xref: /openbmc/linux/kernel/kexec.c (revision 63dc02bd)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/syscore_ops.h>
36 
37 #include <asm/page.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/sections.h>
41 
42 /* Per cpu memory for storing cpu states in case of system crash. */
43 note_buf_t __percpu *crash_notes;
44 
45 /* vmcoreinfo stuff */
46 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
47 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
48 size_t vmcoreinfo_size;
49 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
50 
51 /* Location of the reserved area for the crash kernel */
52 struct resource crashk_res = {
53 	.name  = "Crash kernel",
54 	.start = 0,
55 	.end   = 0,
56 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
57 };
58 
59 int kexec_should_crash(struct task_struct *p)
60 {
61 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
62 		return 1;
63 	return 0;
64 }
65 
66 /*
67  * When kexec transitions to the new kernel there is a one-to-one
68  * mapping between physical and virtual addresses.  On processors
69  * where you can disable the MMU this is trivial, and easy.  For
70  * others it is still a simple predictable page table to setup.
71  *
72  * In that environment kexec copies the new kernel to its final
73  * resting place.  This means I can only support memory whose
74  * physical address can fit in an unsigned long.  In particular
75  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
76  * If the assembly stub has more restrictive requirements
77  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
78  * defined more restrictively in <asm/kexec.h>.
79  *
80  * The code for the transition from the current kernel to the
81  * the new kernel is placed in the control_code_buffer, whose size
82  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
83  * page of memory is necessary, but some architectures require more.
84  * Because this memory must be identity mapped in the transition from
85  * virtual to physical addresses it must live in the range
86  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
87  * modifiable.
88  *
89  * The assembly stub in the control code buffer is passed a linked list
90  * of descriptor pages detailing the source pages of the new kernel,
91  * and the destination addresses of those source pages.  As this data
92  * structure is not used in the context of the current OS, it must
93  * be self-contained.
94  *
95  * The code has been made to work with highmem pages and will use a
96  * destination page in its final resting place (if it happens
97  * to allocate it).  The end product of this is that most of the
98  * physical address space, and most of RAM can be used.
99  *
100  * Future directions include:
101  *  - allocating a page table with the control code buffer identity
102  *    mapped, to simplify machine_kexec and make kexec_on_panic more
103  *    reliable.
104  */
105 
106 /*
107  * KIMAGE_NO_DEST is an impossible destination address..., for
108  * allocating pages whose destination address we do not care about.
109  */
110 #define KIMAGE_NO_DEST (-1UL)
111 
112 static int kimage_is_destination_range(struct kimage *image,
113 				       unsigned long start, unsigned long end);
114 static struct page *kimage_alloc_page(struct kimage *image,
115 				       gfp_t gfp_mask,
116 				       unsigned long dest);
117 
118 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
119 	                    unsigned long nr_segments,
120                             struct kexec_segment __user *segments)
121 {
122 	size_t segment_bytes;
123 	struct kimage *image;
124 	unsigned long i;
125 	int result;
126 
127 	/* Allocate a controlling structure */
128 	result = -ENOMEM;
129 	image = kzalloc(sizeof(*image), GFP_KERNEL);
130 	if (!image)
131 		goto out;
132 
133 	image->head = 0;
134 	image->entry = &image->head;
135 	image->last_entry = &image->head;
136 	image->control_page = ~0; /* By default this does not apply */
137 	image->start = entry;
138 	image->type = KEXEC_TYPE_DEFAULT;
139 
140 	/* Initialize the list of control pages */
141 	INIT_LIST_HEAD(&image->control_pages);
142 
143 	/* Initialize the list of destination pages */
144 	INIT_LIST_HEAD(&image->dest_pages);
145 
146 	/* Initialize the list of unusable pages */
147 	INIT_LIST_HEAD(&image->unuseable_pages);
148 
149 	/* Read in the segments */
150 	image->nr_segments = nr_segments;
151 	segment_bytes = nr_segments * sizeof(*segments);
152 	result = copy_from_user(image->segment, segments, segment_bytes);
153 	if (result) {
154 		result = -EFAULT;
155 		goto out;
156 	}
157 
158 	/*
159 	 * Verify we have good destination addresses.  The caller is
160 	 * responsible for making certain we don't attempt to load
161 	 * the new image into invalid or reserved areas of RAM.  This
162 	 * just verifies it is an address we can use.
163 	 *
164 	 * Since the kernel does everything in page size chunks ensure
165 	 * the destination addresses are page aligned.  Too many
166 	 * special cases crop of when we don't do this.  The most
167 	 * insidious is getting overlapping destination addresses
168 	 * simply because addresses are changed to page size
169 	 * granularity.
170 	 */
171 	result = -EADDRNOTAVAIL;
172 	for (i = 0; i < nr_segments; i++) {
173 		unsigned long mstart, mend;
174 
175 		mstart = image->segment[i].mem;
176 		mend   = mstart + image->segment[i].memsz;
177 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
178 			goto out;
179 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
180 			goto out;
181 	}
182 
183 	/* Verify our destination addresses do not overlap.
184 	 * If we alloed overlapping destination addresses
185 	 * through very weird things can happen with no
186 	 * easy explanation as one segment stops on another.
187 	 */
188 	result = -EINVAL;
189 	for (i = 0; i < nr_segments; i++) {
190 		unsigned long mstart, mend;
191 		unsigned long j;
192 
193 		mstart = image->segment[i].mem;
194 		mend   = mstart + image->segment[i].memsz;
195 		for (j = 0; j < i; j++) {
196 			unsigned long pstart, pend;
197 			pstart = image->segment[j].mem;
198 			pend   = pstart + image->segment[j].memsz;
199 			/* Do the segments overlap ? */
200 			if ((mend > pstart) && (mstart < pend))
201 				goto out;
202 		}
203 	}
204 
205 	/* Ensure our buffer sizes are strictly less than
206 	 * our memory sizes.  This should always be the case,
207 	 * and it is easier to check up front than to be surprised
208 	 * later on.
