1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/console.h> 32 #include <linux/vmalloc.h> 33 #include <linux/swap.h> 34 #include <linux/syscore_ops.h> 35 36 #include <asm/page.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/sections.h> 40 41 /* Per cpu memory for storing cpu states in case of system crash. */ 42 note_buf_t __percpu *crash_notes; 43 44 /* vmcoreinfo stuff */ 45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 47 size_t vmcoreinfo_size; 48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 49 50 /* Location of the reserved area for the crash kernel */ 51 struct resource crashk_res = { 52 .name = "Crash kernel", 53 .start = 0, 54 .end = 0, 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 56 }; 57 struct resource crashk_low_res = { 58 .name = "Crash kernel", 59 .start = 0, 60 .end = 0, 61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 62 }; 63 64 int kexec_should_crash(struct task_struct *p) 65 { 66 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 67 return 1; 68 return 0; 69 } 70 71 /* 72 * When kexec transitions to the new kernel there is a one-to-one 73 * mapping between physical and virtual addresses. On processors 74 * where you can disable the MMU this is trivial, and easy. For 75 * others it is still a simple predictable page table to setup. 76 * 77 * In that environment kexec copies the new kernel to its final 78 * resting place. This means I can only support memory whose 79 * physical address can fit in an unsigned long. In particular 80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 81 * If the assembly stub has more restrictive requirements 82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 83 * defined more restrictively in <asm/kexec.h>. 84 * 85 * The code for the transition from the current kernel to the 86 * the new kernel is placed in the control_code_buffer, whose size 87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 88 * page of memory is necessary, but some architectures require more. 89 * Because this memory must be identity mapped in the transition from 90 * virtual to physical addresses it must live in the range 91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 92 * modifiable. 93 * 94 * The assembly stub in the control code buffer is passed a linked list 95 * of descriptor pages detailing the source pages of the new kernel, 96 * and the destination addresses of those source pages. As this data 97 * structure is not used in the context of the current OS, it must 98 * be self-contained. 99 * 100 * The code has been made to work with highmem pages and will use a 101 * destination page in its final resting place (if it happens 102 * to allocate it). The end product of this is that most of the 103 * physical address space, and most of RAM can be used. 104 * 105 * Future directions include: 106 * - allocating a page table with the control code buffer identity 107 * mapped, to simplify machine_kexec and make kexec_on_panic more 108 * reliable. 109 */ 110 111 /* 112 * KIMAGE_NO_DEST is an impossible destination address..., for 113 * allocating pages whose destination address we do not care about. 114 */ 115 #define KIMAGE_NO_DEST (-1UL) 116 117 static int kimage_is_destination_range(struct kimage *image, 118 unsigned long start, unsigned long end); 119 static struct page *kimage_alloc_page(struct kimage *image, 120 gfp_t gfp_mask, 121 unsigned long dest); 122 123 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 124 unsigned long nr_segments, 125 struct kexec_segment __user *segments) 126 { 127 size_t segment_bytes; 128 struct kimage *image; 129 unsigned long i; 130 int result; 131 132 /* Allocate a controlling structure */ 133 result = -ENOMEM; 134 image = kzalloc(sizeof(*image), GFP_KERNEL); 135 if (!image) 136 goto out; 137 138 image->head = 0; 139 image->entry = &image->head; 140 image->last_entry = &image->head; 141 image->control_page = ~0; /* By default this does not apply */ 142 image->start = entry; 143 image->type = KEXEC_TYPE_DEFAULT; 144 145 /* Initialize the list of control pages */ 146 INIT_LIST_HEAD(&image->control_pages); 147 148 /* Initialize the list of destination pages */ 149 INIT_LIST_HEAD(&image->dest_pages); 150 151 /* Initialize the list of unusable pages */ 152 INIT_LIST_HEAD(&image->unuseable_pages); 153 154 /* Read in the segments */ 155 image->nr_segments = nr_segments; 156 segment_bytes = nr_segments * sizeof(*segments); 157 result = copy_from_user(image->segment, segments, segment_bytes); 158 if (result) { 159 result = -EFAULT; 160 goto out; 161 } 162 163 /* 164 * Verify we have good destination addresses. The caller is 165 * responsible for making certain we don't attempt to load 166 * the new image into invalid or reserved areas of RAM. This 167 * just verifies it is an address we can use. 168 * 169 * Since the kernel does everything in page size chunks ensure 170 * the destination addresses are page aligned. Too many 171 * special cases crop of when we don't do this. The most 172 * insidious is getting overlapping destination addresses 173 * simply because addresses are changed to page size 174 * granularity. 175 */ 176 result = -EADDRNOTAVAIL; 177 for (i = 0; i < nr_segments; i++) { 178 unsigned long mstart, mend; 179 180 mstart = image->segment[i].mem; 181 mend = mstart + image->segment[i].memsz; 182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 183 goto out; 184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 185 goto out; 186 } 187 188 /* Verify our destination addresses do not overlap. 189 * If we alloed overlapping destination addresses 190 * through very weird things can happen with no 191 * easy explanation as one segment stops on another. 192 */ 193 result = -EINVAL; 194 for (i = 0; i < nr_segments; i++) { 195 unsigned long mstart, mend; 196 unsigned long j; 197 198 mstart = image->segment[i].mem; 199 mend = mstart + image->segment[i].memsz; 200 for (j = 0; j < i; j++) { 201 unsigned long pstart, pend; 202 pstart = image->segment[j].mem; 203 pend = pstart + image->segment[j].memsz; 204 /* Do the segments overlap ? */ 205 if ((mend > pstart) && (mstart < pend)) 206 goto out; 207 } 208 } 209 210 /* Ensure our buffer sizes are strictly less than 211 * our memory sizes. This should always be the case, 212 * and it is easier to check up front than to be surprised 213 * later on. 214 */ 215 result = -EINVAL; 216 for (i = 0; i < nr_segments; i++) { 217 if (image->segment[i].bufsz > image->segment[i].memsz) 218 goto out; 219 } 220 221 result = 0; 222 out: 223 if (result == 0) 224 *rimage = image; 225 else 226 kfree(image); 227 228 return result; 229 230 } 231 232 static void kimage_free_page_list(struct list_head *list); 233 234 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 235 unsigned long nr_segments, 236 struct kexec_segment __user *segments) 237 { 238 int result; 239 struct kimage *image; 240 241 /* Allocate and initialize a controlling structure */ 242 image = NULL; 243 result = do_kimage_alloc(&image, entry, nr_segments, segments); 244 if (result) 245 goto out; 246 247 /* 248 * Find a location for the control code buffer, and add it 249 * the vector of segments so that it's pages will also be 250 * counted as destination pages. 251 */ 252 result = -ENOMEM; 253 image->control_code_page = kimage_alloc_control_pages(image, 254 get_order(KEXEC_CONTROL_PAGE_SIZE)); 255 if (!image->control_code_page) { 256 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 257 goto out_free; 258 } 259 260 image->swap_page = kimage_alloc_control_pages(image, 0); 261 if (!image->swap_page) { 262 printk(KERN_ERR "Could not allocate swap buffer\n"); 263 goto out_free; 264 } 265 266 *rimage = image; 267 return 0; 268 269 out_free: 270 kimage_free_page_list(&image->control_pages); 271 kfree(image); 272 out: 273 return result; 274 } 275 276 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 277 unsigned long nr_segments, 278 struct kexec_segment __user *segments) 279 { 280 int result; 281 struct kimage *image; 282 unsigned long i; 283 284 image = NULL; 285 /* Verify we have a valid entry point */ 286 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 287 result = -EADDRNOTAVAIL; 288 goto out; 289 } 290 291 /* Allocate and initialize a controlling structure */ 292 result = do_kimage_alloc(&image, entry, nr_segments, segments); 293 if (result) 294 goto out; 295 296 /* Enable the special crash kernel control page 297 * allocation policy. 298 */ 299 image->control_page = crashk_res.start; 300 image->type = KEXEC_TYPE_CRASH; 301 302 /* 303 * Verify we have good destination addresses. Normally 304 * the caller is responsible for making certain we don't 305 * attempt to load the new image into invalid or reserved 306 * areas of RAM. But crash kernels are preloaded into a 307 * reserved area of ram. We must ensure the addresses 308 * are in the reserved area otherwise preloading the 309 * kernel could corrupt things. 