xref: /openbmc/linux/kernel/kexec.c (revision 8781e5df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec_load system call
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/security.h>
13 #include <linux/kexec.h>
14 #include <linux/mutex.h>
15 #include <linux/list.h>
16 #include <linux/syscalls.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 
20 #include "kexec_internal.h"
21 
22 static int copy_user_segment_list(struct kimage *image,
23 				  unsigned long nr_segments,
24 				  struct kexec_segment __user *segments)
25 {
26 	int ret;
27 	size_t segment_bytes;
28 
29 	/* Read in the segments */
30 	image->nr_segments = nr_segments;
31 	segment_bytes = nr_segments * sizeof(*segments);
32 	ret = copy_from_user(image->segment, segments, segment_bytes);
33 	if (ret)
34 		ret = -EFAULT;
35 
36 	return ret;
37 }
38 
39 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
40 			     unsigned long nr_segments,
41 			     struct kexec_segment __user *segments,
42 			     unsigned long flags)
43 {
44 	int ret;
45 	struct kimage *image;
46 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
47 
48 	if (kexec_on_panic) {
49 		/* Verify we have a valid entry point */
50 		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
51 		    (entry > phys_to_boot_phys(crashk_res.end)))
52 			return -EADDRNOTAVAIL;
53 	}
54 
55 	/* Allocate and initialize a controlling structure */
56 	image = do_kimage_alloc_init();
57 	if (!image)
58 		return -ENOMEM;
59 
60 	image->start = entry;
61 
62 	ret = copy_user_segment_list(image, nr_segments, segments);
63 	if (ret)
64 		goto out_free_image;
65 
66 	if (kexec_on_panic) {
67 		/* Enable special crash kernel control page alloc policy. */
68 		image->control_page = crashk_res.start;
69 		image->type = KEXEC_TYPE_CRASH;
70 	}
71 
72 	ret = sanity_check_segment_list(image);
73 	if (ret)
74 		goto out_free_image;
75 
76 	/*
77 	 * Find a location for the control code buffer, and add it
78 	 * the vector of segments so that it's pages will also be
79 	 * counted as destination pages.
80 	 */
81 	ret = -ENOMEM;
82 	image->control_code_page = kimage_alloc_control_pages(image,
83 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
84 	if (!image->control_code_page) {
85 		pr_err("Could not allocate control_code_buffer\n");
86 		goto out_free_image;
87 	}
88 
89 	if (!kexec_on_panic) {
90 		image->swap_page = kimage_alloc_control_pages(image, 0);
91 		if (!image->swap_page) {
92 			pr_err("Could not allocate swap buffer\n");
93 			goto out_free_control_pages;
94 		}
95 	}
96 
97 	*rimage = image;
98 	return 0;
99 out_free_control_pages:
100 	kimage_free_page_list(&image->control_pages);
101 out_free_image:
102 	kfree(image);
103 	return ret;
104 }
105 
106 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107 		struct kexec_segment __user *segments, unsigned long flags)
108 {
109 	struct kimage **dest_image, *image;
110 	unsigned long i;
111 	int ret;
112 
113 	if (flags & KEXEC_ON_CRASH) {
114 		dest_image = &kexec_crash_image;
115 		if (kexec_crash_image)
116 			arch_kexec_unprotect_crashkres();
117 	} else {
118 		dest_image = &kexec_image;
119 	}
120 
121 	if (nr_segments == 0) {
122 		/* Uninstall image */
123 		kimage_free(xchg(dest_image, NULL));
124 		return 0;
125 	}
126 	if (flags & KEXEC_ON_CRASH) {
127 		/*
128 		 * Loading another kernel to switch to if this one
129 		 * crashes.  Free any current crash dump kernel before
130 		 * we corrupt it.
131 		 */
132 		kimage_free(xchg(&kexec_crash_image, NULL));
133 	}
134 
135 	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136 	if (ret)
137 		return ret;
138 
139 	if (flags & KEXEC_PRESERVE_CONTEXT)
140 		image->preserve_context = 1;
141 
142 	ret = machine_kexec_prepare(image);
143 	if (ret)
144 		goto out;
145 
146 	/*
147 	 * Some architecture(like S390) may touch the crash memory before
148 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
149 	 */
150 	ret = kimage_crash_copy_vmcoreinfo(image);
151 	if (ret)
152 		goto out;
153 
154 	for (i = 0; i < nr_segments; i++) {
155 		ret = kimage_load_segment(image, &image->segment[i]);
156 		if (ret)
157 			goto out;
158 	}
159 
160 	kimage_terminate(image);
161 
162 	/* Install the new kernel and uninstall the old */
163 	image = xchg(dest_image, image);
164 
165 out:
166 	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
167 		arch_kexec_protect_crashkres();
168 
169 	kimage_free(image);
170 	return ret;
171 }
172 
173 /*
174  * Exec Kernel system call: for obvious reasons only root may call it.