209 	 */
210 	result = -EINVAL;
211 	for (i = 0; i < nr_segments; i++) {
212 		if (image->segment[i].bufsz > image->segment[i].memsz)
213 			goto out;
214 	}
215 
216 	result = 0;
217 out:
218 	if (result == 0)
219 		*rimage = image;
220 	else
221 		kfree(image);
222 
223 	return result;
224 
225 }
226 
227 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
228 				unsigned long nr_segments,
229 				struct kexec_segment __user *segments)
230 {
231 	int result;
232 	struct kimage *image;
233 
234 	/* Allocate and initialize a controlling structure */
235 	image = NULL;
236 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
237 	if (result)
238 		goto out;
239 
240 	*rimage = image;
241 
242 	/*
243 	 * Find a location for the control code buffer, and add it
244 	 * the vector of segments so that it's pages will also be
245 	 * counted as destination pages.
246 	 */
247 	result = -ENOMEM;
248 	image->control_code_page = kimage_alloc_control_pages(image,
249 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
250 	if (!image->control_code_page) {
251 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
252 		goto out;
253 	}
254 
255 	image->swap_page = kimage_alloc_control_pages(image, 0);
256 	if (!image->swap_page) {
257 		printk(KERN_ERR "Could not allocate swap buffer\n");
258 		goto out;
259 	}
260 
261 	result = 0;
262  out:
263 	if (result == 0)
264 		*rimage = image;
265 	else
266 		kfree(image);
267 
268 	return result;
269 }
270 
271 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
272 				unsigned long nr_segments,
273 				struct kexec_segment __user *segments)
274 {
275 	int result;
276 	struct kimage *image;
277 	unsigned long i;
278 
279 	image = NULL;
280 	/* Verify we have a valid entry point */
281 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
282 		result = -EADDRNOTAVAIL;
283 		goto out;
284 	}
285 
286 	/* Allocate and initialize a controlling structure */
287 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
288 	if (result)
289 		goto out;
290 
291 	/* Enable the special crash kernel control page
292 	 * allocation policy.
293 	 */
294 	image->control_page = crashk_res.start;
295 	image->type = KEXEC_TYPE_CRASH;
296 
297 	/*
298 	 * Verify we have good destination addresses.  Normally
299 	 * the caller is responsible for making certain we don't
300 	 * attempt to load the new image into invalid or reserved
301 	 * areas of RAM.  But crash kernels are preloaded into a
302 	 * reserved area of ram.  We must ensure the addresses
303 	 * are in the reserved area otherwise preloading the
304 	 * kernel could corrupt things.
305 	 */
306 	result = -EADDRNOTAVAIL;
307 	for (i = 0; i < nr_segments; i++) {
308 		unsigned long mstart, mend;
309 
310 		mstart = image->segment[i].mem;
311 		mend = mstart + image->segment[i].memsz - 1;
312 		/* Ensure we are within the crash kernel limits */
313 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
314 			goto out;
315 	}
316 
317 	/*
318 	 * Find a location for the control code buffer, and add
319 	 * the vector of segments so that it's pages will also be
320 	 * counted as destination pages.
321 	 */
322 	result = -ENOMEM;
323 	image->control_code_page = kimage_alloc_control_pages(image,
324 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
325 	if (!image->control_code_page) {
326 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
327 		goto out;
328 	}
329 
330 	result = 0;
331 out:
332 	if (result == 0)
333 		*rimage = image;
334 	else
335 		kfree(image);
336 
337 	return result;
338 }
339 
340 static int kimage_is_destination_range(struct kimage *image,
341 					unsigned long start,
342 					unsigned long end)
343 {
344 	unsigned long i;
345 
346 	for (i = 0; i < image->nr_segments; i++) {
347 		unsigned long mstart, mend;
348 
349 		mstart = image->segment[i].mem;
350 		mend = mstart + image->segment[i].memsz;
351 		if ((end > mstart) && (start < mend))
352 			return 1;
353 	}
354 
355 	return 0;
356 }
357 
358 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
359 {
360 	struct page *pages;
361 
362 	pages = alloc_pages(gfp_mask, order);
363 	if (pages) {
364 		unsigned int count, i;
365 		pages->mapping = NULL;
366 		set_page_private(pages, order);
367 		count = 1 << order;
368 		for (i = 0; i < count; i++)
369 			SetPageReserved(pages + i);
370 	}
371 
372 	return pages;
373 }
374 
375 static void kimage_free_pages(struct page *page)
376 {
377 	unsigned int order, count, i;
378 
379 	order = page_private(page);
380 	count = 1 << order;
381 	for (i = 0; i < count; i++)
382 		ClearPageReserved(page + i);
383 	__free_pages(page, order);
384 }
385 
386 static void kimage_free_page_list(struct list_head *list)
387 {
388 	struct list_head *pos, *next;
389 
390 	list_for_each_safe(pos, next, list) {
391 		struct page *page;
392 
393 		page = list_entry(pos, struct page, lru);
394 		list_del(&page->lru);
395 		kimage_free_pages(page);
396 	}
397 }
398 
399 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
400 							unsigned int order)
401 {
402 	/* Control pages are special, they are the intermediaries
403 	 * that are needed while we copy the rest of the pages
404 	 * to their final resting place.  As such they must
405 	 * not conflict with either the destination addresses
406 	 * or memory the kernel is already using.
407 	 *
408 	 * The only case where we really need more than one of
409 	 * these are for architectures where we cannot disable
410 	 * the MMU and must instead generate an identity mapped
411 	 * page table for all of the memory.
412 	 *
413 	 * At worst this runs in O(N) of the image size.
414 	 */
415 	struct list_head extra_pages;
416 	struct page *pages;
417 	unsigned int count;
418 
419 	count = 1 << order;
420 	INIT_LIST_HEAD(&extra_pages);
421 
422 	/* Loop while I can allocate a page and the page allocated
423 	 * is a destination page.
424 	 */
425 	do {
426 		unsigned long pfn, epfn, addr, eaddr;
427 
428 		pages = kimage_alloc_pages(GFP_KERNEL, order);
429 		if (!pages)
430 			break;
431 		pfn   = page_to_pfn(pages);
432 		epfn  = pfn + count;
433 		addr  = pfn << PAGE_SHIFT;
434 		eaddr = epfn << PAGE_SHIFT;
435 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
436 			      kimage_is_destination_range(image, addr, eaddr)) {
437 			list_add(&pages->lru, &extra_pages);
438 			pages = NULL;
439 		}
440 	} while (!pages);
441 
442 	if (pages) {
443 		/* Remember the allocated page... */
444 		list_add(&pages->lru, &image->control_pages);
445 
446 		/* Because the page is already in it's destination
447 		 * location we will never allocate another page at
448 		 * that address.  Therefore kimage_alloc_pages
449 		 * will not return it (again) and we don't need
450 		 * to give it an entry in image->segment[].
