear page */
821 		clear_page(ptr);
822 		ptr += maddr & ~PAGE_MASK;
823 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
824 		if (mchunk > mbytes)
825 			mchunk = mbytes;
826 
827 		uchunk = mchunk;
828 		if (uchunk > ubytes)
829 			uchunk = ubytes;
830 
831 		result = copy_from_user(ptr, buf, uchunk);
832 		kunmap(page);
833 		if (result) {
834 			result = -EFAULT;
835 			goto out;
836 		}
837 		ubytes -= uchunk;
838 		maddr  += mchunk;
839 		buf    += mchunk;
840 		mbytes -= mchunk;
841 	}
842 out:
843 	return result;
844 }
845 
846 static int kimage_load_crash_segment(struct kimage *image,
847 					struct kexec_segment *segment)
848 {
849 	/* For crash dumps kernels we simply copy the data from
850 	 * user space to it's destination.
851 	 * We do things a page at a time for the sake of kmap.
852 	 */
853 	unsigned long maddr;
854 	unsigned long ubytes, mbytes;
855 	int result;
856 	unsigned char __user *buf;
857 
858 	result = 0;
859 	buf = segment->buf;
860 	ubytes = segment->bufsz;
861 	mbytes = segment->memsz;
862 	maddr = segment->mem;
863 	while (mbytes) {
864 		struct page *page;
865 		char *ptr;
866 		size_t uchunk, mchunk;
867 
868 		page = pfn_to_page(maddr >> PAGE_SHIFT);
869 		if (!page) {
870 			result  = -ENOMEM;
871 			goto out;
872 		}
873 		ptr = kmap(page);
874 		ptr += maddr & ~PAGE_MASK;
875 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
876 		if (mchunk > mbytes)
877 			mchunk = mbytes;
878 
879 		uchunk = mchunk;
880 		if (uchunk > ubytes) {
881 			uchunk = ubytes;
882 			/* Zero the trailing part of the page */
883 			memset(ptr + uchunk, 0, mchunk - uchunk);
884 		}
885 		result = copy_from_user(ptr, buf, uchunk);
886 		kexec_flush_icache_page(page);
887 		kunmap(page);
888 		if (result) {
889 			result = -EFAULT;
890 			goto out;
891 		}
892 		ubytes -= uchunk;
893 		maddr  += mchunk;
894 		buf    += mchunk;
895 		mbytes -= mchunk;
896 	}
897 out:
898 	return result;
899 }
900 
901 static int kimage_load_segment(struct kimage *image,
902 				struct kexec_segment *segment)
903 {
904 	int result = -ENOMEM;
905 
906 	switch (image->type) {
907 	case KEXEC_TYPE_DEFAULT:
908 		result = kimage_load_normal_segment(image, segment);
909 		break;
910 	case KEXEC_TYPE_CRASH:
911 		result = kimage_load_crash_segment(image, segment);
912 		break;
913 	}
914 
915 	return result;
916 }
917 
918 /*
919  * Exec Kernel system call: for obvious reasons only root may call it.
920  *
921  * This call breaks up into three pieces.
922  * - A generic part which loads the new kernel from the current
923  *   address space, and very carefully places the data in the
924  *   allocated pages.
925  *
926  * - A generic part that interacts with the kernel and tells all of
927  *   the devices to shut down.  Preventing on-going dmas, and placing
928  *   the devices in a consistent state so a later kernel can
929  *   reinitialize them.
930  *
931  * - A machine specific part that includes the syscall number
932  *   and the copies the image to it's final destination.  And
933  *   jumps into the image at entry.
934  *
935  * kexec does not sync, or unmount filesystems so if you need
936  * that to happen you need to do that yourself.
937  */
938 struct kimage *kexec_image;
939 struct kimage *kexec_crash_image;
940 
941 static DEFINE_MUTEX(kexec_mutex);
942 
943 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
944 		struct kexec_segment __user *, segments, unsigned long, flags)
945 {
946 	struct kimage **dest_image, *image;
947 	int result;
948 
949 	/* We only trust the superuser with rebooting the system. */
950 	if (!capable(CAP_SYS_BOOT))
951 		return -EPERM;
952 
953 	/*
954 	 * Verify we have a legal set of flags
955 	 * This leaves us room for future extensions.
956 	 */
957 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
958 		return -EINVAL;
959 
960 	/* Verify we are on the appropriate architecture */
961 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
962 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
963 		return -EINVAL;
964 
965 	/* Put an artificial cap on the number
966 	 * of segments passed to kexec_load.
