1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <generated/utsrelease.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/pm.h> 31 #include <linux/cpu.h> 32 #include <linux/console.h> 33 #include <linux/vmalloc.h> 34 #include <linux/swap.h> 35 #include <linux/kmsg_dump.h> 36 #include <linux/syscore_ops.h> 37 38 #include <asm/page.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/system.h> 42 #include <asm/sections.h> 43 44 /* Per cpu memory for storing cpu states in case of system crash. */ 45 note_buf_t __percpu *crash_notes; 46 47 /* vmcoreinfo stuff */ 48 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 49 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 50 size_t vmcoreinfo_size; 51 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 52 53 /* Location of the reserved area for the crash kernel */ 54 struct resource crashk_res = { 55 .name = "Crash kernel", 56 .start = 0, 57 .end = 0, 58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 59 }; 60 61 int kexec_should_crash(struct task_struct *p) 62 { 63 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 64 return 1; 65 return 0; 66 } 67 68 /* 69 * When kexec transitions to the new kernel there is a one-to-one 70 * mapping between physical and virtual addresses. On processors 71 * where you can disable the MMU this is trivial, and easy. For 72 * others it is still a simple predictable page table to setup. 73 * 74 * In that environment kexec copies the new kernel to its final 75 * resting place. This means I can only support memory whose 76 * physical address can fit in an unsigned long. In particular 77 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 78 * If the assembly stub has more restrictive requirements 79 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 80 * defined more restrictively in <asm/kexec.h>. 81 * 82 * The code for the transition from the current kernel to the 83 * the new kernel is placed in the control_code_buffer, whose size 84 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 85 * page of memory is necessary, but some architectures require more. 86 * Because this memory must be identity mapped in the transition from 87 * virtual to physical addresses it must live in the range 88 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 89 * modifiable. 90 * 91 * The assembly stub in the control code buffer is passed a linked list 92 * of descriptor pages detailing the source pages of the new kernel, 93 * and the destination addresses of those source pages. As this data 94 * structure is not used in the context of the current OS, it must 95 * be self-contained. 96 * 97 * The code has been made to work with highmem pages and will use a 98 * destination page in its final resting place (if it happens 99 * to allocate it). The end product of this is that most of the 100 * physical address space, and most of RAM can be used. 101 * 102 * Future directions include: 103 * - allocating a page table with the control code buffer identity 104 * mapped, to simplify machine_kexec and make kexec_on_panic more 105 * reliable. 106 */ 107 108 /* 109 * KIMAGE_NO_DEST is an impossible destination address..., for 110 * allocating pages whose destination address we do not care about. 111 */ 112 #define KIMAGE_NO_DEST (-1UL) 113 114 static int kimage_is_destination_range(struct kimage *image, 115 unsigned long start, unsigned long end); 116 static struct page *kimage_alloc_page(struct kimage *image, 117 gfp_t gfp_mask, 118 unsigned long dest); 119 120 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 121 unsigned long nr_segments, 122 struct kexec_segment __user *segments) 123 { 124 size_t segment_bytes; 125 struct kimage *image; 126 unsigned long i; 127 int result; 128 129 /* Allocate a controlling structure */ 130 result = -ENOMEM; 131 image = kzalloc(sizeof(*image), GFP_KERNEL); 132 if (!image) 133 goto out; 134 135 image->head = 0; 136 image->entry = &image->head; 137 image->last_entry = &image->head; 138 image->control_page = ~0; /* By default this does not apply */ 139 image->start = entry; 140 image->type = KEXEC_TYPE_DEFAULT; 141 142 /* Initialize the list of control pages */ 143 INIT_LIST_HEAD(&image->control_pages); 144 145 /* Initialize the list of destination pages */ 146 INIT_LIST_HEAD(&image->dest_pages); 147 148 /* Initialize the list of unusable pages */ 149 INIT_LIST_HEAD(&image->unuseable_pages); 150 151 /* Read in the segments */ 152 image->nr_segments = nr_segments; 153 segment_bytes = nr_segments * sizeof(*segments); 154 result = copy_from_user(image->segment, segments, segment_bytes); 155 if (result) { 156 result = -EFAULT; 157 goto out; 158 } 159 160 /* 161 * Verify we have good destination addresses. The caller is 162 * responsible for making certain we don't attempt to load 163 * the new image into invalid or reserved areas of RAM. This 164 * just verifies it is an address we can use. 165 * 166 * Since the kernel does everything in page size chunks ensure 167 * the destination addresses are page aligned. Too many 168 * special cases crop of when we don't do this. The most 169 * insidious is getting overlapping destination addresses 170 * simply because addresses are changed to page size 171 * granularity. 