310 */ 311 result = -EADDRNOTAVAIL; 312 for (i = 0; i < nr_segments; i++) { 313 unsigned long mstart, mend; 314 315 mstart = image->segment[i].mem; 316 mend = mstart + image->segment[i].memsz - 1; 317 /* Ensure we are within the crash kernel limits */ 318 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 319 goto out_free; 320 } 321 322 /* 323 * Find a location for the control code buffer, and add 324 * the vector of segments so that it's pages will also be 325 * counted as destination pages. 326 */ 327 result = -ENOMEM; 328 image->control_code_page = kimage_alloc_control_pages(image, 329 get_order(KEXEC_CONTROL_PAGE_SIZE)); 330 if (!image->control_code_page) { 331 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 332 goto out_free; 333 } 334 335 *rimage = image; 336 return 0; 337 338 out_free: 339 kfree(image); 340 out: 341 return result; 342 } 343 344 static int kimage_is_destination_range(struct kimage *image, 345 unsigned long start, 346 unsigned long end) 347 { 348 unsigned long i; 349 350 for (i = 0; i < image->nr_segments; i++) { 351 unsigned long mstart, mend; 352 353 mstart = image->segment[i].mem; 354 mend = mstart + image->segment[i].memsz; 355 if ((end > mstart) && (start < mend)) 356 return 1; 357 } 358 359 return 0; 360 } 361 362 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 363 { 364 struct page *pages; 365 366 pages = alloc_pages(gfp_mask, order); 367 if (pages) { 368 unsigned int count, i; 369 pages->mapping = NULL; 370 set_page_private(pages, order); 371 count = 1 << order; 372 for (i = 0; i < count; i++) 373 SetPageReserved(pages + i); 374 } 375 376 return pages; 377 } 378 379 static void kimage_free_pages(struct page *page) 380 { 381 unsigned int order, count, i; 382 383 order = page_private(page); 384 count = 1 << order; 385 for (i = 0; i < count; i++) 386 ClearPageReserved(page + i); 387 __free_pages(page, order); 388 } 389 390 static void kimage_free_page_list(struct list_head *list) 391 { 392 struct list_head *pos, *next; 393 394 list_for_each_safe(pos, next, list) { 395 struct page *page; 396 397 page = list_entry(pos, struct page, lru); 398 list_del(&page->lru); 399 kimage_free_pages(page); 400 } 401 } 402 403 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 404 unsigned int order) 405 { 406 /* Control pages are special, they are the intermediaries 407 * that are needed while we copy the rest of the pages 408 * to their final resting place. As such they must 409 * not conflict with either the destination addresses 410 * or memory the kernel is already using. 411 * 412 * The only case where we really need more than one of 413 * these are for architectures where we cannot disable 414 * the MMU and must instead generate an identity mapped 415 * page table for all of the memory. 416 * 417 * At worst this runs in O(N) of the image size. 418 */ 419 struct list_head extra_pages; 420 struct page *pages; 421 unsigned int count; 422 423 count = 1 << order; 424 INIT_LIST_HEAD(&extra_pages); 425 426 /* Loop while I can allocate a page and the page allocated 427 * is a destination page. 428 */ 429 do { 430 unsigned long pfn, epfn, addr, eaddr; 431 432 pages = kimage_alloc_pages(GFP_KERNEL, order); 433 if (!pages) 434 break; 435 pfn = page_to_pfn(pages); 436 epfn = pfn + count; 437 addr = pfn << PAGE_SHIFT; 438 eaddr = epfn << PAGE_SHIFT; 439 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 440 kimage_is_destination_range(image, addr, eaddr)) { 441 list_add(&pages->lru, &extra_pages); 442 pages = NULL; 443 } 444 } while (!pages); 445 446 if (pages) { 447 /* Remember the allocated page... */ 448 list_add(&pages->lru, &image->control_pages); 449 450 /* Because the page is already in it's destination 451 * location we will never allocate another page at 452 * that address. Therefore kimage_alloc_pages 453 * will not return it (again) and we don't need 454 * to give it an entry in image->segment[]. 455 */ 456 } 457 /* Deal with the destination pages I have inadvertently allocated. 458 * 459 * Ideally I would convert multi-page allocations into single 460 * page allocations, and add everything to image->dest_pages. 461 * 462 * For now it is simpler to just free the pages. 