967 	 */
968 	if (nr_segments > KEXEC_SEGMENT_MAX)
969 		return -EINVAL;
970 
971 	image = NULL;
972 	result = 0;
973 
974 	/* Because we write directly to the reserved memory
975 	 * region when loading crash kernels we need a mutex here to
976 	 * prevent multiple crash  kernels from attempting to load
977 	 * simultaneously, and to prevent a crash kernel from loading
978 	 * over the top of a in use crash kernel.
979 	 *
980 	 * KISS: always take the mutex.
981 	 */
982 	if (!mutex_trylock(&kexec_mutex))
983 		return -EBUSY;
984 
985 	dest_image = &kexec_image;
986 	if (flags & KEXEC_ON_CRASH)
987 		dest_image = &kexec_crash_image;
988 	if (nr_segments > 0) {
989 		unsigned long i;
990 
991 		/* Loading another kernel to reboot into */
992 		if ((flags & KEXEC_ON_CRASH) == 0)
993 			result = kimage_normal_alloc(&image, entry,
994 							nr_segments, segments);
995 		/* Loading another kernel to switch to if this one crashes */
996 		else if (flags & KEXEC_ON_CRASH) {
997 			/* Free any current crash dump kernel before
998 			 * we corrupt it.
999 			 */
1000 			kimage_free(xchg(&kexec_crash_image, NULL));
1001 			result = kimage_crash_alloc(&image, entry,
1002 						     nr_segments, segments);
1003 			crash_map_reserved_pages();
1004 		}
1005 		if (result)
1006 			goto out;
1007 
1008 		if (flags & KEXEC_PRESERVE_CONTEXT)
1009 			image->preserve_context = 1;
1010 		result = machine_kexec_prepare(image);
1011 		if (result)
1012 			goto out;
1013 
1014 		for (i = 0; i < nr_segments; i++) {
1015 			result = kimage_load_segment(image, &image->segment[i]);
1016 			if (result)
1017 				goto out;
1018 		}
1019 		kimage_terminate(image);
1020 		if (flags & KEXEC_ON_CRASH)
1021 			crash_unmap_reserved_pages();
1022 	}
1023 	/* Install the new kernel, and  Uninstall the old */
1024 	image = xchg(dest_image, image);
1025 
1026 out:
1027 	mutex_unlock(&kexec_mutex);
1028 	kimage_free(image);
1029 
1030 	return result;
1031 }
1032 
1033 /*
1034  * Add and remove page tables for crashkernel memory
1035  *
1036  * Provide an empty default implementation here -- architecture
1037  * code may override this
1038  */
1039 void __weak crash_map_reserved_pages(void)
1040 {}
1041 
1042 void __weak crash_unmap_reserved_pages(void)
1043 {}
1044 
1045 #ifdef CONFIG_COMPAT
1046 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1047 				unsigned long nr_segments,
1048 				struct compat_kexec_segment __user *segments,
1049 				unsigned long flags)
1050 {
1051 	struct compat_kexec_segment in;
1052 	struct kexec_segment out, __user *ksegments;
1053 	unsigned long i, result;
1054 
1055 	/* Don't allow clients that don't understand the native
1056 	 * architecture to do anything.
1057 	 */
1058 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1059 		return -EINVAL;
1060 
1061 	if (nr_segments > KEXEC_SEGMENT_MAX)
1062 		return -EINVAL;
1063 
1064 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1065 	for (i=0; i < nr_segments; i++) {
1066 		result = copy_from_user(&in, &segments[i], sizeof(in));
1067 		if (result)
1068 			return -EFAULT;
1069 
1070 		out.buf   = compat_ptr(in.buf);
1071 		out.bufsz = in.bufsz;
1072 		out.mem   = in.mem;
1073 		out.memsz = in.memsz;
1074 
1075 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1076 		if (result)
1077 			return -EFAULT;
1078 	}
1079 
1080 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1081 }
1082 #endif
1083 
1084 void crash_kexec(struct pt_regs *regs)
1085 {
1086 	/* Take the kexec_mutex here to prevent sys_kexec_load
1087 	 * running on one cpu from replacing the crash kernel
1088 	 * we are using after a panic on a different cpu.
1089 	 *
1090 	 * If the crash kernel was not located in a fixed area
1091 	 * of memory the xchg(&kexec_crash_image) would be
1092 	 * sufficient.  But since I reuse the memory...