172 */ 173 result = -EADDRNOTAVAIL; 174 for (i = 0; i < nr_segments; i++) { 175 unsigned long mstart, mend; 176 177 mstart = image->segment[i].mem; 178 mend = mstart + image->segment[i].memsz; 179 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 180 goto out; 181 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 182 goto out; 183 } 184 185 /* Verify our destination addresses do not overlap. 186 * If we alloed overlapping destination addresses 187 * through very weird things can happen with no 188 * easy explanation as one segment stops on another. 189 */ 190 result = -EINVAL; 191 for (i = 0; i < nr_segments; i++) { 192 unsigned long mstart, mend; 193 unsigned long j; 194 195 mstart = image->segment[i].mem; 196 mend = mstart + image->segment[i].memsz; 197 for (j = 0; j < i; j++) { 198 unsigned long pstart, pend; 199 pstart = image->segment[j].mem; 200 pend = pstart + image->segment[j].memsz; 201 /* Do the segments overlap ? */ 202 if ((mend > pstart) && (mstart < pend)) 203 goto out; 204 } 205 } 206 207 /* Ensure our buffer sizes are strictly less than 208 * our memory sizes. This should always be the case, 209 * and it is easier to check up front than to be surprised 210 * later on. 211 */ 212 result = -EINVAL; 213 for (i = 0; i < nr_segments; i++) { 214 if (image->segment[i].bufsz > image->segment[i].memsz) 215 goto out; 216 } 217 218 result = 0; 219 out: 220 if (result == 0) 221 *rimage = image; 222 else 223 kfree(image); 224 225 return result; 226 227 } 228 229 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 230 unsigned long nr_segments, 231 struct kexec_segment __user *segments) 232 { 233 int result; 234 struct kimage *image; 235 236 /* Allocate and initialize a controlling structure */ 237 image = NULL; 238 result = do_kimage_alloc(&image, entry, nr_segments, segments); 239 if (result) 240 goto out; 241 242 *rimage = image; 243 244 /* 245 * Find a location for the control code buffer, and add it 246 * the vector of segments so that it's pages will also be 247 * counted as destination pages. 248 */ 249 result = -ENOMEM; 250 image->control_code_page = kimage_alloc_control_pages(image, 251 get_order(KEXEC_CONTROL_PAGE_SIZE)); 252 if (!image->control_code_page) { 253 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 254 goto out; 255 } 256 257 image->swap_page = kimage_alloc_control_pages(image, 0); 258 if (!image->swap_page) { 259 printk(KERN_ERR "Could not allocate swap buffer\n"); 260 goto out; 261 } 262 263 result = 0; 264 out: 265 if (result == 0) 266 *rimage = image; 267 else 268 kfree(image); 269 270 return result; 271 } 272 273 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 274 unsigned long nr_segments, 275 struct kexec_segment __user *segments) 276 { 277 int result; 278 struct kimage *image; 279 unsigned long i; 280 281 image = NULL; 282 /* Verify we have a valid entry point */ 283 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 284 result = -EADDRNOTAVAIL; 285 goto out; 286 } 287 288 /* Allocate and initialize a controlling structure */ 289 result = do_kimage_alloc(&image, entry, nr_segments, segments); 290 if (result) 291 goto out; 292 293 /* Enable the special crash kernel control page 294 * allocation policy. 295 */ 296 image->control_page = crashk_res.start; 297 image->type = KEXEC_TYPE_CRASH; 298 299 /* 300 * Verify we have good destination addresses. Normally 301 * the caller is responsible for making certain we don't 302 * attempt to load the new image into invalid or reserved 303 * areas of RAM. But crash kernels are preloaded into a 304 * reserved area of ram. We must ensure the addresses 305 * are in the reserved area otherwise preloading the 306 * kernel could corrupt things. 307 */ 308 result = -EADDRNOTAVAIL; 309 for (i = 0; i < nr_segments; i++) { 310 unsigned long mstart, mend; 311 312 mstart = image->segment[i].mem; 313 mend = mstart + image->segment[i].memsz - 1; 314 /* Ensure we are within the crash kernel limits */ 315 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 316 goto out; 317 } 318 319 /* 320 * Find a location for the control code buffer, and add 321 * the vector of segments so that it's pages will also be 322 * counted as destination pages. 323 */ 324 result = -ENOMEM; 325 image->control_code_page = kimage_alloc_control_pages(image, 326 get_order(KEXEC_CONTROL_PAGE_SIZE)); 327 if (!image->control_code_page) { 328 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 329 goto out; 330 } 331 332 result = 0; 333 out: 334 if (result == 0) 335 *rimage = image; 336 else 337 kfree(image); 338 339 return result; 340 } 341 342 static int kimage_is_destination_range(struct kimage *image, 343 unsigned long start, 344 unsigned long end) 345 { 346 unsigned long i; 347 348 for (i = 0; i < image->nr_segments; i++) { 349 unsigned long mstart, mend; 350 351 mstart = image->segment[i].mem; 352 mend = mstart + image->segment[i].memsz; 353 if ((end > mstart) && (start < mend)) 354 return 1; 355 } 356 357 return 0; 358 } 359 360 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 361 { 362 struct page *pages; 363 364 pages = alloc_pages(gfp_mask, order); 365 if (pages) { 366 unsigned int count, i; 367 pages->mapping = NULL; 368 set_page_private(pages, order); 369 count = 1 << order; 370 for (i = 0; i < count; i++) 371 SetPageReserved(pages + i); 372 } 373 374 return pages; 375 } 376 377 static void kimage_free_pages(struct page *page) 378 { 379 unsigned int order, count, i; 380 381 order = page_private(page); 382 count = 1 << order; 383 for (i = 0; i < count; i++) 384 ClearPageReserved(page + i); 385 __free_pages(page, order); 386 } 387 388 static void kimage_free_page_list(struct list_head *list) 389 { 390 struct list_head *pos, *next; 391 392 list_for_each_safe(pos, next, list) { 393 struct page *page; 394 395 page = list_entry(pos, struct page, lru); 396 list_del(&page->lru); 397 kimage_free_pages(page); 398 } 399 } 400 401 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 402 unsigned int order) 403 { 404 /* Control pages are special, they are the intermediaries 405 * that are needed while we copy the rest of the pages 406 * to their final resting place. As such they must 407 * not conflict with either the destination addresses 408 * or memory the kernel is already using. 