1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/console.h> 32 #include <linux/vmalloc.h> 33 #include <linux/swap.h> 34 #include <linux/syscore_ops.h> 35 #include <linux/compiler.h> 36 #include <linux/hugetlb.h> 37 38 #include <asm/page.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/sections.h> 42 43 /* Per cpu memory for storing cpu states in case of system crash. */ 44 note_buf_t __percpu *crash_notes; 45 46 /* vmcoreinfo stuff */ 47 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 48 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 49 size_t vmcoreinfo_size; 50 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 /* Location of the reserved area for the crash kernel */ 56 struct resource crashk_res = { 57 .name = "Crash kernel", 58 .start = 0, 59 .end = 0, 60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 61 }; 62 struct resource crashk_low_res = { 63 .name = "Crash kernel", 64 .start = 0, 65 .end = 0, 66 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 67 }; 68 69 int kexec_should_crash(struct task_struct *p) 70 { 71 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 72 return 1; 73 return 0; 74 } 75 76 /* 77 * When kexec transitions to the new kernel there is a one-to-one 78 * mapping between physical and virtual addresses. On processors 79 * where you can disable the MMU this is trivial, and easy. For 80 * others it is still a simple predictable page table to setup. 81 * 82 * In that environment kexec copies the new kernel to its final 83 * resting place. This means I can only support memory whose 84 * physical address can fit in an unsigned long. In particular 85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 86 * If the assembly stub has more restrictive requirements 87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 88 * defined more restrictively in <asm/kexec.h>. 89 * 90 * The code for the transition from the current kernel to the 91 * the new kernel is placed in the control_code_buffer, whose size 92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 93 * page of memory is necessary, but some architectures require more. 94 * Because this memory must be identity mapped in the transition from 95 * virtual to physical addresses it must live in the range 96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 97 * modifiable. 98 * 99 * The assembly stub in the control code buffer is passed a linked list 100 * of descriptor pages detailing the source pages of the new kernel, 101 * and the destination addresses of those source pages. As this data 102 * structure is not used in the context of the current OS, it must 103 * be self-contained. 104 * 105 * The code has been made to work with highmem pages and will use a 106 * destination page in its final resting place (if it happens 107 * to allocate it). The end product of this is that most of the 108 * physical address space, and most of RAM can be used. 109 * 110 * Future directions include: 111 * - allocating a page table with the control code buffer identity 112 * mapped, to simplify machine_kexec and make kexec_on_panic more 113 * reliable. 114 */ 115 116 /* 117 * KIMAGE_NO_DEST is an impossible destination address..., for 118 * allocating pages whose destination address we do not care about. 119 */ 120 #define KIMAGE_NO_DEST (-1UL) 121 122 static int kimage_is_destination_range(struct kimage *image, 123 unsigned long start, unsigned long end); 124 static struct page *kimage_alloc_page(struct kimage *image, 125 gfp_t gfp_mask, 126 unsigned long dest); 127 128 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 129 unsigned long nr_segments, 130 struct kexec_segment __user *segments) 131 { 132 size_t segment_bytes; 133 struct kimage *image; 134 unsigned long i; 135 int result; 136 137 /* Allocate a controlling structure */ 138 result = -ENOMEM; 139 image = kzalloc(sizeof(*image), GFP_KERNEL); 140 if (!image) 141 goto out; 142 143 image->head = 0; 144 image->entry = &image->head; 145 image->last_entry = &image->head; 146 image->control_page = ~0; /* By default this does not apply */ 147 image->start = entry; 148 image->type = KEXEC_TYPE_DEFAULT; 149 150 /* Initialize the list of control pages */ 151 INIT_LIST_HEAD(&image->control_pages); 152 153 /* Initialize the list of destination pages */ 154 INIT_LIST_HEAD(&image->dest_pages); 155 156 /* Initialize the list of unusable pages */ 157 INIT_LIST_HEAD(&image->unuseable_pages); 158 159 /* Read in the segments */ 160 image->nr_segments = nr_segments; 161 segment_bytes = nr_segments * sizeof(*segments); 162 result = copy_from_user(image->segment, segments, segment_bytes); 163 if (result) { 164 result = -EFAULT; 165 goto out; 166 } 167 168 /* 169 * Verify we have good destination addresses. The caller is 170 * responsible for making certain we don't attempt to load 171 * the new image into invalid or reserved areas of RAM. This 172 * just verifies it is an address we can use. 173 * 174 * Since the kernel does everything in page size chunks ensure 175 * the destination addresses are page aligned. Too many 176 * special cases crop of when we don't do this. The most 177 * insidious is getting overlapping destination addresses 178 * simply because addresses are changed to page size 179 * granularity. 180 */ 181 result = -EADDRNOTAVAIL; 182 for (i = 0; i < nr_segments; i++) { 183 unsigned long mstart, mend; 184 185 mstart = image->segment[i].mem; 186 mend = mstart + image->segment[i].memsz; 187 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 188 goto out; 189 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 190 goto out; 191 } 192 193 /* Verify our destination addresses do not overlap. 194 * If we alloed overlapping destination addresses 195 * through very weird things can happen with no 196 * easy explanation as one segment stops on another. 