1093 	 */
1094 	if (mutex_trylock(&kexec_mutex)) {
1095 		if (kexec_crash_image) {
1096 			struct pt_regs fixed_regs;
1097 
1098 			crash_setup_regs(&fixed_regs, regs);
1099 			crash_save_vmcoreinfo();
1100 			machine_crash_shutdown(&fixed_regs);
1101 			machine_kexec(kexec_crash_image);
1102 		}
1103 		mutex_unlock(&kexec_mutex);
1104 	}
1105 }
1106 
1107 size_t crash_get_memory_size(void)
1108 {
1109 	size_t size = 0;
1110 	mutex_lock(&kexec_mutex);
1111 	if (crashk_res.end != crashk_res.start)
1112 		size = resource_size(&crashk_res);
1113 	mutex_unlock(&kexec_mutex);
1114 	return size;
1115 }
1116 
1117 void __weak crash_free_reserved_phys_range(unsigned long begin,
1118 					   unsigned long end)
1119 {
1120 	unsigned long addr;
1121 
1122 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1123 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1124 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1125 		free_page((unsigned long)__va(addr));
1126 		totalram_pages++;
1127 	}
1128 }
1129 
1130 int crash_shrink_memory(unsigned long new_size)
1131 {
1132 	int ret = 0;
1133 	unsigned long start, end;
1134 	unsigned long old_size;
1135 	struct resource *ram_res;
1136 
1137 	mutex_lock(&kexec_mutex);
1138 
1139 	if (kexec_crash_image) {
1140 		ret = -ENOENT;
1141 		goto unlock;
1142 	}
1143 	start = crashk_res.start;
1144 	end = crashk_res.end;
1145 	old_size = (end == 0) ? 0 : end - start + 1;
1146 	if (new_size >= old_size) {
1147 		ret = (new_size == old_size) ? 0 : -EINVAL;
1148 		goto unlock;
1149 	}
1150 
1151 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1152 	if (!ram_res) {
1153 		ret = -ENOMEM;
1154 		goto unlock;
1155 	}
1156 
1157 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1158 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1159 
1160 	crash_map_reserved_pages();
1161 	crash_free_reserved_phys_range(end, crashk_res.end);
1162 
1163 	if ((start == end) && (crashk_res.parent != NULL))
1164 		release_resource(&crashk_res);
1165 
1166 	ram_res->start = end;
1167 	ram_res->end = crashk_res.end;
1168 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1169 	ram_res->name = "System RAM";
1170 
1171 	crashk_res.end = end - 1;
1172 
1173 	insert_resource(&iomem_resource, ram_res);
1174 	crash_unmap_reserved_pages();
1175 
1176 unlock:
1177 	mutex_unlock(&kexec_mutex);
1178 	return ret;
1179 }
1180 
1181 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1182 			    size_t data_len)
1183 {
1184 	struct elf_note note;
1185 
1186 	note.n_namesz = strlen(name) + 1;
1187 	note.n_descsz = data_len;
1188 	note.n_type   = type;
1189 	memcpy(buf, &note, sizeof(note));
1190 	buf += (sizeof(note) + 3)/4;
1191 	memcpy(buf, name, note.n_namesz);
1192 	buf += (note.n_namesz + 3)/4;
1193 	memcpy(buf, data, note.n_descsz);
1194 	buf += (note.n_descsz + 3)/4;
1195 
1196 	return buf;
1197 }
1198 
1199 static void final_note(u32 *buf)
1200 {
1201 	struct elf_note note;
1202 
1203 	note.n_namesz = 0;
1204 	note.n_descsz = 0;
1205 	note.n_type   = 0;
1206 	memcpy(buf, &note, sizeof(note));
1207 }
1208 
1209 void crash_save_cpu(struct pt_regs *regs, int cpu)
1210 {
1211 	struct elf_prstatus prstatus;
1212 	u32 *buf;
1213 
1214 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1215 		return;
1216 
1217 	/* Using ELF notes here is opportunistic.
1218 	 * I need a well defined structure format
1219 	 * for the data I pass, and I need tags
1220 	 * on the data to indicate what information I have
1221 	 * squirrelled away.  ELF notes happen to provide
1222 	 * all of that, so there is no need to invent something new.