409 * 410 * The only case where we really need more than one of 411 * these are for architectures where we cannot disable 412 * the MMU and must instead generate an identity mapped 413 * page table for all of the memory. 414 * 415 * At worst this runs in O(N) of the image size. 416 */ 417 struct list_head extra_pages; 418 struct page *pages; 419 unsigned int count; 420 421 count = 1 << order; 422 INIT_LIST_HEAD(&extra_pages); 423 424 /* Loop while I can allocate a page and the page allocated 425 * is a destination page. 426 */ 427 do { 428 unsigned long pfn, epfn, addr, eaddr; 429 430 pages = kimage_alloc_pages(GFP_KERNEL, order); 431 if (!pages) 432 break; 433 pfn = page_to_pfn(pages); 434 epfn = pfn + count; 435 addr = pfn << PAGE_SHIFT; 436 eaddr = epfn << PAGE_SHIFT; 437 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 438 kimage_is_destination_range(image, addr, eaddr)) { 439 list_add(&pages->lru, &extra_pages); 440 pages = NULL; 441 } 442 } while (!pages); 443 444 if (pages) { 445 /* Remember the allocated page... */ 446 list_add(&pages->lru, &image->control_pages); 447 448 /* Because the page is already in it's destination 449 * location we will never allocate another page at 450 * that address. Therefore kimage_alloc_pages 451 * will not return it (again) and we don't need 452 * to give it an entry in image->segment[]. 453 */ 454 } 455 /* Deal with the destination pages I have inadvertently allocated. 456 * 457 * Ideally I would convert multi-page allocations into single 458 * page allocations, and add everything to image->dest_pages. 459 * 460 * For now it is simpler to just free the pages. 461 */ 462 kimage_free_page_list(&extra_pages); 463 464 return pages; 465 } 466 467 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 468 unsigned int order) 469 { 470 /* Control pages are special, they are the intermediaries 471 * that are needed while we copy the rest of the pages 472 * to their final resting place. As such they must 473 * not conflict with either the destination addresses 474 * or memory the kernel is already using. 475 * 476 * Control pages are also the only pags we must allocate 477 * when loading a crash kernel. All of the other pages 478 * are specified by the segments and we just memcpy 479 * into them directly. 480 * 481 * The only case where we really need more than one of 482 * these are for architectures where we cannot disable 483 * the MMU and must instead generate an identity mapped 484 * page table for all of the memory. 485 * 486 * Given the low demand this implements a very simple 487 * allocator that finds the first hole of the appropriate 488 * size in the reserved memory region, and allocates all 489 * of the memory up to and including the hole. 490 */ 491 unsigned long hole_start, hole_end, size; 492 struct page *pages; 493 494 pages = NULL; 495 size = (1 << order) << PAGE_SHIFT; 496 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 497 hole_end = hole_start + size - 1; 498 while (hole_end <= crashk_res.end) { 499 unsigned long i; 500 501 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) 502 break; 503 if (hole_end > crashk_res.end) 504 break; 505 /* See if I overlap any of the segments */ 506 for (i = 0; i < image->nr_segments; i++) { 507 unsigned long mstart, mend; 508 509 mstart = image->segment[i].mem; 510 mend = mstart + image->segment[i].memsz - 1; 511 if ((hole_end >= mstart) && (hole_start <= mend)) { 512 /* Advance the hole to the end of the segment */ 513 hole_start = (mend + (size - 1)) & ~(size - 1); 514 hole_end = hole_start + size - 1; 515 break; 516 } 517 } 518 /* If I don't overlap any segments I have found my hole! */ 519 if (i == image->nr_segments) { 520 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 521 break; 522 } 523 } 524 if (pages) 525 image->control_page = hole_end; 526 527 return pages; 528 } 529 530 531 struct page *kimage_alloc_control_pages(struct kimage *image, 532 unsigned int order) 533 { 534 struct page *pages = NULL; 535 536 switch (image->type) { 537 case KEXEC_TYPE_DEFAULT: 538 pages = kimage_alloc_normal_control_pages(image, order); 539 break; 540 case KEXEC_TYPE_CRASH: 541 pages = kimage_alloc_crash_control_pages(image, order); 542 break; 543 } 544 545 return pages; 546 } 547 548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 549 { 550 if (*image->entry != 0) 551 image->entry++; 552 553 if (image->entry == image->last_entry) { 554 kimage_entry_t *ind_page; 555 struct page *page; 556 557 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 558 if (!page) 559 return -ENOMEM; 560 561 ind_page = page_address(page); 562 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 