463 */ 464 kimage_free_page_list(&extra_pages); 465 466 return pages; 467 } 468 469 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 470 unsigned int order) 471 { 472 /* Control pages are special, they are the intermediaries 473 * that are needed while we copy the rest of the pages 474 * to their final resting place. As such they must 475 * not conflict with either the destination addresses 476 * or memory the kernel is already using. 477 * 478 * Control pages are also the only pags we must allocate 479 * when loading a crash kernel. All of the other pages 480 * are specified by the segments and we just memcpy 481 * into them directly. 482 * 483 * The only case where we really need more than one of 484 * these are for architectures where we cannot disable 485 * the MMU and must instead generate an identity mapped 486 * page table for all of the memory. 487 * 488 * Given the low demand this implements a very simple 489 * allocator that finds the first hole of the appropriate 490 * size in the reserved memory region, and allocates all 491 * of the memory up to and including the hole. 492 */ 493 unsigned long hole_start, hole_end, size; 494 struct page *pages; 495 496 pages = NULL; 497 size = (1 << order) << PAGE_SHIFT; 498 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 499 hole_end = hole_start + size - 1; 500 while (hole_end <= crashk_res.end) { 501 unsigned long i; 502 503 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 504 break; 505 /* See if I overlap any of the segments */ 506 for (i = 0; i < image->nr_segments; i++) { 507 unsigned long mstart, mend; 508 509 mstart = image->segment[i].mem; 510 mend = mstart + image->segment[i].memsz - 1; 511 if ((hole_end >= mstart) && (hole_start <= mend)) { 512 /* Advance the hole to the end of the segment */ 513 hole_start = (mend + (size - 1)) & ~(size - 1); 514 hole_end = hole_start + size - 1; 515 break; 516 } 517 } 518 /* If I don't overlap any segments I have found my hole! */ 519 if (i == image->nr_segments) { 520 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 521 break; 522 } 523 } 524 if (pages) 525 image->control_page = hole_end; 526 527 return pages; 528 } 529 530 531 struct page *kimage_alloc_control_pages(struct kimage *image, 532 unsigned int order) 533 { 534 struct page *pages = NULL; 535 536 switch (image->type) { 537 case KEXEC_TYPE_DEFAULT: 538 pages = kimage_alloc_normal_control_pages(image, order); 539 break; 540 case KEXEC_TYPE_CRASH: 541 pages = kimage_alloc_crash_control_pages(image, order); 542 break; 543 } 544 545 return pages; 546 } 547 548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 549 { 550 if (*image->entry != 0) 551 image->entry++; 552 553 if (image->entry == image->last_entry) { 554 kimage_entry_t *ind_page; 555 struct page *page; 556 557 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 558 if (!page) 559 return -ENOMEM; 560 561 ind_page = page_address(page); 562 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 563 image->entry = ind_page; 564 image->last_entry = ind_page + 565 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 566 } 567 *image->entry = entry; 568 image->entry++; 569 *image->entry = 0; 570 571 return 0; 572 } 573 574 static int kimage_set_destination(struct kimage *image, 575 unsigned long destination) 576 { 577 int result; 578 579 destination &= PAGE_MASK; 580 result = kimage_add_entry(image, destination | IND_DESTINATION); 581 if (result == 0) 582 image->destination = destination; 583 584 return result; 585 } 586 587 588 static int kimage_add_page(struct kimage *image, unsigned long page) 589 { 590 int result; 591 592 page &= PAGE_MASK; 593 result = kimage_add_entry(image, page | IND_SOURCE); 594 if (result == 0) 595 image->destination += PAGE_SIZE; 596 597 return result; 598 } 599 600 601 static void kimage_free_extra_pages(struct kimage *image) 602 { 603 /* Walk through and free any extra destination pages I may have */ 604 kimage_free_page_list(&image->dest_pages); 605 606 /* Walk through and free any unusable pages I have cached */ 607 kimage_free_page_list(&image->unuseable_pages); 608 609 } 610 static void kimage_terminate(struct kimage *image) 611 { 612 if (*image->entry != 0) 613 image->entry++; 614 615 *image->entry = IND_DONE; 616 } 617 618 #define for_each_kimage_entry(image, ptr, entry) \ 619 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 620 ptr = (entry & IND_INDIRECTION)? \ 621 phys_to_virt((entry & PAGE_MASK)): ptr +1) 622 623 static void kimage_free_entry(kimage_entry_t entry) 624 { 625 struct page *page; 626 627 page = pfn_to_page(entry >> PAGE_SHIFT); 628 kimage_free_pages(page); 629 } 630 631 static