1223 	 */
1224 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1225 	if (!buf)
1226 		return;
1227 	memset(&prstatus, 0, sizeof(prstatus));
1228 	prstatus.pr_pid = current->pid;
1229 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1230 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1231 		      	      &prstatus, sizeof(prstatus));
1232 	final_note(buf);
1233 }
1234 
1235 static int __init crash_notes_memory_init(void)
1236 {
1237 	/* Allocate memory for saving cpu registers. */
1238 	crash_notes = alloc_percpu(note_buf_t);
1239 	if (!crash_notes) {
1240 		printk("Kexec: Memory allocation for saving cpu register"
1241 		" states failed\n");
1242 		return -ENOMEM;
1243 	}
1244 	return 0;
1245 }
1246 module_init(crash_notes_memory_init)
1247 
1248 
1249 /*
1250  * parsing the "crashkernel" commandline
1251  *
1252  * this code is intended to be called from architecture specific code
1253  */
1254 
1255 
1256 /*
1257  * This function parses command lines in the format
1258  *
1259  *   crashkernel=ramsize-range:size[,...][@offset]
1260  *
1261  * The function returns 0 on success and -EINVAL on failure.
1262  */
1263 static int __init parse_crashkernel_mem(char 			*cmdline,
1264 					unsigned long long	system_ram,
1265 					unsigned long long	*crash_size,
1266 					unsigned long long	*crash_base)
1267 {
1268 	char *cur = cmdline, *tmp;
1269 
1270 	/* for each entry of the comma-separated list */
1271 	do {
1272 		unsigned long long start, end = ULLONG_MAX, size;
1273 
1274 		/* get the start of the range */
1275 		start = memparse(cur, &tmp);
1276 		if (cur == tmp) {
1277 			pr_warning("crashkernel: Memory value expected\n");
1278 			return -EINVAL;
1279 		}
1280 		cur = tmp;
1281 		if (*cur != '-') {
1282 			pr_warning("crashkernel: '-' expected\n");
1283 			return -EINVAL;
1284 		}
1285 		cur++;
1286 
1287 		/* if no ':' is here, than we read the end */
1288 		if (*cur != ':') {
1289 			end = memparse(cur, &tmp);
1290 			if (cur == tmp) {
1291 				pr_warning("crashkernel: Memory "
1292 						"value expected\n");
1293 				return -EINVAL;
1294 			}
1295 			cur = tmp;
1296 			if (end <= start) {
1297 				pr_warning("crashkernel: end <= start\n");
1298 				return -EINVAL;
1299 			}
1300 		}
1301 
1302 		if (*cur != ':') {
1303 			pr_warning("crashkernel: ':' expected\n");
1304 			return -EINVAL;
1305 		}
1306 		cur++;
1307 
1308 		size = memparse(cur, &tmp);
1309 		if (cur == tmp) {
1310 			pr_warning("Memory value expected\n");
1311 			return -EINVAL;
1312 		}
1313 		cur = tmp;
1314 		if (size >= system_ram) {
1315 			pr_warning("crashkernel: invalid size\n");
1316 			return -EINVAL;
1317 		}
1318 
1319 		/* match ? */
1320 		if (system_ram >= start && system_ram < end) {
1321 			*crash_size = size;
1322 			break;
1323 		}
1324 	} while (*cur++ == ',');
1325 
1326 	if (*crash_size > 0) {
1327 		while (*cur && *cur != ' ' && *cur != '@')
1328 			cur++;
1329 		if (*cur == '@') {
1330 			cur++;
1331 			*crash_base = memparse(cur, &tmp);
1332 			if (cur == tmp) {
1333 				pr_warning("Memory value expected "
1334 						"after '@'\n");
1335 				return -EINVAL;
1336 			}
1337 		}
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 /*
1344  * That function parses "simple" (old) crashkernel command lines like
1345  *
1346  * 	crashkernel=size[@offset]
1347  *
1348  * It returns 0 on success and -EINVAL on failure.
1349  */
1350 static int __init parse_crashkernel_simple(char 		*cmdline,
1351 					   unsigned long long 	*crash_size,
1352 					   unsigned long long 	*crash_base)
1353 {
1354 	char *cur = cmdline;
1355 
1356 	*crash_size = memparse(cmdline, &cur);
1357 	if (cmdline == cur) {
1358 		pr_warning("crashkernel: memory value expected\n");
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (*cur == '@')
1363 		*crash_base = memparse(cur+1, &cur);
1364 	else if (*cur != ' ' && *cur != '\0') {
1365 		pr_warning("crashkernel: unrecognized char\n");
1366 		return -EINVAL;
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 /*
1373  * That function is the entry point for command line parsing and should be
1374  * called from the arch-specific code.