563 image->entry = ind_page; 564 image->last_entry = ind_page + 565 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 566 } 567 *image->entry = entry; 568 image->entry++; 569 *image->entry = 0; 570 571 return 0; 572 } 573 574 static int kimage_set_destination(struct kimage *image, 575 unsigned long destination) 576 { 577 int result; 578 579 destination &= PAGE_MASK; 580 result = kimage_add_entry(image, destination | IND_DESTINATION); 581 if (result == 0) 582 image->destination = destination; 583 584 return result; 585 } 586 587 588 static int kimage_add_page(struct kimage *image, unsigned long page) 589 { 590 int result; 591 592 page &= PAGE_MASK; 593 result = kimage_add_entry(image, page | IND_SOURCE); 594 if (result == 0) 595 image->destination += PAGE_SIZE; 596 597 return result; 598 } 599 600 601 static void kimage_free_extra_pages(struct kimage *image) 602 { 603 /* Walk through and free any extra destination pages I may have */ 604 kimage_free_page_list(&image->dest_pages); 605 606 /* Walk through and free any unusable pages I have cached */ 607 kimage_free_page_list(&image->unuseable_pages); 608 609 } 610 static void kimage_terminate(struct kimage *image) 611 { 612 if (*image->entry != 0) 613 image->entry++; 614 615 *image->entry = IND_DONE; 616 } 617 618 #define for_each_kimage_entry(image, ptr, entry) \ 619 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 620 ptr = (entry & IND_INDIRECTION)? \ 621 phys_to_virt((entry & PAGE_MASK)): ptr +1) 622 623 static void kimage_free_entry(kimage_entry_t entry) 624 { 625 struct page *page; 626 627 page = pfn_to_page(entry >> PAGE_SHIFT); 628 kimage_free_pages(page); 629 } 630 631 static void kimage_free(struct kimage *image) 632 { 633 kimage_entry_t *ptr, entry; 634 kimage_entry_t ind = 0; 635 636 if (!image) 637 return; 638 639 kimage_free_extra_pages(image); 640 for_each_kimage_entry(image, ptr, entry) { 641 if (entry & IND_INDIRECTION) { 642 /* Free the previous indirection page */ 643 if (ind & IND_INDIRECTION) 644 kimage_free_entry(ind); 645 /* Save this indirection page until we are 646 * done with it. 647 */ 648 ind = entry; 649 } 650 else if (entry & IND_SOURCE) 651 kimage_free_entry(entry); 652 } 653 /* Free the final indirection page */ 654 if (ind & IND_INDIRECTION) 655 kimage_free_entry(ind); 656 657 /* Handle any machine specific cleanup */ 658 machine_kexec_cleanup(image); 659 660 /* Free the kexec control pages... */ 661 kimage_free_page_list(&image->control_pages); 662 kfree(image); 663 } 664 665 static kimage_entry_t *kimage_dst_used(struct kimage *image, 666 unsigned long page) 667 { 668 kimage_entry_t *ptr, entry; 669 unsigned long destination = 0; 670 671 for_each_kimage_entry(image, ptr, entry) { 672 if (entry & IND_DESTINATION) 673 destination = entry & PAGE_MASK; 674 else if (entry & IND_SOURCE) { 675 if (page == destination) 676 return ptr; 677 destination += PAGE_SIZE; 678 } 679 } 680 681 return NULL; 682 } 683 684 static struct page *kimage_alloc_page(struct kimage *image, 685 gfp_t gfp_mask, 686 unsigned long destination) 687 { 688 /* 689 * Here we implement safeguards to ensure that a source page 690 * is not copied to its destination page before the data on 691 * the destination page is no longer useful. 692 * 693 * To do this we maintain the invariant that a source page is 694 * either its own destination page, or it is not a 695 * destination page at all. 696 * 697 * That is slightly stronger than required, but the proof 698 * that no problems will not occur is trivial, and the 699 * implementation is simply to verify. 700 * 701 * When allocating all pages normally this algorithm will run 702 * in O(N) time, but in the worst case it will run in O(N^2) 703 * time. If the runtime is a problem the data structures can 704 * be fixed. 705 */ 706 struct page *page; 707 unsigned long addr; 708 709 /* 710 * Walk through the list of destination pages, and see if I 711 * have a match. 712 */ 713 list_for_each_entry(page, &image->dest_pages, lru) { 714 addr = page_to_pfn(page) << PAGE_SHIFT; 715 if (addr == destination) { 716 list_del(&page->lru); 717 return page; 718 } 719 } 720 page = NULL; 721 while (1) { 722 kimage_entry_t *old; 723 724 /* Allocate a page, if we run out of memory give up */ 725 page = kimage_alloc_pages(gfp_mask, 0); 726 if (!page) 727 return NULL; 728 /* If the page cannot be used file it away */ 729 if (page_to_pfn(page) > 730 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 731 list_add(&page->lru, &image->unuseable_pages); 732 continue; 733 } 734 addr = page_to_pfn(page) << PAGE_SHIFT; 735 736 /* If it is the destination page we want use it */ 737 if (addr == destination) 738 break; 739 740 /* If the page is not a destination page use it */ 741 if (!kimage_is_destination_range(image, addr, 742 addr + PAGE_SIZE)) 743 break; 744 745 /* 746 * I know that the page is someones destination page. 747 * See if there is already a source page for this 748 * destination page. And if so swap the source pages. 749 */ 750 old = kimage_dst_used(image, addr); 751 if (old) { 752 /* If so move it */ 753 unsigned long old_addr; 754 struct page *old_page; 755 756 old_addr = *old & PAGE_MASK; 757 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 758 copy_highpage(page, old_page); 759 *old = addr | (*old & ~PAGE_MASK); 760 761 /* The old page I have found cannot be a 762 * destination page, so return it if it's 763 * gfp_flags honor the ones passed in. 764 */ 765 if (!