197 */ 198 result = -EINVAL; 199 for (i = 0; i < nr_segments; i++) { 200 unsigned long mstart, mend; 201 unsigned long j; 202 203 mstart = image->segment[i].mem; 204 mend = mstart + image->segment[i].memsz; 205 for (j = 0; j < i; j++) { 206 unsigned long pstart, pend; 207 pstart = image->segment[j].mem; 208 pend = pstart + image->segment[j].memsz; 209 /* Do the segments overlap ? */ 210 if ((mend > pstart) && (mstart < pend)) 211 goto out; 212 } 213 } 214 215 /* Ensure our buffer sizes are strictly less than 216 * our memory sizes. This should always be the case, 217 * and it is easier to check up front than to be surprised 218 * later on. 219 */ 220 result = -EINVAL; 221 for (i = 0; i < nr_segments; i++) { 222 if (image->segment[i].bufsz > image->segment[i].memsz) 223 goto out; 224 } 225 226 result = 0; 227 out: 228 if (result == 0) 229 *rimage = image; 230 else 231 kfree(image); 232 233 return result; 234 235 } 236 237 static void kimage_free_page_list(struct list_head *list); 238 239 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 240 unsigned long nr_segments, 241 struct kexec_segment __user *segments) 242 { 243 int result; 244 struct kimage *image; 245 246 /* Allocate and initialize a controlling structure */ 247 image = NULL; 248 result = do_kimage_alloc(&image, entry, nr_segments, segments); 249 if (result) 250 goto out; 251 252 /* 253 * Find a location for the control code buffer, and add it 254 * the vector of segments so that it's pages will also be 255 * counted as destination pages. 256 */ 257 result = -ENOMEM; 258 image->control_code_page = kimage_alloc_control_pages(image, 259 get_order(KEXEC_CONTROL_PAGE_SIZE)); 260 if (!image->control_code_page) { 261 pr_err("Could not allocate control_code_buffer\n"); 262 goto out_free; 263 } 264 265 image->swap_page = kimage_alloc_control_pages(image, 0); 266 if (!image->swap_page) { 267 pr_err("Could not allocate swap buffer\n"); 268 goto out_free; 269 } 270 271 *rimage = image; 272 return 0; 273 274 out_free: 275 kimage_free_page_list(&image->control_pages); 276 kfree(image); 277 out: 278 return result; 279 } 280 281 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 282 unsigned long nr_segments, 283 struct kexec_segment __user *segments) 284 { 285 int result; 286 struct kimage *image; 287 unsigned long i; 288 289 image = NULL; 290 /* Verify we have a valid entry point */ 291 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 292 result = -EADDRNOTAVAIL; 293 goto out; 294 } 295 296 /* Allocate and initialize a controlling structure */ 297 result = do_kimage_alloc(&image, entry, nr_segments, segments); 298 if (result) 299 goto out; 300 301 /* Enable the special crash kernel control page 302 * allocation policy. 303 */ 304 image->control_page = crashk_res.start; 305 image->type = KEXEC_TYPE_CRASH; 306 307 /* 308 * Verify we have good destination addresses. Normally 309 * the caller is responsible for making certain we don't 310 * attempt to load the new image into invalid or reserved 311 * areas of RAM. But crash kernels are preloaded into a 312 * reserved area of ram. We must ensure the addresses 313 * are in the reserved area otherwise preloading the 314 * kernel could corrupt things. 315 */ 316 result = -EADDRNOTAVAIL; 317 for (i = 0; i < nr_segments; i++) { 318 unsigned long mstart, mend; 319 320 mstart = image->segment[i].mem; 321 mend = mstart + image->segment[i].memsz - 1; 322 /* Ensure we are within the crash kernel limits */ 323 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 324 goto out_free; 325 } 326 327 /* 328 * Find a location for the control code buffer, and add 329 * the vector of segments so that it's pages will also be 330 * counted as destination pages. 331 */ 332 result = -ENOMEM; 333 image->control_code_page = kimage_alloc_control_pages(image, 334 get_order(KEXEC_CONTROL_PAGE_SIZE)); 335 if (!image->control_code_page) { 336 pr_err("Could not allocate control_code_buffer\n"); 337 goto out_free; 338 } 339 340 *rimage = image; 341 return 0; 342 343 out_free: 344 kfree(image); 345 out: 346 return result; 347 } 348 349 static int kimage_is_destination_range(struct kimage *image, 350 unsigned long start, 351 unsigned long end) 352 { 353 unsigned long i; 354 355 for (i = 0; i < image->nr_segments; i++) { 356 unsigned long mstart, mend; 357 358 mstart = image->segment[i].mem; 359 mend = mstart + image->segment[i].memsz; 360 if ((end > mstart) && (start < mend)) 361 return 1; 362 } 363 364 return 0; 365 } 366 367 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 368 { 369 struct page *pages; 370 371 pages = alloc_pages(gfp_mask, order); 372 if (pages) { 373 unsigned int count, i; 374 pages->mapping = NULL; 375 set_page_private(pages, order); 376 count = 1 << order; 377 for (i = 0; i < count; i++) 378 SetPageReserved(pages + i); 379 } 380 381 return pages; 382 } 383 384 static void kimage_free_pages(struct page *page) 385 { 386 unsigned int order, count, i; 387 388 order = page_private(page); 389 count = 1 << order; 390 for (i = 0; i < count; i++) 391 ClearPageReserved(page + i); 392 __free_pages(page, order); 393 } 394 395 static void kimage_free_page_list(struct list_head *list) 396 { 397 struct list_head *pos, *next; 398 399 list_for_each_safe(pos, next, list) { 400 struct page *page; 401 402 page = list_entry(pos, struct page, lru); 403 list_del(&page->lru); 404 kimage_free_pages(page); 405 } 406 } 407 408 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 409 unsigned int order) 410 { 411 /* Control pages are special, they are the intermediaries 412 * that are needed while we copy the rest of the pages 413 * to their final resting place. As such they must 414 * not conflict with either the destination addresses 415 * or memory the kernel is already using. 416 * 417 * The only case where we really need more than one of 418 * these are for architectures where we cannot disable 419 * the MMU and must instead generate an identity mapped 420 * page table for all of the memory. 