1375  */
1376 static int __init __parse_crashkernel(char *cmdline,
1377 			     unsigned long long system_ram,
1378 			     unsigned long long *crash_size,
1379 			     unsigned long long *crash_base,
1380 				const char *name)
1381 {
1382 	char 	*p = cmdline, *ck_cmdline = NULL;
1383 	char	*first_colon, *first_space;
1384 
1385 	BUG_ON(!crash_size || !crash_base);
1386 	*crash_size = 0;
1387 	*crash_base = 0;
1388 
1389 	/* find crashkernel and use the last one if there are more */
1390 	p = strstr(p, name);
1391 	while (p) {
1392 		ck_cmdline = p;
1393 		p = strstr(p+1, name);
1394 	}
1395 
1396 	if (!ck_cmdline)
1397 		return -EINVAL;
1398 
1399 	ck_cmdline += strlen(name);
1400 
1401 	/*
1402 	 * if the commandline contains a ':', then that's the extended
1403 	 * syntax -- if not, it must be the classic syntax
1404 	 */
1405 	first_colon = strchr(ck_cmdline, ':');
1406 	first_space = strchr(ck_cmdline, ' ');
1407 	if (first_colon && (!first_space || first_colon < first_space))
1408 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1409 				crash_size, crash_base);
1410 	else
1411 		return parse_crashkernel_simple(ck_cmdline, crash_size,
1412 				crash_base);
1413 
1414 	return 0;
1415 }
1416 
1417 int __init parse_crashkernel(char *cmdline,
1418 			     unsigned long long system_ram,
1419 			     unsigned long long *crash_size,
1420 			     unsigned long long *crash_base)
1421 {
1422 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1423 					"crashkernel=");
1424 }
1425 
1426 int __init parse_crashkernel_low(char *cmdline,
1427 			     unsigned long long system_ram,
1428 			     unsigned long long *crash_size,
1429 			     unsigned long long *crash_base)
1430 {
1431 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1432 					"crashkernel_low=");
1433 }
1434 
1435 static void update_vmcoreinfo_note(void)
1436 {
1437 	u32 *buf = vmcoreinfo_note;
1438 
1439 	if (!vmcoreinfo_size)
1440 		return;
1441 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1442 			      vmcoreinfo_size);
1443 	final_note(buf);
1444 }
1445 
1446 void crash_save_vmcoreinfo(void)
1447 {
1448 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1449 	update_vmcoreinfo_note();
1450 }
1451 
1452 void vmcoreinfo_append_str(const char *fmt, ...)
1453 {
1454 	va_list args;
1455 	char buf[0x50];
1456 	int r;
1457 
1458 	va_start(args, fmt);
1459 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1460 	va_end(args);
1461 
1462 	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1463 		r = vmcoreinfo_max_size - vmcoreinfo_size;
1464 
1465 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1466 
1467 	vmcoreinfo_size += r;
1468 }
1469 
1470 /*
1471  * provide an empty default implementation here -- architecture
1472  * code may override this
1473  */
1474 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1475 {}
1476 
1477 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1478 {
1479 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1480 }
1481 
1482 static int __init crash_save_vmcoreinfo_init(void)
1483 {
1484 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1485 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1486 
1487 	VMCOREINFO_SYMBOL(init_uts_ns);
1488 	VMCOREINFO_SYMBOL(node_online_map);
1489 #ifdef CONFIG_MMU
1490 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1491 #endif
1492 	VMCOREINFO_SYMBOL(_stext);
1493 	VMCOREINFO_SYMBOL(vmlist);
1494 
1495 #ifndef CONFIG_NEED_MULTIPLE_NODES
1496 	VMCOREINFO_SYMBOL(mem_map);
1497 	VMCOREINFO_SYMBOL(contig_page_data);
1498 #endif
1499 #ifdef CONFIG_SPARSEMEM
1500 	VMCOREINFO_SYMBOL(mem_section);
1501 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1502 	VMCOREINFO_STRUCT_SIZE(mem_section);
1503 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1504 #endif
1505 	VMCOREINFO_STRUCT_SIZE(page);