void kimage_free(struct kimage *image) 632 { 633 kimage_entry_t *ptr, entry; 634 kimage_entry_t ind = 0; 635 636 if (!image) 637 return; 638 639 kimage_free_extra_pages(image); 640 for_each_kimage_entry(image, ptr, entry) { 641 if (entry & IND_INDIRECTION) { 642 /* Free the previous indirection page */ 643 if (ind & IND_INDIRECTION) 644 kimage_free_entry(ind); 645 /* Save this indirection page until we are 646 * done with it. 647 */ 648 ind = entry; 649 } 650 else if (entry & IND_SOURCE) 651 kimage_free_entry(entry); 652 } 653 /* Free the final indirection page */ 654 if (ind & IND_INDIRECTION) 655 kimage_free_entry(ind); 656 657 /* Handle any machine specific cleanup */ 658 machine_kexec_cleanup(image); 659 660 /* Free the kexec control pages... */ 661 kimage_free_page_list(&image->control_pages); 662 kfree(image); 663 } 664 665 static kimage_entry_t *kimage_dst_used(struct kimage *image, 666 unsigned long page) 667 { 668 kimage_entry_t *ptr, entry; 669 unsigned long destination = 0; 670 671 for_each_kimage_entry(image, ptr, entry) { 672 if (entry & IND_DESTINATION) 673 destination = entry & PAGE_MASK; 674 else if (entry & IND_SOURCE) { 675 if (page == destination) 676 return ptr; 677 destination += PAGE_SIZE; 678 } 679 } 680 681 return NULL; 682 } 683 684 static struct page *kimage_alloc_page(struct kimage *image, 685 gfp_t gfp_mask, 686 unsigned long destination) 687 { 688 /* 689 * Here we implement safeguards to ensure that a source page 690 * is not copied to its destination page before the data on 691 * the destination page is no longer useful. 692 * 693 * To do this we maintain the invariant that a source page is 694 * either its own destination page, or it is not a 695 * destination page at all. 696 * 697 * That is slightly stronger than required, but the proof 698 * that no problems will not occur is trivial, and the 699 * implementation is simply to verify. 700 * 701 * When allocating all pages normally this algorithm will run 702 * in O(N) time, but in the worst case it will run in O(N^2) 703 * time. If the runtime is a problem the data structures can 704 * be fixed. 705 */ 706 struct page *page; 707 unsigned long addr; 708 709 /* 710 * Walk through the list of destination pages, and see if I 711 * have a match. 712 */ 713 list_for_each_entry(page, &image->dest_pages, lru) { 714 addr = page_to_pfn(page) << PAGE_SHIFT; 715 if (addr == destination) { 716 list_del(&page->lru); 717 return page; 718 } 719 } 720 page = NULL; 721 while (1) { 722 kimage_entry_t *old; 723 724 /* Allocate a page, if we run out of memory give up */ 725 page = kimage_alloc_pages(gfp_mask, 0); 726 if (!page) 727 return NULL; 728 /* If the page cannot be used file it away */ 729 if (page_to_pfn(page) > 730 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 731 list_add(&page->lru, &image->unuseable_pages); 732 continue; 733 } 734 addr = page_to_pfn(page) << PAGE_SHIFT; 735 736 /* If it is the destination page we want use it */ 737 if (addr == destination) 738 break; 739 740 /* If the page is not a destination page use it */ 741 if (!kimage_is_destination_range(image, addr, 742 addr + PAGE_SIZE)) 743 break; 744 745 /* 746 * I know that the page is someones destination page. 747 * See if there is already a source page for this 748 * destination page. And if so swap the source pages. 749 */ 750 old = kimage_dst_used(image, addr); 751 if (old) { 752 /* If so move it */ 753 unsigned long old_addr; 754 struct page *old_page; 755 756 old_addr = *old & PAGE_MASK; 757 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 758 copy_highpage(page, old_page); 759 *old = addr | (*old & ~PAGE_MASK); 760 761 /* The old page I have found cannot be a 762 * destination page, so return it if it's 763 * gfp_flags honor the ones passed in. 764 */ 765 if (!(gfp_mask & __GFP_HIGHMEM) && 766 PageHighMem(old_page)) { 767 kimage_free_pages(old_page); 768 continue; 769 } 770 addr = old_addr; 771 page = old_page; 772 break; 773 } 774 else { 775 /* Place the page on the destination list I 776 * will use it later. 