421 * 422 * At worst this runs in O(N) of the image size. 423 */ 424 struct list_head extra_pages; 425 struct page *pages; 426 unsigned int count; 427 428 count = 1 << order; 429 INIT_LIST_HEAD(&extra_pages); 430 431 /* Loop while I can allocate a page and the page allocated 432 * is a destination page. 433 */ 434 do { 435 unsigned long pfn, epfn, addr, eaddr; 436 437 pages = kimage_alloc_pages(GFP_KERNEL, order); 438 if (!pages) 439 break; 440 pfn = page_to_pfn(pages); 441 epfn = pfn + count; 442 addr = pfn << PAGE_SHIFT; 443 eaddr = epfn << PAGE_SHIFT; 444 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 445 kimage_is_destination_range(image, addr, eaddr)) { 446 list_add(&pages->lru, &extra_pages); 447 pages = NULL; 448 } 449 } while (!pages); 450 451 if (pages) { 452 /* Remember the allocated page... */ 453 list_add(&pages->lru, &image->control_pages); 454 455 /* Because the page is already in it's destination 456 * location we will never allocate another page at 457 * that address. Therefore kimage_alloc_pages 458 * will not return it (again) and we don't need 459 * to give it an entry in image->segment[]. 460 */ 461 } 462 /* Deal with the destination pages I have inadvertently allocated. 463 * 464 * Ideally I would convert multi-page allocations into single 465 * page allocations, and add everything to image->dest_pages. 466 * 467 * For now it is simpler to just free the pages. 468 */ 469 kimage_free_page_list(&extra_pages); 470 471 return pages; 472 } 473 474 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 475 unsigned int order) 476 { 477 /* Control pages are special, they are the intermediaries 478 * that are needed while we copy the rest of the pages 479 * to their final resting place. As such they must 480 * not conflict with either the destination addresses 481 * or memory the kernel is already using. 482 * 483 * Control pages are also the only pags we must allocate 484 * when loading a crash kernel. All of the other pages 485 * are specified by the segments and we just memcpy 486 * into them directly. 487 * 488 * The only case where we really need more than one of 489 * these are for architectures where we cannot disable 490 * the MMU and must instead generate an identity mapped 491 * page table for all of the memory. 492 * 493 * Given the low demand this implements a very simple 494 * allocator that finds the first hole of the appropriate 495 * size in the reserved memory region, and allocates all 496 * of the memory up to and including the hole. 497 */ 498 unsigned long hole_start, hole_end, size; 499 struct page *pages; 500 501 pages = NULL; 502 size = (1 << order) << PAGE_SHIFT; 503 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 504 hole_end = hole_start + size - 1; 505 while (hole_end <= crashk_res.end) { 506 unsigned long i; 507 508 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 509 break; 510 /* See if I overlap any of the segments */ 511 for (i = 0; i < image->nr_segments; i++) { 512 unsigned long mstart, mend; 513 514 mstart = image->segment[i].mem; 515 mend = mstart + image->segment[i].memsz - 1; 516 if ((hole_end >= mstart) && (hole_start <= mend)) { 517 /* Advance the hole to the end of the segment */ 518 hole_start = (mend + (size - 1)) & ~(size - 1); 519 hole_end = hole_start + size - 1; 520 break; 521 } 522 } 523 /* If I don't overlap any segments I have found my hole! */ 524 if (i == image->nr_segments) { 525 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 526 break; 527 } 528 } 529 if (pages) 530 image->control_page = hole_end; 531 532 return pages; 533 } 534 535 536 struct page *kimage_alloc_control_pages(struct kimage *image, 537 unsigned int order) 538 { 539 struct page *pages = NULL; 540 541 switch (image->type) { 542 case KEXEC_TYPE_DEFAULT: 543 pages = kimage_alloc_normal_control_pages(image, order); 544 break; 545 case KEXEC_TYPE_CRASH: 546 pages = kimage_alloc_crash_control_pages(image, order); 547 break; 548 } 549 550 return pages; 551 } 552 553 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 554 { 555 if (*image->entry != 0) 556 image->entry++; 557 558 if (image->entry == image->last_entry) { 559 kimage_entry_t *ind_page; 560 struct page *page; 561 562 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 563 if (!page) 564 return -ENOMEM; 565 566 ind_page = page_address(page); 567 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 568 image->entry = ind_page; 569 image->last_entry = ind_page + 570 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 571 } 572 *image->entry = entry; 573 image->entry++; 574 *image->entry = 0; 575 576 return 0; 577 } 578 579 static int kimage_set_destination(struct kimage *image, 580 unsigned long destination) 581 { 582 int result; 583 584 destination &= PAGE_MASK; 585 result = kimage_add_entry(image, destination | IND_DESTINATION); 586 if (result == 0) 587 image->destination = destination; 588 589 return result; 590 } 591 592 593 static int kimage_add_page(struct kimage *image, unsigned long page) 594 { 595 int result; 596 597 page &= PAGE_MASK; 598 result = kimage_add_entry(image, page | IND_SOURCE); 599 if (result == 0) 600 image->destination += PAGE_SIZE; 601 602 return result; 603 } 604 605 606 static void kimage_free_extra_pages(struct kimage *image) 607 { 608 /* Walk through and free any extra destination pages I may have */ 609 kimage_free_page_list(&image->dest_pages); 610 611 /* Walk through and free any unusable pages I have cached */ 612 kimage_free_page_list(&image->unuseable_pages); 613 614 } 615 static void kimage_terminate(struct kimage *image) 616 { 617 if (*image->entry != 0) 618 image->entry++; 619 620 *image->entry = IND_DONE; 621 } 622 623 #define for_each_kimage_entry(image, ptr, entry) \ 624 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 625 ptr = (entry & IND_INDIRECTION) ? \ 626 phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 627 628 static void kimage_free_entry(kimage_entry_t entry) 629 { 630 struct page *page; 631 632 