1506 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1507 	VMCOREINFO_STRUCT_SIZE(zone);
1508 	VMCOREINFO_STRUCT_SIZE(free_area);
1509 	VMCOREINFO_STRUCT_SIZE(list_head);
1510 	VMCOREINFO_SIZE(nodemask_t);
1511 	VMCOREINFO_OFFSET(page, flags);
1512 	VMCOREINFO_OFFSET(page, _count);
1513 	VMCOREINFO_OFFSET(page, mapping);
1514 	VMCOREINFO_OFFSET(page, lru);
1515 	VMCOREINFO_OFFSET(page, _mapcount);
1516 	VMCOREINFO_OFFSET(page, private);
1517 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1518 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1519 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1520 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1521 #endif
1522 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1523 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1524 	VMCOREINFO_OFFSET(pglist_data, node_id);
1525 	VMCOREINFO_OFFSET(zone, free_area);
1526 	VMCOREINFO_OFFSET(zone, vm_stat);
1527 	VMCOREINFO_OFFSET(zone, spanned_pages);
1528 	VMCOREINFO_OFFSET(free_area, free_list);
1529 	VMCOREINFO_OFFSET(list_head, next);
1530 	VMCOREINFO_OFFSET(list_head, prev);
1531 	VMCOREINFO_OFFSET(vm_struct, addr);
1532 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1533 	log_buf_kexec_setup();
1534 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1535 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1536 	VMCOREINFO_NUMBER(PG_lru);
1537 	VMCOREINFO_NUMBER(PG_private);
1538 	VMCOREINFO_NUMBER(PG_swapcache);
1539 	VMCOREINFO_NUMBER(PG_slab);
1540 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1541 
1542 	arch_crash_save_vmcoreinfo();
1543 	update_vmcoreinfo_note();
1544 
1545 	return 0;
1546 }
1547 
1548 module_init(crash_save_vmcoreinfo_init)
1549 
1550 /*
1551  * Move into place and start executing a preloaded standalone
1552  * executable.  If nothing was preloaded return an error.
1553  */
1554 int kernel_kexec(void)
1555 {
1556 	int error = 0;
1557 
1558 	if (!mutex_trylock(&kexec_mutex))
1559 		return -EBUSY;
1560 	if (!kexec_image) {
1561 		error = -EINVAL;
1562 		goto Unlock;
1563 	}
1564 
1565 #ifdef CONFIG_KEXEC_JUMP
1566 	if (kexec_image->preserve_context) {
1567 		lock_system_sleep();
1568 		pm_prepare_console();
1569 		error = freeze_processes();
1570 		if (error) {
1571 			error = -EBUSY;
1572 			goto Restore_console;
1573 		}
1574 		suspend_console();
1575 		error = dpm_suspend_start(PMSG_FREEZE);
1576 		if (error)
1577 			goto Resume_console;
1578 		/* At this point, dpm_suspend_start() has been called,
1579 		 * but *not* dpm_suspend_end(). We *must* call
1580 		 * dpm_suspend_end() now.  Otherwise, drivers for
1581 		 * some devices (e.g. interrupt controllers) become
1582 		 * desynchronized with the actual state of the
1583 		 * hardware at resume time, and evil weirdness ensues.
1584 		 */
1585 		error = dpm_suspend_end(PMSG_FREEZE);
1586 		if (error)
1587 			goto Resume_devices;
1588 		error = disable_nonboot_cpus();
1589 		if (error)
1590 			goto Enable_cpus;
1591 		local_irq_disable();
1592 		error = syscore_suspend();
1593 		if (error)
1594 			goto Enable_irqs;
1595 	} else
1596 #endif
1597 	{
1598 		kernel_restart_prepare(NULL);
1599 		printk(KERN_EMERG "Starting new kernel\n");
1600 		machine_shutdown();
1601 	}
1602 
1603 	machine_kexec(kexec_image);
1604 
1605 #ifdef CONFIG_KEXEC_JUMP
1606 	if (kexec_image->preserve_context) {
1607 		syscore_resume();
1608  Enable_irqs:
1609 		local_irq_enable();
1610  Enable_cpus:
1611 		enable_nonboot_cpus();
1612 		dpm_resume_start(PMSG_RESTORE);
1613  Resume_devices:
1614 		dpm_resume_end(PMSG_RESTORE);
1615  Resume_console:
1616 		resume_console();
1617 		thaw_processes();
1618  Restore_console:
1619 		pm_restore_console();
1620 		unlock_system_sleep();
1621 	}
1622 #endif
1623 
1624  Unlock:
1625 	mutex_unlock(&kexec_mutex);
1626 	return error;
1627 }
1628