(gfp_mask & __GFP_HIGHMEM) && 766 PageHighMem(old_page)) { 767 kimage_free_pages(old_page); 768 continue; 769 } 770 addr = old_addr; 771 page = old_page; 772 break; 773 } 774 else { 775 /* Place the page on the destination list I 776 * will use it later. 777 */ 778 list_add(&page->lru, &image->dest_pages); 779 } 780 } 781 782 return page; 783 } 784 785 static int kimage_load_normal_segment(struct kimage *image, 786 struct kexec_segment *segment) 787 { 788 unsigned long maddr; 789 unsigned long ubytes, mbytes; 790 int result; 791 unsigned char __user *buf; 792 793 result = 0; 794 buf = segment->buf; 795 ubytes = segment->bufsz; 796 mbytes = segment->memsz; 797 maddr = segment->mem; 798 799 result = kimage_set_destination(image, maddr); 800 if (result < 0) 801 goto out; 802 803 while (mbytes) { 804 struct page *page; 805 char *ptr; 806 size_t uchunk, mchunk; 807 808 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 809 if (!page) { 810 result = -ENOMEM; 811 goto out; 812 } 813 result = kimage_add_page(image, page_to_pfn(page) 814 << PAGE_SHIFT); 815 if (result < 0) 816 goto out; 817 818 ptr = kmap(page); 819 /* Start with a clear page */ 820 clear_page(ptr); 821 ptr += maddr & ~PAGE_MASK; 822 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 823 if (mchunk > mbytes) 824 mchunk = mbytes; 825 826 uchunk = mchunk; 827 if (uchunk > ubytes) 828 uchunk = ubytes; 829 830 result = copy_from_user(ptr, buf, uchunk); 831 kunmap(page); 832 if (result) { 833 result = -EFAULT; 834 goto out; 835 } 836 ubytes -= uchunk; 837 maddr += mchunk; 838 buf += mchunk; 839 mbytes -= mchunk; 840 } 841 out: 842 return result; 843 } 844 845 static int kimage_load_crash_segment(struct kimage *image, 846 struct kexec_segment *segment) 847 { 848 /* For crash dumps kernels we simply copy the data from 849 * user space to it's destination. 850 * We do things a page at a time for the sake of kmap. 851 */ 852 unsigned long maddr; 853 unsigned long ubytes, mbytes; 854 int result; 855 unsigned char __user *buf; 856 857 result = 0; 858 buf = segment->buf; 859 ubytes = segment->bufsz; 860 mbytes = segment->memsz; 861 maddr = segment->mem; 862 while (mbytes) { 863 struct page *page; 864 char *ptr; 865 size_t uchunk, mchunk; 866 867 page = pfn_to_page(maddr >> PAGE_SHIFT); 868 if (!page) { 869 result = -ENOMEM; 870 goto out; 871 } 872 ptr = kmap(page); 873 ptr += maddr & ~PAGE_MASK; 874 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 875 if (mchunk > mbytes) 876 mchunk = mbytes; 877 878 uchunk = mchunk; 879 if (uchunk > ubytes) { 880 uchunk = ubytes; 881 /* Zero the trailing part of the page */ 882 memset(ptr + uchunk, 0, mchunk - uchunk); 883 } 884 result = copy_from_user(ptr, buf, uchunk); 885 kexec_flush_icache_page(page); 886 kunmap(page); 887 if (result) { 888 result = -EFAULT; 889 goto out; 890 } 891 ubytes -= uchunk; 892 maddr += mchunk; 893 buf += mchunk; 894 mbytes -= mchunk; 895 } 896 out: 897 return result; 898 } 899 900 static int kimage_load_segment(struct kimage *image, 901 struct kexec_segment *segment) 902 { 903 int result = -ENOMEM; 904 905 switch (image->type) { 906 case KEXEC_TYPE_DEFAULT: 907 result = kimage_load_normal_segment(image, segment); 908 break; 909 case KEXEC_TYPE_CRASH: 910 result = kimage_load_crash_segment(image, segment); 911 break; 912 } 913 914 return result; 915 } 916 917 /* 918 * Exec Kernel system call: for obvious reasons only root may call it. 919 * 920 * This call breaks up into three pieces. 921 * - A generic part which loads the new kernel from the current 922 * address space, and very carefully places the data in the 923 * allocated pages. 924 * 925 * - A generic part that interacts with the kernel and tells all of 926 * the devices to shut down. Preventing on-going dmas, and placing 927 * the devices in a consistent state so a later kernel can 928 * reinitialize them. 929 * 930 * - A machine specific part that includes the syscall number 931 * and the copies the image to it's final destination. And 932 * jumps into the image at entry. 933 * 934 * kexec does not sync, or unmount filesystems so if you need 935 * that to happen you need to do that yourself. 936 */ 937 struct kimage *kexec_image; 938 struct kimage *kexec_crash_image; 939 940 static DEFINE_MUTEX(kexec_mutex); 941 942 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 943 struct kexec_segment __user *, segments, unsigned long, flags) 944 { 945 struct kimage **dest_image, *image; 946 int result; 947 948 /* We only trust the superuser with rebooting the system. */ 949 if (!capable(CAP_SYS_BOOT)) 950 return -EPERM; 951 952 /* 953 * Verify we have a legal set of flags 954 * This leaves us room for future extensions. 955 */ 956 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 957 return -EINVAL; 958 959 /* Verify we are on the appropriate architecture */ 960 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 961 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 962 return -EINVAL; 963 964 /* Put an artificial cap on the number 965 * of segments passed to kexec_load. 966 */ 967 if (nr_segments > KEXEC_SEGMENT_MAX) 968 return -EINVAL; 969 970 image = NULL; 971 result = 0; 972 973 /* Because we write directly to the reserved memory 974 * region when loading crash kernels we need a mutex here to 975 * prevent multiple crash kernels from attempting to load 976 * simultaneously, and to prevent a crash kernel from loading 977 * over the top of a in use crash kernel. 