451 		 */
452 	}
453 	/* Deal with the destination pages I have inadvertently allocated.
454 	 *
455 	 * Ideally I would convert multi-page allocations into single
456 	 * page allocations, and add everything to image->dest_pages.
457 	 *
458 	 * For now it is simpler to just free the pages.
459 	 */
460 	kimage_free_page_list(&extra_pages);
461 
462 	return pages;
463 }
464 
465 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
466 						      unsigned int order)
467 {
468 	/* Control pages are special, they are the intermediaries
469 	 * that are needed while we copy the rest of the pages
470 	 * to their final resting place.  As such they must
471 	 * not conflict with either the destination addresses
472 	 * or memory the kernel is already using.
473 	 *
474 	 * Control pages are also the only pags we must allocate
475 	 * when loading a crash kernel.  All of the other pages
476 	 * are specified by the segments and we just memcpy
477 	 * into them directly.
478 	 *
479 	 * The only case where we really need more than one of
480 	 * these are for architectures where we cannot disable
481 	 * the MMU and must instead generate an identity mapped
482 	 * page table for all of the memory.
483 	 *
484 	 * Given the low demand this implements a very simple
485 	 * allocator that finds the first hole of the appropriate
486 	 * size in the reserved memory region, and allocates all
487 	 * of the memory up to and including the hole.
488 	 */
489 	unsigned long hole_start, hole_end, size;
490 	struct page *pages;
491 
492 	pages = NULL;
493 	size = (1 << order) << PAGE_SHIFT;
494 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
495 	hole_end   = hole_start + size - 1;
496 	while (hole_end <= crashk_res.end) {
497 		unsigned long i;
498 
499 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
500 			break;
501 		if (hole_end > crashk_res.end)
502 			break;
503 		/* See if I overlap any of the segments */
504 		for (i = 0; i < image->nr_segments; i++) {
505 			unsigned long mstart, mend;
506 
507 			mstart = image->segment[i].mem;
508 			mend   = mstart + image->segment[i].memsz - 1;
509 			if ((hole_end >= mstart) && (hole_start <= mend)) {
510 				/* Advance the hole to the end of the segment */
511 				hole_start = (mend + (size - 1)) & ~(size - 1);
512 				hole_end   = hole_start + size - 1;
513 				break;
514 			}
515 		}
516 		/* If I don't overlap any segments I have found my hole! */
517 		if (i == image->nr_segments) {
518 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
519 			break;
520 		}
521 	}
522 	if (pages)
523 		image->control_page = hole_end;
524 
525 	return pages;
526 }
527 
528 
529 struct page *kimage_alloc_control_pages(struct kimage *image,
530 					 unsigned int order)
531 {
532 	struct page *pages = NULL;
533 
534 	switch (image->type) {
535 	case KEXEC_TYPE_DEFAULT:
536 		pages = kimage_alloc_normal_control_pages(image, order);
537 		break;
538 	case KEXEC_TYPE_CRASH:
539 		pages = kimage_alloc_crash_control_pages(image, order);
540 		break;
541 	}
542 
543 	return pages;
544 }
545 
546 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
547 {
548 	if (*image->entry != 0)
549 		image->entry++;
550 
551 	if (image->entry == image->last_entry) {
552 		kimage_entry_t *ind_page;
553 		struct page *page;
554 
555 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
556 		if (!page)
557 			return -ENOMEM;
558 
559 		ind_page = page_address(page);
560 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
561 		image->entry = ind_page;
562 		image->last_entry = ind_page +
563 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
564 	}
565 	*image->entry = entry;
566 	image->entry++;
567 	*image->entry = 0;
568 
569 	return 0;
570 }
571 
572 static int kimage_set_destination(struct kimage *image,
573 				   unsigned long destination)
574 {
575 	int result;
576 
577 	destination &= PAGE_MASK;
578 	result = kimage_add_entry(image, destination | IND_DESTINATION);
579 	if (result == 0)
580 		image->destination = destination;
581 
582 	return result;
583 }
584 
585 
586 static int kimage_add_page(struct kimage *image, unsigned long page)
587 {
588 	int result;
589 
590 	page &= PAGE_MASK;
591 	result = kimage_add_entry(image, page | IND_SOURCE);
592 	if (result == 0)
593 		image->destination += PAGE_SIZE;
594 
595 	return result;
596 }
597 
598 
599 static void kimage_free_extra_pages(struct kimage *image)
600 {
601 	/* Walk through and free any extra destination pages I may have */
602 	kimage_free_page_list(&image->dest_pages);
603 
604 	/* Walk through and free any unusable pages I have cached */
605 	kimage_free_page_list(&image->unuseable_pages);
606 
607 }
608 static void kimage_terminate(struct kimage *image)
609 {
610 	if (*image->entry != 0)
611 		image->entry++;
612 
613 	*image->entry = IND_DONE;
614 }
615 
616 #define for_each_kimage_entry(image, ptr, entry) \
617 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
618 		ptr = (entry & IND_INDIRECTION)? \
619 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
620 
621 static void kimage_free_entry(kimage_entry_t entry)
622 {
623 	struct page *page;
624 
625 	page = pfn_to_page(entry >> PAGE_SHIFT);
626 	kimage_free_pages(page);
627 }
628 
629 static void kimage_free(struct kimage *image)
630 {
631 	kimage_entry_t *ptr, entry;
632 	kimage_entry_t ind = 0;
633 
634 	if (!image)
635 		return;
636 
637 	kimage_free_extra_pages(image);
638 	for_each_kimage_entry(image, ptr, entry) {
639 		if (entry & IND_INDIRECTION) {
640 			/* Free the previous indirection page */
641 			if (ind & IND_INDIRECTION)
642 				kimage_free_entry(ind);
643 			/* Save this indirection page until we are
644 			 * done with it.