page = pfn_to_page(entry >> PAGE_SHIFT); 633 kimage_free_pages(page); 634 } 635 636 static void kimage_free(struct kimage *image) 637 { 638 kimage_entry_t *ptr, entry; 639 kimage_entry_t ind = 0; 640 641 if (!image) 642 return; 643 644 kimage_free_extra_pages(image); 645 for_each_kimage_entry(image, ptr, entry) { 646 if (entry & IND_INDIRECTION) { 647 /* Free the previous indirection page */ 648 if (ind & IND_INDIRECTION) 649 kimage_free_entry(ind); 650 /* Save this indirection page until we are 651 * done with it. 652 */ 653 ind = entry; 654 } else if (entry & IND_SOURCE) 655 kimage_free_entry(entry); 656 } 657 /* Free the final indirection page */ 658 if (ind & IND_INDIRECTION) 659 kimage_free_entry(ind); 660 661 /* Handle any machine specific cleanup */ 662 machine_kexec_cleanup(image); 663 664 /* Free the kexec control pages... */ 665 kimage_free_page_list(&image->control_pages); 666 kfree(image); 667 } 668 669 static kimage_entry_t *kimage_dst_used(struct kimage *image, 670 unsigned long page) 671 { 672 kimage_entry_t *ptr, entry; 673 unsigned long destination = 0; 674 675 for_each_kimage_entry(image, ptr, entry) { 676 if (entry & IND_DESTINATION) 677 destination = entry & PAGE_MASK; 678 else if (entry & IND_SOURCE) { 679 if (page == destination) 680 return ptr; 681 destination += PAGE_SIZE; 682 } 683 } 684 685 return NULL; 686 } 687 688 static struct page *kimage_alloc_page(struct kimage *image, 689 gfp_t gfp_mask, 690 unsigned long destination) 691 { 692 /* 693 * Here we implement safeguards to ensure that a source page 694 * is not copied to its destination page before the data on 695 * the destination page is no longer useful. 696 * 697 * To do this we maintain the invariant that a source page is 698 * either its own destination page, or it is not a 699 * destination page at all. 700 * 701 * That is slightly stronger than required, but the proof 702 * that no problems will not occur is trivial, and the 703 * implementation is simply to verify. 704 * 705 * When allocating all pages normally this algorithm will run 706 * in O(N) time, but in the worst case it will run in O(N^2) 707 * time. If the runtime is a problem the data structures can 708 * be fixed. 709 */ 710 struct page *page; 711 unsigned long addr; 712 713 /* 714 * Walk through the list of destination pages, and see if I 715 * have a match. 716 */ 717 list_for_each_entry(page, &image->dest_pages, lru) { 718 addr = page_to_pfn(page) << PAGE_SHIFT; 719 if (addr == destination) { 720 list_del(&page->lru); 721 return page; 722 } 723 } 724 page = NULL; 725 while (1) { 726 kimage_entry_t *old; 727 728 /* Allocate a page, if we run out of memory give up */ 729 page = kimage_alloc_pages(gfp_mask, 0); 730 if (!page) 731 return NULL; 732 /* If the page cannot be used file it away */ 733 if (page_to_pfn(page) > 734 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 735 list_add(&page->lru, &image->unuseable_pages); 736 continue; 737 } 738 addr = page_to_pfn(page) << PAGE_SHIFT; 739 740 /* If it is the destination page we want use it */ 741 if (addr == destination) 742 break; 743 744 /* If the page is not a destination page use it */ 745 if (!kimage_is_destination_range(image, addr, 746 addr + PAGE_SIZE)) 747 break; 748 749 /* 750 * I know that the page is someones destination page. 751 * See if there is already a source page for this 752 * destination page. And if so swap the source pages. 753 */ 754 old = kimage_dst_used(image, addr); 755 if (old) { 756 /* If so move it */ 757 unsigned long old_addr; 758 struct page *old_page; 759 760 old_addr = *old & PAGE_MASK; 761 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 762 copy_highpage(page, old_page); 763 *old = addr | (*old & ~PAGE_MASK); 764 765 /* The old page I have found cannot be a 766 * destination page, so return it if it's 767 * gfp_flags honor the ones passed in. 768 */ 769 if (!(gfp_mask & __GFP_HIGHMEM) && 770 PageHighMem(old_page)) { 771 kimage_free_pages(old_page); 772 continue; 773 } 774 addr = old_addr; 775 page = old_page; 776 break; 777 } else { 778 /* Place the page on the destination list I 779 * will use it later. 780 */ 781 list_add(&page->lru, &image->dest_pages); 782 } 783 } 784 785 return page; 786 } 787 788 static int kimage_load_normal_segment(struct kimage *image, 789 struct kexec_segment *segment) 790 { 791 unsigned long maddr; 792 size_t ubytes, mbytes; 793 int result; 794 unsigned char __user *buf; 795 796 result = 0; 797 buf = segment->buf; 798 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 800 maddr = segment->mem; 801 802 result = kimage_set_destination(image, maddr); 803 if (result < 0) 804 goto out; 805 806 while (mbytes) { 807 struct page *page; 808 char *ptr; 809 size_t uchunk, mchunk; 810 811 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 812 if (!page) { 813 result = -ENOMEM; 814 goto out; 815 } 816 result = kimage_add_page(image, page_to_pfn(page) 817 << PAGE_SHIFT); 818 if (result < 0) 819 goto out; 820 821 ptr = kmap(page); 822 /* Start with a clear page */ 823 clear_page(ptr); 824 ptr += maddr & ~PAGE_MASK; 825 mchunk = min_t(size_t, mbytes, 826 PAGE_SIZE - (maddr & ~PAGE_MASK)); 827 uchunk = min(ubytes, mchunk); 828 829 result = copy_from_user(ptr, buf, uchunk); 830 kunmap(page); 831 if (result) { 832 result = -EFAULT; 833 goto out; 834 } 835 ubytes -= uchunk; 836 maddr += mchunk; 837 buf += mchunk; 838 mbytes -= mchunk; 839 } 840 out: 841 return result; 842 } 843 844 static int kimage_load_crash_segment(struct kimage *image, 845 struct kexec_segment *segment) 846 { 847 /* For crash dumps kernels we simply copy the data from 848 * user space to it's destination. 