777 */ 778 list_add(&page->lru, &image->dest_pages); 779 } 780 } 781 782 return page; 783 } 784 785 static int kimage_load_normal_segment(struct kimage *image, 786 struct kexec_segment *segment) 787 { 788 unsigned long maddr; 789 size_t ubytes, mbytes; 790 int result; 791 unsigned char __user *buf; 792 793 result = 0; 794 buf = segment->buf; 795 ubytes = segment->bufsz; 796 mbytes = segment->memsz; 797 maddr = segment->mem; 798 799 result = kimage_set_destination(image, maddr); 800 if (result < 0) 801 goto out; 802 803 while (mbytes) { 804 struct page *page; 805 char *ptr; 806 size_t uchunk, mchunk; 807 808 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 809 if (!page) { 810 result = -ENOMEM; 811 goto out; 812 } 813 result = kimage_add_page(image, page_to_pfn(page) 814 << PAGE_SHIFT); 815 if (result < 0) 816 goto out; 817 818 ptr = kmap(page); 819 /* Start with a clear page */ 820 clear_page(ptr); 821 ptr += maddr & ~PAGE_MASK; 822 mchunk = min_t(size_t, mbytes, 823 PAGE_SIZE - (maddr & ~PAGE_MASK)); 824 uchunk = min(ubytes, mchunk); 825 826 result = copy_from_user(ptr, buf, uchunk); 827 kunmap(page); 828 if (result) { 829 result = -EFAULT; 830 goto out; 831 } 832 ubytes -= uchunk; 833 maddr += mchunk; 834 buf += mchunk; 835 mbytes -= mchunk; 836 } 837 out: 838 return result; 839 } 840 841 static int kimage_load_crash_segment(struct kimage *image, 842 struct kexec_segment *segment) 843 { 844 /* For crash dumps kernels we simply copy the data from 845 * user space to it's destination. 846 * We do things a page at a time for the sake of kmap. 847 */ 848 unsigned long maddr; 849 size_t ubytes, mbytes; 850 int result; 851 unsigned char __user *buf; 852 853 result = 0; 854 buf = segment->buf; 855 ubytes = segment->bufsz; 856 mbytes = segment->memsz; 857 maddr = segment->mem; 858 while (mbytes) { 859 struct page *page; 860 char *ptr; 861 size_t uchunk, mchunk; 862 863 page = pfn_to_page(maddr >> PAGE_SHIFT); 864 if (!page) { 865 result = -ENOMEM; 866 goto out; 867 } 868 ptr = kmap(page); 869 ptr += maddr & ~PAGE_MASK; 870 mchunk = min_t(size_t, mbytes, 871 PAGE_SIZE - (maddr & ~PAGE_MASK)); 872 uchunk = min(ubytes, mchunk); 873 if (mchunk > uchunk) { 874 /* Zero the trailing part of the page */ 875 memset(ptr + uchunk, 0, mchunk - uchunk); 876 } 877 result = copy_from_user(ptr, buf, uchunk); 878 kexec_flush_icache_page(page); 879 kunmap(page); 880 if (result) { 881 result = -EFAULT; 882 goto out; 883 } 884 ubytes -= uchunk; 885 maddr += mchunk; 886 buf += mchunk; 887 mbytes -= mchunk; 888 } 889 out: 890 return result; 891 } 892 893 static int kimage_load_segment(struct kimage *image, 894 struct kexec_segment *segment) 895 { 896 int result = -ENOMEM; 897 898 switch (image->type) { 899 case KEXEC_TYPE_DEFAULT: 900 result = kimage_load_normal_segment(image, segment); 901 break; 902 case KEXEC_TYPE_CRASH: 903 result = kimage_load_crash_segment(image, segment); 904 break; 905 } 906 907 return result; 908 } 909 910 /* 911 * Exec Kernel system call: for obvious reasons only root may call it. 912 * 913 * This call breaks up into three pieces. 914 * - A generic part which loads the new kernel from the current 915 * address space, and very carefully places the data in the 916 * allocated pages. 917 * 918 * - A generic part that interacts with the kernel and tells all of 919 * the devices to shut down. Preventing on-going dmas, and placing 920 * the devices in a consistent state so a later kernel can 921 * reinitialize them. 922 * 923 * - A machine specific part that includes the syscall number 924 * and the copies the image to it's final destination. And 925 * jumps into the image at entry. 926 * 927 * kexec does not sync, or unmount filesystems so if you need 928 * that to happen you need to do that yourself. 929 */ 930 struct kimage *kexec_image; 931 struct kimage *kexec_crash_image; 932 933 static DEFINE_MUTEX(kexec_mutex); 934 935 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 936 struct kexec_segment __user *, segments, unsigned long, flags) 937 { 938 struct kimage **dest_image, *image; 939 int result; 940 941 /* We only trust the superuser with rebooting the system. */ 942 if (!capable(CAP_SYS_BOOT)) 943 return -EPERM; 944 945 /* 946 * Verify we have a legal set of flags 947 * This leaves us room for future extensions. 948 */ 949 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 950 return -EINVAL; 951 952 /* Verify we are on the appropriate architecture */ 953 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 954 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 955 return -EINVAL; 956 957 /* Put an artificial cap on the number 958 * of segments passed to kexec_load. 959 */ 960 if (nr_segments > KEXEC_SEGMENT_MAX) 961 return -EINVAL; 962 963 image = NULL; 964 result = 0; 965 966 /* Because we write directly to the reserved memory 967 * region when loading crash kernels we need a mutex here to 968 * prevent multiple crash kernels from attempting to load 969 * simultaneously, and to prevent a crash kernel from loading 970 * over the top of a in use crash kernel. 