978 * 979 * KISS: always take the mutex. 980 */ 981 if (!mutex_trylock(&kexec_mutex)) 982 return -EBUSY; 983 984 dest_image = &kexec_image; 985 if (flags & KEXEC_ON_CRASH) 986 dest_image = &kexec_crash_image; 987 if (nr_segments > 0) { 988 unsigned long i; 989 990 /* Loading another kernel to reboot into */ 991 if ((flags & KEXEC_ON_CRASH) == 0) 992 result = kimage_normal_alloc(&image, entry, 993 nr_segments, segments); 994 /* Loading another kernel to switch to if this one crashes */ 995 else if (flags & KEXEC_ON_CRASH) { 996 /* Free any current crash dump kernel before 997 * we corrupt it. 998 */ 999 kimage_free(xchg(&kexec_crash_image, NULL)); 1000 result = kimage_crash_alloc(&image, entry, 1001 nr_segments, segments); 1002 } 1003 if (result) 1004 goto out; 1005 1006 if (flags & KEXEC_PRESERVE_CONTEXT) 1007 image->preserve_context = 1; 1008 result = machine_kexec_prepare(image); 1009 if (result) 1010 goto out; 1011 1012 for (i = 0; i < nr_segments; i++) { 1013 result = kimage_load_segment(image, &image->segment[i]); 1014 if (result) 1015 goto out; 1016 } 1017 kimage_terminate(image); 1018 } 1019 /* Install the new kernel, and Uninstall the old */ 1020 image = xchg(dest_image, image); 1021 1022 out: 1023 mutex_unlock(&kexec_mutex); 1024 kimage_free(image); 1025 1026 return result; 1027 } 1028 1029 #ifdef CONFIG_COMPAT 1030 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1031 unsigned long nr_segments, 1032 struct compat_kexec_segment __user *segments, 1033 unsigned long flags) 1034 { 1035 struct compat_kexec_segment in; 1036 struct kexec_segment out, __user *ksegments; 1037 unsigned long i, result; 1038 1039 /* Don't allow clients that don't understand the native 1040 * architecture to do anything. 1041 */ 1042 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1043 return -EINVAL; 1044 1045 if (nr_segments > KEXEC_SEGMENT_MAX) 1046 return -EINVAL; 1047 1048 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1049 for (i=0; i < nr_segments; i++) { 1050 result = copy_from_user(&in, &segments[i], sizeof(in)); 1051 if (result) 1052 return -EFAULT; 1053 1054 out.buf = compat_ptr(in.buf); 1055 out.bufsz = in.bufsz; 1056 out.mem = in.mem; 1057 out.memsz = in.memsz; 1058 1059 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1060 if (result) 1061 return -EFAULT; 1062 } 1063 1064 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1065 } 1066 #endif 1067 1068 void crash_kexec(struct pt_regs *regs) 1069 { 1070 /* Take the kexec_mutex here to prevent sys_kexec_load 1071 * running on one cpu from replacing the crash kernel 1072 * we are using after a panic on a different cpu. 1073 * 1074 * If the crash kernel was not located in a fixed area 1075 * of memory the xchg(&kexec_crash_image) would be 1076 * sufficient. But since I reuse the memory... 1077 */ 1078 if (mutex_trylock(&kexec_mutex)) { 1079 if (kexec_crash_image) { 1080 struct pt_regs fixed_regs; 1081 1082 kmsg_dump(KMSG_DUMP_KEXEC); 1083 1084 crash_setup_regs(&fixed_regs, regs); 1085 crash_save_vmcoreinfo(); 1086 machine_crash_shutdown(&fixed_regs); 1087 machine_kexec(kexec_crash_image); 1088 } 1089 mutex_unlock(&kexec_mutex); 1090 } 1091 } 1092 1093 size_t crash_get_memory_size(void) 1094 { 1095 size_t size = 0; 1096 mutex_lock(&kexec_mutex); 1097 if (crashk_res.end != crashk_res.start) 1098 size = crashk_res.end - crashk_res.start + 1; 1099 mutex_unlock(&kexec_mutex); 1100 return size; 1101 } 1102 1103 void __weak crash_free_reserved_phys_range(unsigned long begin, 1104 unsigned long end) 1105 { 1106 unsigned long addr; 1107 1108 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1109 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); 1110 init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); 1111 free_page((unsigned long)__va(addr)); 1112 totalram_pages++; 1113 } 1114 } 1115 1116 int crash_shrink_memory(unsigned long new_size) 1117 { 1118 int ret = 0; 1119 unsigned long start, end; 1120 1121 mutex_lock(&kexec_mutex); 1122 1123 if (kexec_crash_image) { 1124 ret = -ENOENT; 1125 goto unlock; 1126 } 1127 start = crashk_res.start; 1128 end = crashk_res.end; 1129 1130 if (new_size >= end - start + 1) { 1131 ret = -EINVAL; 1132 if (new_size == end - start + 1) 1133 ret = 0; 1134 goto unlock; 1135 } 1136 1137 start = roundup(start, PAGE_SIZE); 1138 end = roundup(start + new_size, PAGE_SIZE); 1139 1140 crash_free_reserved_phys_range(end, crashk_res.end); 1141 1142 if ((start == end) && (crashk_res.parent != NULL)) 1143 release_resource(&crashk_res); 1144 crashk_res.end = end - 1; 1145 1146 unlock: 1147 mutex_unlock(&kexec_mutex); 1148 return ret; 1149 } 1150 1151 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1152 size_t data_len) 1153 { 1154 struct elf_note note; 1155 1156 note.n_namesz = strlen(name) + 1; 1157 note.n_descsz = data_len; 1158 note.n_type = type; 1159 memcpy(buf, ¬e, sizeof(note)); 1160 buf += (sizeof(note) + 3)/4; 1161 memcpy(buf, name, note.n_namesz); 1162 buf += (note.n_namesz + 3)/4; 1163 memcpy(buf, data, note.n_descsz); 1164 buf += (note.n_descsz + 3)/4; 1165 1166 return buf; 1167 } 1168 1169 static void final_note(u32 *buf) 1170 { 1171 struct elf_note note; 1172 1173 note.n_namesz = 0; 1174 note.n_descsz = 0; 1175 note.n_type = 0; 1176 memcpy(buf, ¬e, sizeof(note)); 1177 } 1178 1179 void crash_save_cpu(struct pt_regs *regs, int cpu) 1180 { 1181 struct elf_prstatus prstatus; 1182 u32 *buf; 1183 1184 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1185 return; 1186 1187 /* Using ELF notes here is opportunistic. 