849 * We do things a page at a time for the sake of kmap. 850 */ 851 unsigned long maddr; 852 size_t ubytes, mbytes; 853 int result; 854 unsigned char __user *buf; 855 856 result = 0; 857 buf = segment->buf; 858 ubytes = segment->bufsz; 859 mbytes = segment->memsz; 860 maddr = segment->mem; 861 while (mbytes) { 862 struct page *page; 863 char *ptr; 864 size_t uchunk, mchunk; 865 866 page = pfn_to_page(maddr >> PAGE_SHIFT); 867 if (!page) { 868 result = -ENOMEM; 869 goto out; 870 } 871 ptr = kmap(page); 872 ptr += maddr & ~PAGE_MASK; 873 mchunk = min_t(size_t, mbytes, 874 PAGE_SIZE - (maddr & ~PAGE_MASK)); 875 uchunk = min(ubytes, mchunk); 876 if (mchunk > uchunk) { 877 /* Zero the trailing part of the page */ 878 memset(ptr + uchunk, 0, mchunk - uchunk); 879 } 880 result = copy_from_user(ptr, buf, uchunk); 881 kexec_flush_icache_page(page); 882 kunmap(page); 883 if (result) { 884 result = -EFAULT; 885 goto out; 886 } 887 ubytes -= uchunk; 888 maddr += mchunk; 889 buf += mchunk; 890 mbytes -= mchunk; 891 } 892 out: 893 return result; 894 } 895 896 static int kimage_load_segment(struct kimage *image, 897 struct kexec_segment *segment) 898 { 899 int result = -ENOMEM; 900 901 switch (image->type) { 902 case KEXEC_TYPE_DEFAULT: 903 result = kimage_load_normal_segment(image, segment); 904 break; 905 case KEXEC_TYPE_CRASH: 906 result = kimage_load_crash_segment(image, segment); 907 break; 908 } 909 910 return result; 911 } 912 913 /* 914 * Exec Kernel system call: for obvious reasons only root may call it. 915 * 916 * This call breaks up into three pieces. 917 * - A generic part which loads the new kernel from the current 918 * address space, and very carefully places the data in the 919 * allocated pages. 920 * 921 * - A generic part that interacts with the kernel and tells all of 922 * the devices to shut down. Preventing on-going dmas, and placing 923 * the devices in a consistent state so a later kernel can 924 * reinitialize them. 925 * 926 * - A machine specific part that includes the syscall number 927 * and then copies the image to it's final destination. And 928 * jumps into the image at entry. 929 * 930 * kexec does not sync, or unmount filesystems so if you need 931 * that to happen you need to do that yourself. 932 */ 933 struct kimage *kexec_image; 934 struct kimage *kexec_crash_image; 935 int kexec_load_disabled; 936 937 static DEFINE_MUTEX(kexec_mutex); 938 939 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 940 struct kexec_segment __user *, segments, unsigned long, flags) 941 { 942 struct kimage **dest_image, *image; 943 int result; 944 945 /* We only trust the superuser with rebooting the system. */ 946 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 947 return -EPERM; 948 949 /* 950 * Verify we have a legal set of flags 951 * This leaves us room for future extensions. 952 */ 953 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 954 return -EINVAL; 955 956 /* Verify we are on the appropriate architecture */ 957 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 958 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 959 return -EINVAL; 960 961 /* Put an artificial cap on the number 962 * of segments passed to kexec_load. 963 */ 964 if (nr_segments > KEXEC_SEGMENT_MAX) 965 return -EINVAL; 966 967 image = NULL; 968 result = 0; 969 970 /* Because we write directly to the reserved memory 971 * region when loading crash kernels we need a mutex here to 972 * prevent multiple crash kernels from attempting to load 973 * simultaneously, and to prevent a crash kernel from loading 974 * over the top of a in use crash kernel. 975 * 976 * KISS: always take the mutex. 977 */ 978 if (!mutex_trylock(&kexec_mutex)) 979 return -EBUSY; 980 981 dest_image = &kexec_image; 982 if (flags & KEXEC_ON_CRASH) 983 dest_image = &kexec_crash_image; 984 if (nr_segments > 0) { 985 unsigned long i; 986 987 /* Loading another kernel to reboot into */ 988 if ((flags & KEXEC_ON_CRASH) == 0) 989 result = kimage_normal_alloc(&image, entry, 990 nr_segments, segments); 991 /* Loading another kernel to switch to if this one crashes */ 992 else if (flags & KEXEC_ON_CRASH) { 993 /* Free any current crash dump kernel before 994 * we corrupt it. 995 */ 996 kimage_free(xchg(&kexec_crash_image, NULL)); 997 result = kimage_crash_alloc(&image, entry, 998 nr_segments, segments); 999 crash_map_reserved_pages(); 1000 } 1001 if (result) 1002 goto out; 1003 1004 if (flags & KEXEC_PRESERVE_CONTEXT) 1005 image->preserve_context = 1; 1006 result = machine_kexec_prepare(image); 1007 if (result) 1008 goto out; 1009 1010 for (i = 0; i < nr_segments; i++) { 1011 result = kimage_load_segment(image, &image->segment[i]); 1012 if (result) 1013 goto out; 1014 } 1015 kimage_terminate(image); 1016 if (flags & KEXEC_ON_CRASH) 1017 crash_unmap_reserved_pages(); 1018 } 1019 /* Install the new kernel, and Uninstall the old */ 1020 image = xchg(dest_image, image); 1021 1022 out: 1023 mutex_unlock(&kexec_mutex); 1024 kimage_free(image); 1025 1026 return result; 1027 } 1028 1029 /* 1030 * Add and remove page tables for crashkernel memory 1031 * 1032 * Provide an empty default implementation here -- architecture 1033 * code may override this 1034 */ 1035 void __weak crash_map_reserved_pages(void) 1036 {} 1037 1038 void __weak crash_unmap_reserved_pages(void) 1039 {} 1040 1041 #ifdef CONFIG_COMPAT 1042 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 1043 compat_ulong_t, nr_segments, 1044 struct compat_kexec_segment __user *, segments, 1045 compat_ulong_t, flags) 1046 { 1047 struct compat_kexec_segment in; 1048 struct kexec_segment out, __user *ksegments; 1049 unsigned long i, result; 1050 1051 /* Don't allow clients that don't understand the native 1052 * architecture to do anything. 