971 * 972 * KISS: always take the mutex. 973 */ 974 if (!mutex_trylock(&kexec_mutex)) 975 return -EBUSY; 976 977 dest_image = &kexec_image; 978 if (flags & KEXEC_ON_CRASH) 979 dest_image = &kexec_crash_image; 980 if (nr_segments > 0) { 981 unsigned long i; 982 983 /* Loading another kernel to reboot into */ 984 if ((flags & KEXEC_ON_CRASH) == 0) 985 result = kimage_normal_alloc(&image, entry, 986 nr_segments, segments); 987 /* Loading another kernel to switch to if this one crashes */ 988 else if (flags & KEXEC_ON_CRASH) { 989 /* Free any current crash dump kernel before 990 * we corrupt it. 991 */ 992 kimage_free(xchg(&kexec_crash_image, NULL)); 993 result = kimage_crash_alloc(&image, entry, 994 nr_segments, segments); 995 crash_map_reserved_pages(); 996 } 997 if (result) 998 goto out; 999 1000 if (flags & KEXEC_PRESERVE_CONTEXT) 1001 image->preserve_context = 1; 1002 result = machine_kexec_prepare(image); 1003 if (result) 1004 goto out; 1005 1006 for (i = 0; i < nr_segments; i++) { 1007 result = kimage_load_segment(image, &image->segment[i]); 1008 if (result) 1009 goto out; 1010 } 1011 kimage_terminate(image); 1012 if (flags & KEXEC_ON_CRASH) 1013 crash_unmap_reserved_pages(); 1014 } 1015 /* Install the new kernel, and Uninstall the old */ 1016 image = xchg(dest_image, image); 1017 1018 out: 1019 mutex_unlock(&kexec_mutex); 1020 kimage_free(image); 1021 1022 return result; 1023 } 1024 1025 /* 1026 * Add and remove page tables for crashkernel memory 1027 * 1028 * Provide an empty default implementation here -- architecture 1029 * code may override this 1030 */ 1031 void __weak crash_map_reserved_pages(void) 1032 {} 1033 1034 void __weak crash_unmap_reserved_pages(void) 1035 {} 1036 1037 #ifdef CONFIG_COMPAT 1038 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1039 unsigned long nr_segments, 1040 struct compat_kexec_segment __user *segments, 1041 unsigned long flags) 1042 { 1043 struct compat_kexec_segment in; 1044 struct kexec_segment out, __user *ksegments; 1045 unsigned long i, result; 1046 1047 /* Don't allow clients that don't understand the native 1048 * architecture to do anything. 1049 */ 1050 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1051 return -EINVAL; 1052 1053 if (nr_segments > KEXEC_SEGMENT_MAX) 1054 return -EINVAL; 1055 1056 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1057 for (i=0; i < nr_segments; i++) { 1058 result = copy_from_user(&in, &segments[i], sizeof(in)); 1059 if (result) 1060 return -EFAULT; 1061 1062 out.buf = compat_ptr(in.buf); 1063 out.bufsz = in.bufsz; 1064 out.mem = in.mem; 1065 out.memsz = in.memsz; 1066 1067 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1068 if (result) 1069 return -EFAULT; 1070 } 1071 1072 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1073 } 1074 #endif 1075 1076 void crash_kexec(struct pt_regs *regs) 1077 { 1078 /* Take the kexec_mutex here to prevent sys_kexec_load 1079 * running on one cpu from replacing the crash kernel 1080 * we are using after a panic on a different cpu. 1081 * 1082 * If the crash kernel was not located in a fixed area 1083 * of memory the xchg(&kexec_crash_image) would be 1084 * sufficient. But since I reuse the memory... 1085 */ 1086 if (mutex_trylock(&kexec_mutex)) { 1087 if (kexec_crash_image) { 1088 struct pt_regs fixed_regs; 1089 1090 crash_setup_regs(&fixed_regs, regs); 1091 crash_save_vmcoreinfo(); 1092 machine_crash_shutdown(&fixed_regs); 1093 machine_kexec(kexec_crash_image); 1094 } 1095 mutex_unlock(&kexec_mutex); 1096 } 1097 } 1098 1099 size_t crash_get_memory_size(void) 1100 { 1101 size_t size = 0; 1102 mutex_lock(&kexec_mutex); 1103 if (crashk_res.end != crashk_res.start) 1104 size = resource_size(&crashk_res); 1105 mutex_unlock(&kexec_mutex); 1106 return size; 1107 } 1108 1109 void __weak crash_free_reserved_phys_range(unsigned long begin, 1110 unsigned long end) 1111 { 1112 unsigned long addr; 1113 1114 for (addr = begin; addr < end; addr += PAGE_SIZE) 1115 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1116 } 1117 1118 int crash_shrink_memory(unsigned long new_size) 1119 { 1120 int ret = 0; 1121 unsigned long start, end; 1122 unsigned long old_size; 1123 struct resource *ram_res; 1124 1125 mutex_lock(&kexec_mutex); 1126 1127 if (kexec_crash_image) { 1128 ret = -ENOENT; 1129 goto unlock; 1130 } 1131 start = crashk_res.start; 1132 end = crashk_res.end; 1133 old_size = (end == 0) ? 