645 			 */
646 			ind = entry;
647 		}
648 		else if (entry & IND_SOURCE)
649 			kimage_free_entry(entry);
650 	}
651 	/* Free the final indirection page */
652 	if (ind & IND_INDIRECTION)
653 		kimage_free_entry(ind);
654 
655 	/* Handle any machine specific cleanup */
656 	machine_kexec_cleanup(image);
657 
658 	/* Free the kexec control pages... */
659 	kimage_free_page_list(&image->control_pages);
660 	kfree(image);
661 }
662 
663 static kimage_entry_t *kimage_dst_used(struct kimage *image,
664 					unsigned long page)
665 {
666 	kimage_entry_t *ptr, entry;
667 	unsigned long destination = 0;
668 
669 	for_each_kimage_entry(image, ptr, entry) {
670 		if (entry & IND_DESTINATION)
671 			destination = entry & PAGE_MASK;
672 		else if (entry & IND_SOURCE) {
673 			if (page == destination)
674 				return ptr;
675 			destination += PAGE_SIZE;
676 		}
677 	}
678 
679 	return NULL;
680 }
681 
682 static struct page *kimage_alloc_page(struct kimage *image,
683 					gfp_t gfp_mask,
684 					unsigned long destination)
685 {
686 	/*
687 	 * Here we implement safeguards to ensure that a source page
688 	 * is not copied to its destination page before the data on
689 	 * the destination page is no longer useful.
690 	 *
691 	 * To do this we maintain the invariant that a source page is
692 	 * either its own destination page, or it is not a
693 	 * destination page at all.
694 	 *
695 	 * That is slightly stronger than required, but the proof
696 	 * that no problems will not occur is trivial, and the
697 	 * implementation is simply to verify.
698 	 *
699 	 * When allocating all pages normally this algorithm will run
700 	 * in O(N) time, but in the worst case it will run in O(N^2)
701 	 * time.   If the runtime is a problem the data structures can
702 	 * be fixed.
703 	 */
704 	struct page *page;
705 	unsigned long addr;
706 
707 	/*
708 	 * Walk through the list of destination pages, and see if I
709 	 * have a match.
710 	 */
711 	list_for_each_entry(page, &image->dest_pages, lru) {
712 		addr = page_to_pfn(page) << PAGE_SHIFT;
713 		if (addr == destination) {
714 			list_del(&page->lru);
715 			return page;
716 		}
717 	}
718 	page = NULL;
719 	while (1) {
720 		kimage_entry_t *old;
721 
722 		/* Allocate a page, if we run out of memory give up */
723 		page = kimage_alloc_pages(gfp_mask, 0);
724 		if (!page)
725 			return NULL;
726 		/* If the page cannot be used file it away */
727 		if (page_to_pfn(page) >
728 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
729 			list_add(&page->lru, &image->unuseable_pages);
730 			continue;
731 		}
732 		addr = page_to_pfn(page) << PAGE_SHIFT;
733 
734 		/* If it is the destination page we want use it */
735 		if (addr == destination)
736 			break;
737 
738 		/* If the page is not a destination page use it */
739 		if (!kimage_is_destination_range(image, addr,
740 						  addr + PAGE_SIZE))
741 			break;
742 
743 		/*
744 		 * I know that the page is someones destination page.
745 		 * See if there is already a source page for this
746 		 * destination page.  And if so swap the source pages.
747 		 */
748 		old = kimage_dst_used(image, addr);
749 		if (old) {
750 			/* If so move it */
751 			unsigned long old_addr;
752 			struct page *old_page;
753 
754 			old_addr = *old & PAGE_MASK;
755 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
756 			copy_highpage(page, old_page);
757 			*old = addr | (*old & ~PAGE_MASK);
758 
759 			/* The old page I have found cannot be a
760 			 * destination page, so return it if it's
761 			 * gfp_flags honor the ones passed in.
762 			 */
763 			if (!(gfp_mask & __GFP_HIGHMEM) &&
764 			    PageHighMem(old_page)) {
765 				kimage_free_pages(old_page);
766 				continue;
767 			}
768 			addr = old_addr;
769 			page = old_page;
770 			break;
771 		}
772 		else {
773 			/* Place the page on the destination list I
774 			 * will use it later.
775 			 */
776 			list_add(&page->lru, &image->dest_pages);
777 		}
778 	}
779 
780 	return page;
781 }
782 
783 static int kimage_load_normal_segment(struct kimage *image,
784 					 struct kexec_segment *segment)
785 {
786 	unsigned long maddr;
787 	unsigned long ubytes, mbytes;
788 	int result;
789 	unsigned char __user *buf;
790 
791 	result = 0;
792 	buf = segment->buf;
793 	ubytes = segment->bufsz;
794 	mbytes = segment->memsz;
795 	maddr = segment->mem;
796 
797 	result = kimage_set_destination(image, maddr);
798 	if (result < 0)
799 		goto out;
800 
801 	while (mbytes) {
802 		struct page *page;
803 		char *ptr;
804 		size_t uchunk, mchunk;
805 
806 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
807 		if (!page) {
808 			result  = -ENOMEM;
809 			goto out;
810 		}
811 		result = kimage_add_page(image, page_to_pfn(page)
812 								<< PAGE_SHIFT);
813 		if (result < 0)
814 			goto out;
815 
816 		ptr = kmap(page);
817 		/* Start with a clear page */
818 		clear_page(ptr);
819 		ptr += maddr & ~PAGE_MASK;
820 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
821 		if (mchunk > mbytes)
822 			mchunk = mbytes;
823 
824 		uchunk = mchunk;
825 		if (uchunk > ubytes)
826 			uchunk = ubytes;
827 
828 		result = copy_from_user(ptr, buf, uchunk);
829 		kunmap(page);
830 		if (result) {
831 			result = -EFAULT;
832 			goto out;
833 		}
834 		ubytes -= uchunk;
835 		maddr  += mchunk;
836 		buf    += mchunk;
837 		mbytes -= mchunk;
838 	}
839 out:
840 	return result;
841 }
842 
843 static int kimage_load_crash_segment(struct kimage *image,
844 					struct kexec_segment *segment)
845 {
846 	/* For crash dumps kernels we simply copy the data from
847 	 * user space to it's destination.