1053 */ 1054 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1055 return -EINVAL; 1056 1057 if (nr_segments > KEXEC_SEGMENT_MAX) 1058 return -EINVAL; 1059 1060 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1061 for (i = 0; i < nr_segments; i++) { 1062 result = copy_from_user(&in, &segments[i], sizeof(in)); 1063 if (result) 1064 return -EFAULT; 1065 1066 out.buf = compat_ptr(in.buf); 1067 out.bufsz = in.bufsz; 1068 out.mem = in.mem; 1069 out.memsz = in.memsz; 1070 1071 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1072 if (result) 1073 return -EFAULT; 1074 } 1075 1076 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1077 } 1078 #endif 1079 1080 void crash_kexec(struct pt_regs *regs) 1081 { 1082 /* Take the kexec_mutex here to prevent sys_kexec_load 1083 * running on one cpu from replacing the crash kernel 1084 * we are using after a panic on a different cpu. 1085 * 1086 * If the crash kernel was not located in a fixed area 1087 * of memory the xchg(&kexec_crash_image) would be 1088 * sufficient. But since I reuse the memory... 1089 */ 1090 if (mutex_trylock(&kexec_mutex)) { 1091 if (kexec_crash_image) { 1092 struct pt_regs fixed_regs; 1093 1094 crash_setup_regs(&fixed_regs, regs); 1095 crash_save_vmcoreinfo(); 1096 machine_crash_shutdown(&fixed_regs); 1097 machine_kexec(kexec_crash_image); 1098 } 1099 mutex_unlock(&kexec_mutex); 1100 } 1101 } 1102 1103 size_t crash_get_memory_size(void) 1104 { 1105 size_t size = 0; 1106 mutex_lock(&kexec_mutex); 1107 if (crashk_res.end != crashk_res.start) 1108 size = resource_size(&crashk_res); 1109 mutex_unlock(&kexec_mutex); 1110 return size; 1111 } 1112 1113 void __weak crash_free_reserved_phys_range(unsigned long begin, 1114 unsigned long end) 1115 { 1116 unsigned long addr; 1117 1118 for (addr = begin; addr < end; addr += PAGE_SIZE) 1119 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1120 } 1121 1122 int crash_shrink_memory(unsigned long new_size) 1123 { 1124 int ret = 0; 1125 unsigned long start, end; 1126 unsigned long old_size; 1127 struct resource *ram_res; 1128 1129 mutex_lock(&kexec_mutex); 1130 1131 if (kexec_crash_image) { 1132 ret = -ENOENT; 1133 goto unlock; 1134 } 1135 start = crashk_res.start; 1136 end = crashk_res.end; 1137 old_size = (end == 0) ? 0 : end - start + 1; 1138 if (new_size >= old_size) { 1139 ret = (new_size == old_size) ? 0 : -EINVAL; 1140 goto unlock; 1141 } 1142 1143 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1144 if (!ram_res) { 1145 ret = -ENOMEM; 1146 goto unlock; 1147 } 1148 1149 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1150 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1151 1152 crash_map_reserved_pages(); 1153 crash_free_reserved_phys_range(end, crashk_res.end); 1154 1155 if ((start == end) && (crashk_res.parent != NULL)) 1156 release_resource(&crashk_res); 1157 1158 ram_res->start = end; 1159 ram_res->end = crashk_res.end; 1160 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1161 ram_res->name = "System RAM"; 1162 1163 crashk_res.end = end - 1; 1164 1165 insert_resource(&iomem_resource, ram_res); 1166 crash_unmap_reserved_pages(); 1167 1168 unlock: 1169 mutex_unlock(&kexec_mutex); 1170 return ret; 1171 } 1172 1173 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1174 size_t data_len) 1175 { 1176 struct elf_note note; 1177 1178 note.n_namesz = strlen(name) + 1; 1179 note.n_descsz = data_len; 1180 note.n_type = type; 1181 memcpy(buf, ¬e, sizeof(note)); 1182 buf += (sizeof(note) + 3)/4; 1183 memcpy(buf, name, note.n_namesz); 1184 buf += (note.n_namesz + 3)/4; 1185 memcpy(buf, data, note.n_descsz); 1186 buf += (note.n_descsz + 3)/4; 1187 1188 return buf; 1189 } 1190 1191 static void final_note(u32 *buf) 1192 { 1193 struct elf_note note; 1194 1195 note.n_namesz = 0; 1196 note.n_descsz = 0; 1197 note.n_type = 0; 1198 memcpy(buf, ¬e, sizeof(note)); 1199 } 1200 1201 void crash_save_cpu(struct pt_regs *regs, int cpu) 1202 { 1203 struct elf_prstatus prstatus; 1204 u32 *buf; 1205 1206 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1207 return; 1208 1209 /* Using ELF notes here is opportunistic. 1210 * I need a well defined structure format 1211 * for the data I pass, and I need tags 1212 * on the data to indicate what information I have 1213 * squirrelled away. ELF notes happen to provide 1214 * all of that, so there is no need to invent something new. 1215 */ 1216 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1217 if (!buf) 1218 return; 1219 memset(&prstatus, 0, sizeof(prstatus)); 1220 prstatus.pr_pid = current->pid; 1221 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1222 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1223 &prstatus, sizeof(prstatus)); 1224 final_note(buf); 1225 } 1226 1227 static int __init crash_notes_memory_init(void) 1228 { 1229 /* Allocate memory for saving cpu registers. */ 1230 crash_notes = alloc_percpu(note_buf_t); 1231 if (!crash_notes) { 1232 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); 1233 return -ENOMEM; 1234 } 1235 return 0; 1236 } 1237 subsys_initcall(crash_notes_memory_init); 1238 1239 1240 /* 1241 * parsing the "crashkernel" commandline 1242 * 1243 * this code is intended to be called from architecture specific code 1244 */ 1245 1246 1247 /* 1248 * This function parses command lines in the format 1249 * 1250 * crashkernel=ramsize-range:size[,...][@offset] 1251 * 1252 * The function returns 0 on success and -EINVAL on failure. 1253 */ 1254 static int __init parse_crashkernel_mem(char *cmdline, 1255 unsigned long long system_ram, 1256 unsigned long long *crash_size, 1257 unsigned long long *crash_base) 1258 { 1259 char *cur = cmdline, *tmp; 1260 1261 /* for each entry of the comma-separated list */ 1262 do { 1263 unsigned long long start, end = ULLONG_MAX, size; 1264 1265 /* get the start of the range */ 1266 start = memparse(cur, &tmp); 1267 if (cur == tmp) { 1268 pr_warn("crashkernel: Memory value expected\n"); 1269 return -EINVAL; 1270 } 1271 cur = tmp; 1272 if (*cur != '-') { 1273 pr_warn("crashkernel: '-' expected\n"); 1274 return -EINVAL; 1275 } 1276 cur++; 1277 1278 /* if no ':' is here, than we read the end */ 1279 if (*cur != ':') { 1280 end = memparse(cur, &tmp); 1281 if (cur == tmp) { 1282 pr_warn("crashkernel: Memory value expected\n"); 1283 return -EINVAL; 1284 } 1285 cur = tmp; 1286 if (end <= start) { 1287 pr_warn("crashkernel: end <= start\n"); 