175  *
176  * This call breaks up into three pieces.
177  * - A generic part which loads the new kernel from the current
178  *   address space, and very carefully places the data in the
179  *   allocated pages.
180  *
181  * - A generic part that interacts with the kernel and tells all of
182  *   the devices to shut down.  Preventing on-going dmas, and placing
183  *   the devices in a consistent state so a later kernel can
184  *   reinitialize them.
185  *
186  * - A machine specific part that includes the syscall number
187  *   and then copies the image to it's final destination.  And
188  *   jumps into the image at entry.
189  *
190  * kexec does not sync, or unmount filesystems so if you need
191  * that to happen you need to do that yourself.
192  */
193 
194 static inline int kexec_load_check(unsigned long nr_segments,
195 				   unsigned long flags)
196 {
197 	int result;
198 
199 	/* We only trust the superuser with rebooting the system. */
200 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
201 		return -EPERM;
202 
203 	/* Permit LSMs and IMA to fail the kexec */
204 	result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
205 	if (result < 0)
206 		return result;
207 
208 	/*
209 	 * kexec can be used to circumvent module loading restrictions, so
210 	 * prevent loading in that case
211 	 */
212 	result = security_locked_down(LOCKDOWN_KEXEC);
213 	if (result)
214 		return result;
215 
216 	/*
217 	 * Verify we have a legal set of flags
218 	 * This leaves us room for future extensions.
219 	 */
220 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
221 		return -EINVAL;
222 
223 	/* Put an artificial cap on the number
224 	 * of segments passed to kexec_load.
225 	 */
226 	if (nr_segments > KEXEC_SEGMENT_MAX)
227 		return -EINVAL;
228 
229 	return 0;
230 }
231 
232 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
233 		struct kexec_segment __user *, segments, unsigned long, flags)
234 {
235 	int result;
236 
237 	result = kexec_load_check(nr_segments, flags);
238 	if (result)
239 		return result;
240 
241 	/* Verify we are on the appropriate architecture */
242 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
243 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
244 		return -EINVAL;
245 
246 	/* Because we write directly to the reserved memory
247 	 * region when loading crash kernels we need a mutex here to
248 	 * prevent multiple crash  kernels from attempting to load
249 	 * simultaneously, and to prevent a crash kernel from loading
250 	 * over the top of a in use crash kernel.
251 	 *
252 	 * KISS: always take the mutex.
253 	 */
254 	if (!mutex_trylock(&kexec_mutex))
255 		return -EBUSY;
256 
257 	result = do_kexec_load(entry, nr_segments, segments, flags);
258 
259 	mutex_unlock(&kexec_mutex);
260 
261 	return result;
262 }
263 
264 #ifdef CONFIG_COMPAT
265 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
266 		       compat_ulong_t, nr_segments,
267 		       struct compat_kexec_segment __user *, segments,
268 		       compat_ulong_t, flags)
269 {
270 	struct compat_kexec_segment in;
271 	struct kexec_segment out, __user *ksegments;
272 	unsigned long i, result;
273 
274 	result = kexec_load_check(nr_segments, flags);
275 	if (result)
276 		return result;
277 
278 	/* Don't allow clients that don't understand the native
279 	 * architecture to do anything.
280 	 */
281 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
282 		return -EINVAL;
283 
284 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
285 	for (i = 0; i < nr_segments; i++) {
286 		result = copy_from_user(&in, &segments[i], sizeof(in));
287 		if (result)
288 			return -EFAULT;
289 
290 		out.buf   = compat_ptr(in.buf);
291 		out.bufsz = in.bufsz;
292 		out.mem   = in.mem;
293 		out.memsz = in.memsz;
294 
295 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
296 		if (result)
297 			return -EFAULT;
298 	}
299 
300 	/* Because we write directly to the reserved memory
301 	 * region when loading crash kernels we need a mutex here to
302 	 * prevent multiple crash  kernels from attempting to load
303 	 * simultaneously, and to prevent a crash kernel from loading
304 	 * over the top of a in use crash kernel.
305 	 *
306 	 * KISS: always take the mutex.
307 	 */
308 	if (!mutex_trylock(&kexec_mutex))
309 		return -EBUSY;
310 
311 	result = do_kexec_load(entry, nr_segments, ksegments, flags);
312 
313 	mutex_unlock(&kexec_mutex);
314 
315 	return result;
316 }
317 #endif
318