848 	 * We do things a page at a time for the sake of kmap.
849 	 */
850 	unsigned long maddr;
851 	unsigned long ubytes, mbytes;
852 	int result;
853 	unsigned char __user *buf;
854 
855 	result = 0;
856 	buf = segment->buf;
857 	ubytes = segment->bufsz;
858 	mbytes = segment->memsz;
859 	maddr = segment->mem;
860 	while (mbytes) {
861 		struct page *page;
862 		char *ptr;
863 		size_t uchunk, mchunk;
864 
865 		page = pfn_to_page(maddr >> PAGE_SHIFT);
866 		if (!page) {
867 			result  = -ENOMEM;
868 			goto out;
869 		}
870 		ptr = kmap(page);
871 		ptr += maddr & ~PAGE_MASK;
872 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
873 		if (mchunk > mbytes)
874 			mchunk = mbytes;
875 
876 		uchunk = mchunk;
877 		if (uchunk > ubytes) {
878 			uchunk = ubytes;
879 			/* Zero the trailing part of the page */
880 			memset(ptr + uchunk, 0, mchunk - uchunk);
881 		}
882 		result = copy_from_user(ptr, buf, uchunk);
883 		kexec_flush_icache_page(page);
884 		kunmap(page);
885 		if (result) {
886 			result = -EFAULT;
887 			goto out;
888 		}
889 		ubytes -= uchunk;
890 		maddr  += mchunk;
891 		buf    += mchunk;
892 		mbytes -= mchunk;
893 	}
894 out:
895 	return result;
896 }
897 
898 static int kimage_load_segment(struct kimage *image,
899 				struct kexec_segment *segment)
900 {
901 	int result = -ENOMEM;
902 
903 	switch (image->type) {
904 	case KEXEC_TYPE_DEFAULT:
905 		result = kimage_load_normal_segment(image, segment);
906 		break;
907 	case KEXEC_TYPE_CRASH:
908 		result = kimage_load_crash_segment(image, segment);
909 		break;
910 	}
911 
912 	return result;
913 }
914 
915 /*
916  * Exec Kernel system call: for obvious reasons only root may call it.
917  *
918  * This call breaks up into three pieces.
919  * - A generic part which loads the new kernel from the current
920  *   address space, and very carefully places the data in the
921  *   allocated pages.
922  *
923  * - A generic part that interacts with the kernel and tells all of
924  *   the devices to shut down.  Preventing on-going dmas, and placing
925  *   the devices in a consistent state so a later kernel can
926  *   reinitialize them.
927  *
928  * - A machine specific part that includes the syscall number
929  *   and the copies the image to it's final destination.  And
930  *   jumps into the image at entry.
931  *
932  * kexec does not sync, or unmount filesystems so if you need
933  * that to happen you need to do that yourself.
934  */
935 struct kimage *kexec_image;
936 struct kimage *kexec_crash_image;
937 
938 static DEFINE_MUTEX(kexec_mutex);
939 
940 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
941 		struct kexec_segment __user *, segments, unsigned long, flags)
942 {
943 	struct kimage **dest_image, *image;
944 	int result;
945 
946 	/* We only trust the superuser with rebooting the system. */
947 	if (!capable(CAP_SYS_BOOT))
948 		return -EPERM;
949 
950 	/*
951 	 * Verify we have a legal set of flags
952 	 * This leaves us room for future extensions.
953 	 */
954 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
955 		return -EINVAL;
956 
957 	/* Verify we are on the appropriate architecture */
958 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
959 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
960 		return -EINVAL;
961 
962 	/* Put an artificial cap on the number
963 	 * of segments passed to kexec_load.
964 	 */
965 	if (nr_segments > KEXEC_SEGMENT_MAX)
966 		return -EINVAL;
967 
968 	image = NULL;
969 	result = 0;
970 
971 	/* Because we write directly to the reserved memory
972 	 * region when loading crash kernels we need a mutex here to
973 	 * prevent multiple crash  kernels from attempting to load
974 	 * simultaneously, and to prevent a crash kernel from loading
975 	 * over the top of a in use crash kernel.
976 	 *
977 	 * KISS: always take the mutex.
978 	 */
979 	if (!mutex_trylock(&kexec_mutex))
980 		return -EBUSY;
981 
982 	dest_image = &kexec_image;
983 	if (flags & KEXEC_ON_CRASH)
984 		dest_image = &kexec_crash_image;
985 	if (nr_segments > 0) {
986 		unsigned long i;
987 
988 		/* Loading another kernel to reboot into */
989 		if ((flags & KEXEC_ON_CRASH) == 0)
990 			result = kimage_normal_alloc(&image, entry,
991 							nr_segments, segments);
992 		/* Loading another kernel to switch to if this one crashes */
993 		else if (flags & KEXEC_ON_CRASH) {
994 			/* Free any current crash dump kernel before
995 			 * we corrupt it.
996 			 */
997 			kimage_free(xchg(&kexec_crash_image, NULL));
998 			result = kimage_crash_alloc(&image, entry,
999 						     nr_segments, segments);
1000 			crash_map_reserved_pages();
1001 		}
1002 		if (result)
1003 			goto out;
1004 
1005 		if (flags & KEXEC_PRESERVE_CONTEXT)
1006 			image->preserve_context = 1;
1007 		result = machine_kexec_prepare(image);
1008 		if (result)
1009 			goto out;
1010 
1011 		for (i = 0; i < nr_segments; i++) {
1012 			result = kimage_load_segment(image, &image->segment[i]);
1013 			if (result)
1014 				goto out;
1015 		}
1016 		kimage_terminate(image);
1017 		if (flags & KEXEC_ON_CRASH)
1018 			crash_unmap_reserved_pages();
1019 	}
1020 	/* Install the new kernel, and  Uninstall the old */
1021 	image = xchg(dest_image, image);
1022 
1023 out:
1024 	mutex_unlock(&kexec_mutex);
1025 	kimage_free(image);
1026 
1027 	return result;
1028 }
1029 
1030 /*
1031  * Add and remove page tables for crashkernel memory
1032  *
1033  * Provide an empty default implementation here -- architecture
1034  * code may override this
1035  */
1036 void __weak crash_map_reserved_pages(void)
1037 {}
1038 
1039 void __weak crash_unmap_reserved_pages(void)
1040 {}
1041 
1042 #ifdef CONFIG_COMPAT
1043 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1044 				unsigned long nr_segments,
1045 				struct compat_kexec_segment __user *segments,
1046 				unsigned long flags)
1047 {
1048 	struct compat_kexec_segment in;
1049 	struct kexec_segment out, __user *ksegments;
1050 	unsigned long i, result;
1051 
1052 	/* Don't allow clients that don't understand the native
1053 	 * architecture to do anything.