1288 return -EINVAL; 1289 } 1290 } 1291 1292 if (*cur != ':') { 1293 pr_warn("crashkernel: ':' expected\n"); 1294 return -EINVAL; 1295 } 1296 cur++; 1297 1298 size = memparse(cur, &tmp); 1299 if (cur == tmp) { 1300 pr_warn("Memory value expected\n"); 1301 return -EINVAL; 1302 } 1303 cur = tmp; 1304 if (size >= system_ram) { 1305 pr_warn("crashkernel: invalid size\n"); 1306 return -EINVAL; 1307 } 1308 1309 /* match ? */ 1310 if (system_ram >= start && system_ram < end) { 1311 *crash_size = size; 1312 break; 1313 } 1314 } while (*cur++ == ','); 1315 1316 if (*crash_size > 0) { 1317 while (*cur && *cur != ' ' && *cur != '@') 1318 cur++; 1319 if (*cur == '@') { 1320 cur++; 1321 *crash_base = memparse(cur, &tmp); 1322 if (cur == tmp) { 1323 pr_warn("Memory value expected after '@'\n"); 1324 return -EINVAL; 1325 } 1326 } 1327 } 1328 1329 return 0; 1330 } 1331 1332 /* 1333 * That function parses "simple" (old) crashkernel command lines like 1334 * 1335 * crashkernel=size[@offset] 1336 * 1337 * It returns 0 on success and -EINVAL on failure. 1338 */ 1339 static int __init parse_crashkernel_simple(char *cmdline, 1340 unsigned long long *crash_size, 1341 unsigned long long *crash_base) 1342 { 1343 char *cur = cmdline; 1344 1345 *crash_size = memparse(cmdline, &cur); 1346 if (cmdline == cur) { 1347 pr_warn("crashkernel: memory value expected\n"); 1348 return -EINVAL; 1349 } 1350 1351 if (*cur == '@') 1352 *crash_base = memparse(cur+1, &cur); 1353 else if (*cur != ' ' && *cur != '\0') { 1354 pr_warn("crashkernel: unrecognized char\n"); 1355 return -EINVAL; 1356 } 1357 1358 return 0; 1359 } 1360 1361 #define SUFFIX_HIGH 0 1362 #define SUFFIX_LOW 1 1363 #define SUFFIX_NULL 2 1364 static __initdata char *suffix_tbl[] = { 1365 [SUFFIX_HIGH] = ",high", 1366 [SUFFIX_LOW] = ",low", 1367 [SUFFIX_NULL] = NULL, 1368 }; 1369 1370 /* 1371 * That function parses "suffix" crashkernel command lines like 1372 * 1373 * crashkernel=size,[high|low] 1374 * 1375 * It returns 0 on success and -EINVAL on failure. 1376 */ 1377 static int __init parse_crashkernel_suffix(char *cmdline, 1378 unsigned long long *crash_size, 1379 unsigned long long *crash_base, 1380 const char *suffix) 1381 { 1382 char *cur = cmdline; 1383 1384 *crash_size = memparse(cmdline, &cur); 1385 if (cmdline == cur) { 1386 pr_warn("crashkernel: memory value expected\n"); 1387 return -EINVAL; 1388 } 1389 1390 /* check with suffix */ 1391 if (strncmp(cur, suffix, strlen(suffix))) { 1392 pr_warn("crashkernel: unrecognized char\n"); 1393 return -EINVAL; 1394 } 1395 cur += strlen(suffix); 1396 if (*cur != ' ' && *cur != '\0') { 1397 pr_warn("crashkernel: unrecognized char\n"); 1398 return -EINVAL; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static __init char *get_last_crashkernel(char *cmdline, 1405 const char *name, 1406 const char *suffix) 1407 { 1408 char *p = cmdline, *ck_cmdline = NULL; 1409 1410 /* find crashkernel and use the last one if there are more */ 1411 p = strstr(p, name); 1412 while (p) { 1413 char *end_p = strchr(p, ' '); 1414 char *q; 1415 1416 if (!end_p) 1417 end_p = p + strlen(p); 1418 1419 if (!suffix) { 1420 int i; 1421 1422 /* skip the one with any known suffix */ 1423 for (i = 0; suffix_tbl[i]; i++) { 1424 q = end_p - strlen(suffix_tbl[i]); 1425 if (!strncmp(q, suffix_tbl[i], 1426 strlen(suffix_tbl[i]))) 1427 goto next; 1428 } 1429 ck_cmdline = p; 1430 } else { 1431 q = end_p - strlen(suffix); 1432 if (!strncmp(q, suffix, strlen(suffix))) 1433 ck_cmdline = p; 1434 } 1435 next: 1436 p = strstr(p+1, name); 1437 } 1438 1439 if (!ck_cmdline) 1440 return NULL; 1441 1442 return ck_cmdline; 1443 } 1444 1445 static int __init __parse_crashkernel(char *cmdline, 1446 unsigned long long system_ram, 1447 unsigned long long *crash_size, 1448 unsigned long long *crash_base, 1449 const char *name, 1450 const char *suffix) 1451 { 1452 char *first_colon, *first_space; 1453 char *ck_cmdline; 1454 1455 BUG_ON(!crash_size || !crash_base); 1456 *crash_size = 0; 1457 *crash_base = 0; 1458 1459 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1460 1461 if (!ck_cmdline) 1462 return -EINVAL; 1463 1464 ck_cmdline += strlen(name); 1465 1466 if (suffix) 1467 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1468 crash_base, suffix); 1469 /* 1470 * if the commandline contains a ':', then that's the extended 1471 * syntax -- if not, it must be the classic syntax 1472 */ 1473 first_colon = strchr(ck_cmdline, ':'); 1474 first_space = strchr(ck_cmdline, ' '); 1475 if (first_colon && (!first_space || first_colon < first_space)) 1476 return parse_crashkernel_mem(ck_cmdline, system_ram, 1477 crash_size, crash_base); 1478 1479 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1480 } 1481 1482 /* 1483 * That function is the entry point for command line parsing and should be 1484 * called from the arch-specific code. 1485 */ 1486 int __init parse_crashkernel(char *cmdline, 1487 unsigned long long system_ram, 1488 unsigned long long *crash_size, 1489 unsigned long long *crash_base) 1490 { 1491 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1492 "crashkernel=", NULL); 1493 } 1494 1495 int __init parse_crashkernel_high(char *cmdline, 1496 unsigned long long system_ram, 1497 unsigned long long *crash_size, 1498 unsigned long long *crash_base) 1499 { 1500 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1501 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1502 } 1503 1504 int __init parse_crashkernel_low(char *cmdline, 1505 unsigned long long system_ram, 1506 unsigned long long *crash_size, 1507 unsigned long long *crash_base) 1508 { 1509 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1510 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1511 } 1512 1513 static void update_vmcoreinfo_note(void) 1514 { 1515 u32 *buf = vmcoreinfo_note; 1516 1517 if (!vmcoreinfo_size) 1518 return; 1519 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1520 vmcoreinfo_size); 1521 final_note(buf); 1522 } 1523 1524 void crash_save_vmcoreinfo(void) 1525 { 1526 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1527 update_vmcoreinfo_note(); 1528 } 1529 1530 void vmcoreinfo_append_str(const char *fmt, ...) 