1188 * I need a well defined structure format 1189 * for the data I pass, and I need tags 1190 * on the data to indicate what information I have 1191 * squirrelled away. ELF notes happen to provide 1192 * all of that, so there is no need to invent something new. 1193 */ 1194 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1195 if (!buf) 1196 return; 1197 memset(&prstatus, 0, sizeof(prstatus)); 1198 prstatus.pr_pid = current->pid; 1199 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1200 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1201 &prstatus, sizeof(prstatus)); 1202 final_note(buf); 1203 } 1204 1205 static int __init crash_notes_memory_init(void) 1206 { 1207 /* Allocate memory for saving cpu registers. */ 1208 crash_notes = alloc_percpu(note_buf_t); 1209 if (!crash_notes) { 1210 printk("Kexec: Memory allocation for saving cpu register" 1211 " states failed\n"); 1212 return -ENOMEM; 1213 } 1214 return 0; 1215 } 1216 module_init(crash_notes_memory_init) 1217 1218 1219 /* 1220 * parsing the "crashkernel" commandline 1221 * 1222 * this code is intended to be called from architecture specific code 1223 */ 1224 1225 1226 /* 1227 * This function parses command lines in the format 1228 * 1229 * crashkernel=ramsize-range:size[,...][@offset] 1230 * 1231 * The function returns 0 on success and -EINVAL on failure. 1232 */ 1233 static int __init parse_crashkernel_mem(char *cmdline, 1234 unsigned long long system_ram, 1235 unsigned long long *crash_size, 1236 unsigned long long *crash_base) 1237 { 1238 char *cur = cmdline, *tmp; 1239 1240 /* for each entry of the comma-separated list */ 1241 do { 1242 unsigned long long start, end = ULLONG_MAX, size; 1243 1244 /* get the start of the range */ 1245 start = memparse(cur, &tmp); 1246 if (cur == tmp) { 1247 pr_warning("crashkernel: Memory value expected\n"); 1248 return -EINVAL; 1249 } 1250 cur = tmp; 1251 if (*cur != '-') { 1252 pr_warning("crashkernel: '-' expected\n"); 1253 return -EINVAL; 1254 } 1255 cur++; 1256 1257 /* if no ':' is here, than we read the end */ 1258 if (*cur != ':') { 1259 end = memparse(cur, &tmp); 1260 if (cur == tmp) { 1261 pr_warning("crashkernel: Memory " 1262 "value expected\n"); 1263 return -EINVAL; 1264 } 1265 cur = tmp; 1266 if (end <= start) { 1267 pr_warning("crashkernel: end <= start\n"); 1268 return -EINVAL; 1269 } 1270 } 1271 1272 if (*cur != ':') { 1273 pr_warning("crashkernel: ':' expected\n"); 1274 return -EINVAL; 1275 } 1276 cur++; 1277 1278 size = memparse(cur, &tmp); 1279 if (cur == tmp) { 1280 pr_warning("Memory value expected\n"); 1281 return -EINVAL; 1282 } 1283 cur = tmp; 1284 if (size >= system_ram) { 1285 pr_warning("crashkernel: invalid size\n"); 1286 return -EINVAL; 1287 } 1288 1289 /* match ? */ 1290 if (system_ram >= start && system_ram < end) { 1291 *crash_size = size; 1292 break; 1293 } 1294 } while (*cur++ == ','); 1295 1296 if (*crash_size > 0) { 1297 while (*cur && *cur != ' ' && *cur != '@') 1298 cur++; 1299 if (*cur == '@') { 1300 cur++; 1301 *crash_base = memparse(cur, &tmp); 1302 if (cur == tmp) { 1303 pr_warning("Memory value expected " 1304 "after '@'\n"); 1305 return -EINVAL; 1306 } 1307 } 1308 } 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * That function parses "simple" (old) crashkernel command lines like 1315 * 1316 * crashkernel=size[@offset] 1317 * 1318 * It returns 0 on success and -EINVAL on failure. 1319 */ 1320 static int __init parse_crashkernel_simple(char *cmdline, 1321 unsigned long long *crash_size, 1322 unsigned long long *crash_base) 1323 { 1324 char *cur = cmdline; 1325 1326 *crash_size = memparse(cmdline, &cur); 1327 if (cmdline == cur) { 1328 pr_warning("crashkernel: memory value expected\n"); 1329 return -EINVAL; 1330 } 1331 1332 if (*cur == '@') 1333 *crash_base = memparse(cur+1, &cur); 1334 1335 return 0; 1336 } 1337 1338 /* 1339 * That function is the entry point for command line parsing and should be 1340 * called from the arch-specific code. 1341 */ 1342 int __init parse_crashkernel(char *cmdline, 1343 unsigned long long system_ram, 1344 unsigned long long *crash_size, 1345 unsigned long long *crash_base) 1346 { 1347 char *p = cmdline, *ck_cmdline = NULL; 1348 char *first_colon, *first_space; 1349 1350 BUG_ON(!crash_size || !crash_base); 1351 *crash_size = 0; 1352 *crash_base = 0; 1353 1354 /* find crashkernel and use the last one if there are more */ 1355 p = strstr(p, "crashkernel="); 1356 while (p) { 1357 ck_cmdline = p; 1358 p = strstr(p+1, "crashkernel="); 1359 } 1360 1361 if (!ck_cmdline) 1362 return -EINVAL; 1363 1364 ck_cmdline += 12; /* strlen("crashkernel=") */ 1365 1366 /* 1367 * if the commandline contains a ':', then that's the extended 1368 * syntax -- if not, it must be the classic syntax 1369 */ 1370 first_colon = strchr(ck_cmdline, ':'); 1371 first_space = strchr(ck_cmdline, ' '); 1372 if (first_colon && (!first_space || first_colon < first_space)) 1373 return parse_crashkernel_mem(ck_cmdline, system_ram, 1374 crash_size, crash_base); 1375 else 1376 return parse_crashkernel_simple(ck_cmdline, crash_size, 1377 crash_base); 1378 1379 return 0; 1380 } 1381 1382 1383 1384 void crash_save_vmcoreinfo(void) 1385 { 1386 u32 *buf; 1387 1388 if (!vmcoreinfo_size) 1389 return; 1390 1391 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); 1392 1393 buf = (u32 *)vmcoreinfo_note; 1394 1395 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1396 vmcoreinfo_size); 1397 1398 final_note(buf); 1399 } 1400 1401 void vmcoreinfo_append_str(const char *fmt, ...) 