1054 	 */
1055 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1056 		return -EINVAL;
1057 
1058 	if (nr_segments > KEXEC_SEGMENT_MAX)
1059 		return -EINVAL;
1060 
1061 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1062 	for (i=0; i < nr_segments; i++) {
1063 		result = copy_from_user(&in, &segments[i], sizeof(in));
1064 		if (result)
1065 			return -EFAULT;
1066 
1067 		out.buf   = compat_ptr(in.buf);
1068 		out.bufsz = in.bufsz;
1069 		out.mem   = in.mem;
1070 		out.memsz = in.memsz;
1071 
1072 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1073 		if (result)
1074 			return -EFAULT;
1075 	}
1076 
1077 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1078 }
1079 #endif
1080 
1081 void crash_kexec(struct pt_regs *regs)
1082 {
1083 	/* Take the kexec_mutex here to prevent sys_kexec_load
1084 	 * running on one cpu from replacing the crash kernel
1085 	 * we are using after a panic on a different cpu.
1086 	 *
1087 	 * If the crash kernel was not located in a fixed area
1088 	 * of memory the xchg(&kexec_crash_image) would be
1089 	 * sufficient.  But since I reuse the memory...
1090 	 */
1091 	if (mutex_trylock(&kexec_mutex)) {
1092 		if (kexec_crash_image) {
1093 			struct pt_regs fixed_regs;
1094 
1095 			crash_setup_regs(&fixed_regs, regs);
1096 			crash_save_vmcoreinfo();
1097 			machine_crash_shutdown(&fixed_regs);
1098 			machine_kexec(kexec_crash_image);
1099 		}
1100 		mutex_unlock(&kexec_mutex);
1101 	}
1102 }
1103 
1104 size_t crash_get_memory_size(void)
1105 {
1106 	size_t size = 0;
1107 	mutex_lock(&kexec_mutex);
1108 	if (crashk_res.end != crashk_res.start)
1109 		size = resource_size(&crashk_res);
1110 	mutex_unlock(&kexec_mutex);
1111 	return size;
1112 }
1113 
1114 void __weak crash_free_reserved_phys_range(unsigned long begin,
1115 					   unsigned long end)
1116 {
1117 	unsigned long addr;
1118 
1119 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1120 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1121 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1122 		free_page((unsigned long)__va(addr));
1123 		totalram_pages++;
1124 	}
1125 }
1126 
1127 int crash_shrink_memory(unsigned long new_size)
1128 {
1129 	int ret = 0;
1130 	unsigned long start, end;
1131 	unsigned long old_size;
1132 	struct resource *ram_res;
1133 
1134 	mutex_lock(&kexec_mutex);
1135 
1136 	if (kexec_crash_image) {
1137 		ret = -ENOENT;
1138 		goto unlock;
1139 	}
1140 	start = crashk_res.start;
1141 	end = crashk_res.end;
1142 	old_size = (end == 0) ? 0 : end - start + 1;
1143 	if (new_size >= old_size) {
1144 		ret = (new_size == old_size) ? 0 : -EINVAL;
1145 		goto unlock;
1146 	}
1147 
1148 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1149 	if (!ram_res) {
1150 		ret = -ENOMEM;
1151 		goto unlock;
1152 	}
1153 
1154 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1155 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1156 
1157 	crash_map_reserved_pages();
1158 	crash_free_reserved_phys_range(end, crashk_res.end);
1159 
1160 	if ((start == end) && (crashk_res.parent != NULL))
1161 		release_resource(&crashk_res);
1162 
1163 	ram_res->start = end;
1164 	ram_res->end = crashk_res.end;
1165 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1166 	ram_res->name = "System RAM";
1167 
1168 	crashk_res.end = end - 1;
1169 
1170 	insert_resource(&iomem_resource, ram_res);
1171 	crash_unmap_reserved_pages();
1172 
1173 unlock:
1174 	mutex_unlock(&kexec_mutex);
1175 	return ret;
1176 }
1177 
1178 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1179 			    size_t data_len)
1180 {
1181 	struct elf_note note;
1182 
1183 	note.n_namesz = strlen(name) + 1;
1184 	note.n_descsz = data_len;
1185 	note.n_type   = type;
1186 	memcpy(buf, &note, sizeof(note));
1187 	buf += (sizeof(note) + 3)/4;
1188 	memcpy(buf, name, note.n_namesz);
1189 	buf += (note.n_namesz + 3)/4;
1190 	memcpy(buf, data, note.n_descsz);
1191 	buf += (note.n_descsz + 3)/4;
1192 
1193 	return buf;
1194 }
1195 
1196 static void final_note(u32 *buf)
1197 {
1198 	struct elf_note note;
1199 
1200 	note.n_namesz = 0;
1201 	note.n_descsz = 0;
1202 	note.n_type   = 0;
1203 	memcpy(buf, &note, sizeof(note));
1204 }
1205 
1206 void crash_save_cpu(struct pt_regs *regs, int cpu)
1207 {
1208 	struct elf_prstatus prstatus;
1209 	u32 *buf;
1210 
1211 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1212 		return;
1213 
1214 	/* Using ELF notes here is opportunistic.
1215 	 * I need a well defined structure format
1216 	 * for the data I pass, and I need tags
1217 	 * on the data to indicate what information I have
1218 	 * squirrelled away.  ELF notes happen to provide
1219 	 * all of that, so there is no need to invent something new.