1531 { 1532 va_list args; 1533 char buf[0x50]; 1534 size_t r; 1535 1536 va_start(args, fmt); 1537 r = vscnprintf(buf, sizeof(buf), fmt, args); 1538 va_end(args); 1539 1540 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1541 1542 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1543 1544 vmcoreinfo_size += r; 1545 } 1546 1547 /* 1548 * provide an empty default implementation here -- architecture 1549 * code may override this 1550 */ 1551 void __weak arch_crash_save_vmcoreinfo(void) 1552 {} 1553 1554 unsigned long __weak paddr_vmcoreinfo_note(void) 1555 { 1556 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1557 } 1558 1559 static int __init crash_save_vmcoreinfo_init(void) 1560 { 1561 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1562 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1563 1564 VMCOREINFO_SYMBOL(init_uts_ns); 1565 VMCOREINFO_SYMBOL(node_online_map); 1566 #ifdef CONFIG_MMU 1567 VMCOREINFO_SYMBOL(swapper_pg_dir); 1568 #endif 1569 VMCOREINFO_SYMBOL(_stext); 1570 VMCOREINFO_SYMBOL(vmap_area_list); 1571 1572 #ifndef CONFIG_NEED_MULTIPLE_NODES 1573 VMCOREINFO_SYMBOL(mem_map); 1574 VMCOREINFO_SYMBOL(contig_page_data); 1575 #endif 1576 #ifdef CONFIG_SPARSEMEM 1577 VMCOREINFO_SYMBOL(mem_section); 1578 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1579 VMCOREINFO_STRUCT_SIZE(mem_section); 1580 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1581 #endif 1582 VMCOREINFO_STRUCT_SIZE(page); 1583 VMCOREINFO_STRUCT_SIZE(pglist_data); 1584 VMCOREINFO_STRUCT_SIZE(zone); 1585 VMCOREINFO_STRUCT_SIZE(free_area); 1586 VMCOREINFO_STRUCT_SIZE(list_head); 1587 VMCOREINFO_SIZE(nodemask_t); 1588 VMCOREINFO_OFFSET(page, flags); 1589 VMCOREINFO_OFFSET(page, _count); 1590 VMCOREINFO_OFFSET(page, mapping); 1591 VMCOREINFO_OFFSET(page, lru); 1592 VMCOREINFO_OFFSET(page, _mapcount); 1593 VMCOREINFO_OFFSET(page, private); 1594 VMCOREINFO_OFFSET(pglist_data, node_zones); 1595 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1596 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1597 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1598 #endif 1599 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1600 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1601 VMCOREINFO_OFFSET(pglist_data, node_id); 1602 VMCOREINFO_OFFSET(zone, free_area); 1603 VMCOREINFO_OFFSET(zone, vm_stat); 1604 VMCOREINFO_OFFSET(zone, spanned_pages); 1605 VMCOREINFO_OFFSET(free_area, free_list); 1606 VMCOREINFO_OFFSET(list_head, next); 1607 VMCOREINFO_OFFSET(list_head, prev); 1608 VMCOREINFO_OFFSET(vmap_area, va_start); 1609 VMCOREINFO_OFFSET(vmap_area, list); 1610 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1611 log_buf_kexec_setup(); 1612 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1613 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1614 VMCOREINFO_NUMBER(PG_lru); 1615 VMCOREINFO_NUMBER(PG_private); 1616 VMCOREINFO_NUMBER(PG_swapcache); 1617 VMCOREINFO_NUMBER(PG_slab); 1618 #ifdef CONFIG_MEMORY_FAILURE 1619 VMCOREINFO_NUMBER(PG_hwpoison); 1620 #endif 1621 VMCOREINFO_NUMBER(PG_head_mask); 1622 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 1623 #ifdef CONFIG_HUGETLBFS 1624 VMCOREINFO_SYMBOL(free_huge_page); 1625 #endif 1626 1627 arch_crash_save_vmcoreinfo(); 1628 update_vmcoreinfo_note(); 1629 1630 return 0; 1631 } 1632 1633 subsys_initcall(crash_save_vmcoreinfo_init); 1634 1635 /* 1636 * Move into place and start executing a preloaded standalone 1637 * executable. If nothing was preloaded return an error. 1638 */ 1639 int kernel_kexec(void) 1640 { 1641 int error = 0; 1642 1643 if (!mutex_trylock(&kexec_mutex)) 1644 return -EBUSY; 1645 if (!kexec_image) { 1646 error = -EINVAL; 1647 goto Unlock; 1648 } 1649 1650 #ifdef CONFIG_KEXEC_JUMP 1651 if (kexec_image->preserve_context) { 1652 lock_system_sleep(); 1653 pm_prepare_console(); 1654 error = freeze_processes(); 1655 if (error) { 1656 error = -EBUSY; 1657 goto Restore_console; 1658 } 1659 suspend_console(); 1660 error = dpm_suspend_start(PMSG_FREEZE); 1661 if (error) 1662 goto Resume_console; 1663 /* At this point, dpm_suspend_start() has been called, 1664 * but *not* dpm_suspend_end(). We *must* call 1665 * dpm_suspend_end() now. Otherwise, drivers for 1666 * some devices (e.g. interrupt controllers) become 1667 * desynchronized with the actual state of the 1668 * hardware at resume time, and evil weirdness ensues. 1669 */ 1670 error = dpm_suspend_end(PMSG_FREEZE); 1671 if (error) 1672 goto Resume_devices; 1673 error = disable_nonboot_cpus(); 1674 if (error) 1675 goto Enable_cpus; 1676 local_irq_disable(); 1677 error = syscore_suspend(); 1678 if (error) 1679 goto Enable_irqs; 1680 } else 1681 #endif 1682 { 1683 kexec_in_progress = true; 1684 kernel_restart_prepare(NULL); 1685 migrate_to_reboot_cpu(); 1686 1687 /* 1688 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1689 * no further code needs to use CPU hotplug (which is true in 1690 * the reboot case). However, the kexec path depends on using 1691 * CPU hotplug again; so re-enable it here. 1692 */ 1693 cpu_hotplug_enable(); 1694 pr_emerg("Starting new kernel\n"); 1695 machine_shutdown(); 1696 } 1697 1698 machine_kexec(kexec_image); 1699 1700 #ifdef CONFIG_KEXEC_JUMP 1701 if (kexec_image->preserve_context) { 1702 syscore_resume(); 1703 Enable_irqs: 1704 local_irq_enable(); 1705 Enable_cpus: 1706 enable_nonboot_cpus(); 1707 dpm_resume_start(PMSG_RESTORE); 1708 Resume_devices: 1709 dpm_resume_end(PMSG_RESTORE); 1710 Resume_console: 1711 resume_console(); 1712 thaw_processes(); 1713 Restore_console: 1714 pm_restore_console(); 1715 unlock_system_sleep(); 1716 } 1717 #endif 1718 1719 Unlock: 1720 mutex_unlock(&kexec_mutex); 1721 return error; 1722 } 1723