1402 { 1403 va_list args; 1404 char buf[0x50]; 1405 int r; 1406 1407 va_start(args, fmt); 1408 r = vsnprintf(buf, sizeof(buf), fmt, args); 1409 va_end(args); 1410 1411 if (r + vmcoreinfo_size > vmcoreinfo_max_size) 1412 r = vmcoreinfo_max_size - vmcoreinfo_size; 1413 1414 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1415 1416 vmcoreinfo_size += r; 1417 } 1418 1419 /* 1420 * provide an empty default implementation here -- architecture 1421 * code may override this 1422 */ 1423 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1424 {} 1425 1426 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1427 { 1428 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1429 } 1430 1431 static int __init crash_save_vmcoreinfo_init(void) 1432 { 1433 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1434 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1435 1436 VMCOREINFO_SYMBOL(init_uts_ns); 1437 VMCOREINFO_SYMBOL(node_online_map); 1438 VMCOREINFO_SYMBOL(swapper_pg_dir); 1439 VMCOREINFO_SYMBOL(_stext); 1440 VMCOREINFO_SYMBOL(vmlist); 1441 1442 #ifndef CONFIG_NEED_MULTIPLE_NODES 1443 VMCOREINFO_SYMBOL(mem_map); 1444 VMCOREINFO_SYMBOL(contig_page_data); 1445 #endif 1446 #ifdef CONFIG_SPARSEMEM 1447 VMCOREINFO_SYMBOL(mem_section); 1448 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1449 VMCOREINFO_STRUCT_SIZE(mem_section); 1450 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1451 #endif 1452 VMCOREINFO_STRUCT_SIZE(page); 1453 VMCOREINFO_STRUCT_SIZE(pglist_data); 1454 VMCOREINFO_STRUCT_SIZE(zone); 1455 VMCOREINFO_STRUCT_SIZE(free_area); 1456 VMCOREINFO_STRUCT_SIZE(list_head); 1457 VMCOREINFO_SIZE(nodemask_t); 1458 VMCOREINFO_OFFSET(page, flags); 1459 VMCOREINFO_OFFSET(page, _count); 1460 VMCOREINFO_OFFSET(page, mapping); 1461 VMCOREINFO_OFFSET(page, lru); 1462 VMCOREINFO_OFFSET(pglist_data, node_zones); 1463 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1464 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1465 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1466 #endif 1467 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1468 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1469 VMCOREINFO_OFFSET(pglist_data, node_id); 1470 VMCOREINFO_OFFSET(zone, free_area); 1471 VMCOREINFO_OFFSET(zone, vm_stat); 1472 VMCOREINFO_OFFSET(zone, spanned_pages); 1473 VMCOREINFO_OFFSET(free_area, free_list); 1474 VMCOREINFO_OFFSET(list_head, next); 1475 VMCOREINFO_OFFSET(list_head, prev); 1476 VMCOREINFO_OFFSET(vm_struct, addr); 1477 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1478 log_buf_kexec_setup(); 1479 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1480 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1481 VMCOREINFO_NUMBER(PG_lru); 1482 VMCOREINFO_NUMBER(PG_private); 1483 VMCOREINFO_NUMBER(PG_swapcache); 1484 1485 arch_crash_save_vmcoreinfo(); 1486 1487 return 0; 1488 } 1489 1490 module_init(crash_save_vmcoreinfo_init) 1491 1492 /* 1493 * Move into place and start executing a preloaded standalone 1494 * executable. If nothing was preloaded return an error. 1495 */ 1496 int kernel_kexec(void) 1497 { 1498 int error = 0; 1499 1500 if (!mutex_trylock(&kexec_mutex)) 1501 return -EBUSY; 1502 if (!kexec_image) { 1503 error = -EINVAL; 1504 goto Unlock; 1505 } 1506 1507 #ifdef CONFIG_KEXEC_JUMP 1508 if (kexec_image->preserve_context) { 1509 mutex_lock(&pm_mutex); 1510 pm_prepare_console(); 1511 error = freeze_processes(); 1512 if (error) { 1513 error = -EBUSY; 1514 goto Restore_console; 1515 } 1516 suspend_console(); 1517 error = dpm_suspend_start(PMSG_FREEZE); 1518 if (error) 1519 goto Resume_console; 1520 /* At this point, dpm_suspend_start() has been called, 1521 * but *not* dpm_suspend_noirq(). We *must* call 1522 * dpm_suspend_noirq() now. Otherwise, drivers for 1523 * some devices (e.g. interrupt controllers) become 1524 * desynchronized with the actual state of the 1525 * hardware at resume time, and evil weirdness ensues. 1526 */ 1527 error = dpm_suspend_noirq(PMSG_FREEZE); 1528 if (error) 1529 goto Resume_devices; 1530 error = disable_nonboot_cpus(); 1531 if (error) 1532 goto Enable_cpus; 1533 local_irq_disable(); 1534 error = syscore_suspend(); 1535 if (error) 1536 goto Enable_irqs; 1537 } else 1538 #endif 1539 { 1540 kernel_restart_prepare(NULL); 1541 printk(KERN_EMERG "Starting new kernel\n"); 1542 machine_shutdown(); 1543 } 1544 1545 machine_kexec(kexec_image); 1546 1547 #ifdef CONFIG_KEXEC_JUMP 1548 if (kexec_image->preserve_context) { 1549 syscore_resume(); 1550 Enable_irqs: 1551 local_irq_enable(); 1552 Enable_cpus: 1553 enable_nonboot_cpus(); 1554 dpm_resume_noirq(PMSG_RESTORE); 1555 Resume_devices: 1556 dpm_resume_end(PMSG_RESTORE); 1557 Resume_console: 1558 resume_console(); 1559 thaw_processes(); 1560 Restore_console: 1561 pm_restore_console(); 1562 mutex_unlock(&pm_mutex); 1563 } 1564 #endif 1565 1566 Unlock: 1567 mutex_unlock(&kexec_mutex); 1568 return error; 1569 } 1570