1220 	 */
1221 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1222 	if (!buf)
1223 		return;
1224 	memset(&prstatus, 0, sizeof(prstatus));
1225 	prstatus.pr_pid = current->pid;
1226 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1227 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1228 		      	      &prstatus, sizeof(prstatus));
1229 	final_note(buf);
1230 }
1231 
1232 static int __init crash_notes_memory_init(void)
1233 {
1234 	/* Allocate memory for saving cpu registers. */
1235 	crash_notes = alloc_percpu(note_buf_t);
1236 	if (!crash_notes) {
1237 		printk("Kexec: Memory allocation for saving cpu register"
1238 		" states failed\n");
1239 		return -ENOMEM;
1240 	}
1241 	return 0;
1242 }
1243 module_init(crash_notes_memory_init)
1244 
1245 
1246 /*
1247  * parsing the "crashkernel" commandline
1248  *
1249  * this code is intended to be called from architecture specific code
1250  */
1251 
1252 
1253 /*
1254  * This function parses command lines in the format
1255  *
1256  *   crashkernel=ramsize-range:size[,...][@offset]
1257  *
1258  * The function returns 0 on success and -EINVAL on failure.
1259  */
1260 static int __init parse_crashkernel_mem(char 			*cmdline,
1261 					unsigned long long	system_ram,
1262 					unsigned long long	*crash_size,
1263 					unsigned long long	*crash_base)
1264 {
1265 	char *cur = cmdline, *tmp;
1266 
1267 	/* for each entry of the comma-separated list */
1268 	do {
1269 		unsigned long long start, end = ULLONG_MAX, size;
1270 
1271 		/* get the start of the range */
1272 		start = memparse(cur, &tmp);
1273 		if (cur == tmp) {
1274 			pr_warning("crashkernel: Memory value expected\n");
1275 			return -EINVAL;
1276 		}
1277 		cur = tmp;
1278 		if (*cur != '-') {
1279 			pr_warning("crashkernel: '-' expected\n");
1280 			return -EINVAL;
1281 		}
1282 		cur++;
1283 
1284 		/* if no ':' is here, than we read the end */
1285 		if (*cur != ':') {
1286 			end = memparse(cur, &tmp);
1287 			if (cur == tmp) {
1288 				pr_warning("crashkernel: Memory "
1289 						"value expected\n");
1290 				return -EINVAL;
1291 			}
1292 			cur = tmp;
1293 			if (end <= start) {
1294 				pr_warning("crashkernel: end <= start\n");
1295 				return -EINVAL;
1296 			}
1297 		}
1298 
1299 		if (*cur != ':') {
1300 			pr_warning("crashkernel: ':' expected\n");
1301 			return -EINVAL;
1302 		}
1303 		cur++;
1304 
1305 		size = memparse(cur, &tmp);
1306 		if (cur == tmp) {
1307 			pr_warning("Memory value expected\n");
1308 			return -EINVAL;
1309 		}
1310 		cur = tmp;
1311 		if (size >= system_ram) {
1312 			pr_warning("crashkernel: invalid size\n");
1313 			return -EINVAL;
1314 		}
1315 
1316 		/* match ? */
1317 		if (system_ram >= start && system_ram < end) {
1318 			*crash_size = size;
1319 			break;
1320 		}
1321 	} while (*cur++ == ',');
1322 
1323 	if (*crash_size > 0) {
1324 		while (*cur && *cur != ' ' && *cur != '@')
1325 			cur++;
1326 		if (*cur == '@') {
1327 			cur++;
1328 			*crash_base = memparse(cur, &tmp);
1329 			if (cur == tmp) {
1330 				pr_warning("Memory value expected "
1331 						"after '@'\n");
1332 				return -EINVAL;
1333 			}
1334 		}
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 /*
1341  * That function parses "simple" (old) crashkernel command lines like
1342  *
1343  * 	crashkernel=size[@offset]
1344  *
1345  * It returns 0 on success and -EINVAL on failure.
1346  */
1347 static int __init parse_crashkernel_simple(char 		*cmdline,
1348 					   unsigned long long 	*crash_size,
1349 					   unsigned long long 	*crash_base)
1350 {
1351 	char *cur = cmdline;
1352 
1353 	*crash_size = memparse(cmdline, &cur);
1354 	if (cmdline == cur) {
1355 		pr_warning("crashkernel: memory value expected\n");
1356 		return -EINVAL;
1357 	}
1358 
1359 	if (*cur == '@')
1360 		*crash_base = memparse(cur+1, &cur);
1361 	else if (*cur != ' ' && *cur != '\0') {
1362 		pr_warning("crashkernel: unrecognized char\n");
1363 		return -EINVAL;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 /*
1370  * That function is the entry point for command line parsing and should be
1371  * called from the arch-specific code.
1372  */
1373 int __init parse_crashkernel(char 		 *cmdline,
1374 			     unsigned long long system_ram,
1375 			     unsigned long long *crash_size,
1376 			     unsigned long long *crash_base)
1377 {
1378 	char 	*p = cmdline, *ck_cmdline = NULL;
1379 	char	*first_colon, *first_space;
1380 
1381 	BUG_ON(!crash_size || !crash_base);
1382 	*crash_size = 0;
1383 	*crash_base = 0;
1384 
1385 	/* find crashkernel and use the last one if there are more */
1386 	p = strstr(p, "crashkernel=");
1387 	while (p) {
1388 		ck_cmdline = p;
1389 		p = strstr(p+1, "crashkernel=");
1390 	}
1391 
1392 	if (!ck_cmdline)
1393 		return -EINVAL;
1394 
1395 	ck_cmdline += 12; /* strlen("crashkernel=") */
1396 
1397 	/*
1398 	 * if the commandline contains a ':', then that's the extended
1399 	 * syntax -- if not, it must be the classic syntax
1400 	 */
1401 	first_colon = strchr(ck_cmdline, ':');
1402 	first_space = strchr(ck_cmdline, ' ');
1403 	if (first_colon && (!first_space || first_colon < first_space))
1404 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1405 				crash_size, crash_base);
1406 	else
1407 		return parse_crashkernel_simple(ck_cmdline, crash_size,
1408 				crash_base);
1409 
1410 	return 0;
1411 }
1412 
1413 
1414 static void update_vmcoreinfo_note(void)
1415 {
1416 	u32 *buf = vmcoreinfo_note;
1417 
1418 	if (!vmcoreinfo_size)
1419 		return;
1420 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1421 			      vmcoreinfo_size);
1422 	final_note(buf);
1423 }
1424 
1425 void crash_save_vmcoreinfo(void)
1426 {
1427 	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1428 	update_vmcoreinfo_note();
1429 }
1430 
1431 void vmcoreinfo_append_str(const char *fmt, ...)
1432 {
1433 	va_list args;
1434 	char buf[0x50];
1435 	int r;
1436 
1437 	va_start(args, fmt);
1438 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1439 	va_end(args);
1440 
1441 	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1442 		r = vmcoreinfo_max_size - vmcoreinfo_size;
1443 
1444 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1445 
1446 	vmcoreinfo_size += r;
1447 }
1448 
1449 /*
1450  * provide an empty default implementation here -- architecture
1451  * code may override this
1452  */
1453 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1454 {}
1455 
1456 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1457 {
1458 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1459 }
1460 
1461 static int __init crash_save_vmcoreinfo_init(void)
1462 {
1463 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1464 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1465 
1466 	VMCOREINFO_SYMBOL(init_uts_ns);
1467 	VMCOREINFO_SYMBOL(node_online_map);
1468 #ifdef CONFIG_MMU
1469 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1470 #endif
1471 	VMCOREINFO_SYMBOL(_stext);
1472 	VMCOREINFO_SYMBOL(vmlist);
1473 
1474 #ifndef CONFIG_NEED_MULTIPLE_NODES
1475 	VMCOREINFO_SYMBOL(mem_map);
1476 	VMCOREINFO_SYMBOL(contig_page_data);
1477 #endif
1478 #ifdef CONFIG_SPARSEMEM
1479 	VMCOREINFO_SYMBOL(mem_section);
1480 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1481 	VMCOREINFO_STRUCT_SIZE(mem_section);
1482 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1483 #endif
1484 	VMCOREINFO_STRUCT_SIZE(page);
1485 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1486 	VMCOREINFO_STRUCT_SIZE(zone);
1487 	VMCOREINFO_STRUCT_SIZE(free_area);
1488 	VMCOREINFO_STRUCT_SIZE(list_head);
1489 	VMCOREINFO_SIZE(nodemask_t);
1490 	VMCOREINFO_OFFSET(page, flags);
1491 	VMCOREINFO_OFFSET(page, _count);
1492 	VMCOREINFO_OFFSET(page, mapping);
1493 	VMCOREINFO_OFFSET(page, lru);
1494 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1495 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1496 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1497 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1498 #endif
1499 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1500 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1501 	VMCOREINFO_OFFSET(pglist_data, node_id);
1502 	VMCOREINFO_OFFSET(zone, free_area);
1503 	VMCOREINFO_OFFSET(zone, vm_stat);
1504 	VMCOREINFO_OFFSET(zone, spanned_pages);
1505 	VMCOREINFO_OFFSET(free_area, free_list);
1506 	VMCOREINFO_OFFSET(list_head, next);
1507 	VMCOREINFO_OFFSET(list_head, prev);
1508 	VMCOREINFO_OFFSET(vm_struct, addr);
1509 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1510 	log_buf_kexec_setup();
1511 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1512 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1513 	VMCOREINFO_NUMBER(PG_lru);
1514 	VMCOREINFO_NUMBER(PG_private);
1515 	VMCOREINFO_NUMBER(PG_swapcache);
1516 
1517 	arch_crash_save_vmcoreinfo();
1518 	update_vmcoreinfo_note();
1519 
1520 	return 0;
1521 }
1522 
1523 module_init(crash_save_vmcoreinfo_init)
1524 
1525 /*
1526  * Move into place and start executing a preloaded standalone
1527  * executable.  If nothing was preloaded return an error.
1528  */
1529 int kernel_kexec(void)
1530 {
1531 	int error = 0;
1532 
1533 	if (!mutex_trylock(&kexec_mutex))
1534 		return -EBUSY;
1535 	if (!kexec_image) {
1536 		error = -EINVAL;
1537 		goto Unlock;
1538 	}
1539 
1540 #ifdef CONFIG_KEXEC_JUMP
1541 	if (kexec_image->preserve_context) {
1542 		lock_system_sleep();
1543 		pm_prepare_console();
1544 		error = freeze_processes();
1545 		if (error) {
1546 			error = -EBUSY;
1547 			goto Restore_console;
1548 		}
1549 		suspend_console();
1550 		error = dpm_suspend_start(PMSG_FREEZE);
1551 		if (error)
1552 			goto Resume_console;
1553 		/* At this point, dpm_suspend_start() has been called,
1554 		 * but *not* dpm_suspend_end(). We *must* call
1555 		 * dpm_suspend_end() now.  Otherwise, drivers for
1556 		 * some devices (e.g. interrupt controllers) become
1557 		 * desynchronized with the actual state of the
1558 		 * hardware at resume time, and evil weirdness ensues.
1559 		 */
1560 		error = dpm_suspend_end(PMSG_FREEZE);
1561 		if (error)
1562 			goto Resume_devices;
1563 		error = disable_nonboot_cpus();
1564 		if (error)
1565 			goto Enable_cpus;
1566 		local_irq_disable();
1567 		error = syscore_suspend();
1568 		if (error)
1569 			goto Enable_irqs;
1570 	} else
1571 #endif
1572 	{
1573 		kernel_restart_prepare(NULL);
1574 		printk(KERN_EMERG "Starting new kernel\n");
1575 		machine_shutdown();
1576 	}
1577 
1578 	machine_kexec(kexec_image);
1579 
1580 #ifdef CONFIG_KEXEC_JUMP
1581 	if (kexec_image->preserve_context) {
1582 		syscore_resume();
1583  Enable_irqs:
1584 		local_irq_enable();
1585  Enable_cpus:
1586 		enable_nonboot_cpus();
1587 		dpm_resume_start(PMSG_RESTORE);
1588  Resume_devices:
1589 		dpm_resume_end(PMSG_RESTORE);
1590  Resume_console:
1591 		resume_console();
1592 		thaw_processes();
1593  Restore_console:
1594 		pm_restore_console();
1595 		unlock_system_sleep();
1596 	}
1597 #endif
1598 
1599  Unlock:
1600 	mutex_unlock(&kexec_mutex);
1601 	return error;
1602 }
1603