0 : end - start + 1; 1134 if (new_size >= old_size) { 1135 ret = (new_size == old_size) ? 0 : -EINVAL; 1136 goto unlock; 1137 } 1138 1139 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1140 if (!ram_res) { 1141 ret = -ENOMEM; 1142 goto unlock; 1143 } 1144 1145 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1146 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1147 1148 crash_map_reserved_pages(); 1149 crash_free_reserved_phys_range(end, crashk_res.end); 1150 1151 if ((start == end) && (crashk_res.parent != NULL)) 1152 release_resource(&crashk_res); 1153 1154 ram_res->start = end; 1155 ram_res->end = crashk_res.end; 1156 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1157 ram_res->name = "System RAM"; 1158 1159 crashk_res.end = end - 1; 1160 1161 insert_resource(&iomem_resource, ram_res); 1162 crash_unmap_reserved_pages(); 1163 1164 unlock: 1165 mutex_unlock(&kexec_mutex); 1166 return ret; 1167 } 1168 1169 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1170 size_t data_len) 1171 { 1172 struct elf_note note; 1173 1174 note.n_namesz = strlen(name) + 1; 1175 note.n_descsz = data_len; 1176 note.n_type = type; 1177 memcpy(buf, ¬e, sizeof(note)); 1178 buf += (sizeof(note) + 3)/4; 1179 memcpy(buf, name, note.n_namesz); 1180 buf += (note.n_namesz + 3)/4; 1181 memcpy(buf, data, note.n_descsz); 1182 buf += (note.n_descsz + 3)/4; 1183 1184 return buf; 1185 } 1186 1187 static void final_note(u32 *buf) 1188 { 1189 struct elf_note note; 1190 1191 note.n_namesz = 0; 1192 note.n_descsz = 0; 1193 note.n_type = 0; 1194 memcpy(buf, ¬e, sizeof(note)); 1195 } 1196 1197 void crash_save_cpu(struct pt_regs *regs, int cpu) 1198 { 1199 struct elf_prstatus prstatus; 1200 u32 *buf; 1201 1202 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1203 return; 1204 1205 /* Using ELF notes here is opportunistic. 1206 * I need a well defined structure format 1207 * for the data I pass, and I need tags 1208 * on the data to indicate what information I have 1209 * squirrelled away. ELF notes happen to provide 1210 * all of that, so there is no need to invent something new. 1211 */ 1212 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1213 if (!buf) 1214 return; 1215 memset(&prstatus, 0, sizeof(prstatus)); 1216 prstatus.pr_pid = current->pid; 1217 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1218 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1219 &prstatus, sizeof(prstatus)); 1220 final_note(buf); 1221 } 1222 1223 static int __init crash_notes_memory_init(void) 1224 { 1225 /* Allocate memory for saving cpu registers. */ 1226 crash_notes = alloc_percpu(note_buf_t); 1227 if (!crash_notes) { 1228 printk("Kexec: Memory allocation for saving cpu register" 1229 " states failed\n"); 1230 return -ENOMEM; 1231 } 1232 return 0; 1233 } 1234 module_init(crash_notes_memory_init) 1235 1236 1237 /* 1238 * parsing the "crashkernel" commandline 1239 * 1240 * this code is intended to be called from architecture specific code 1241 */ 1242 1243 1244 /* 1245 * This function parses command lines in the format 1246 * 1247 * crashkernel=ramsize-range:size[,...][@offset] 1248 * 1249 * The function returns 0 on success and -EINVAL on failure. 1250 */ 1251 static int __init parse_crashkernel_mem(char *cmdline, 1252 unsigned long long system_ram, 1253 unsigned long long *crash_size, 1254 unsigned long long *crash_base) 1255 { 1256 char *cur = cmdline, *tmp; 1257 1258 /* for each entry of the comma-separated list */ 1259 do { 1260 unsigned long long start, end = ULLONG_MAX, size; 1261 1262 /* get the start of the range */ 1263 start = memparse(cur, &tmp); 1264 if (cur == tmp) { 1265 pr_warning("crashkernel: Memory value expected\n"); 1266 return -EINVAL; 1267 } 1268 cur = tmp; 1269 if (*cur != '-') { 1270 pr_warning("crashkernel: '-' expected\n"); 1271 return -EINVAL; 1272 } 1273 cur++; 1274 1275 /* if no ':' is here, than we read the end */ 1276 if (*cur != ':') { 1277 end = memparse(cur, &tmp); 1278 if (cur == tmp) { 1279 pr_warning("crashkernel: Memory " 1280 "value expected\n"); 1281 return -EINVAL; 1282 } 1283 cur = tmp; 1284 if (end <= start) { 1285 pr_warning("crashkernel: end <= start\n"); 1286 return -EINVAL; 1287 } 1288 } 1289 1290 if (*cur != ':') { 1291 pr_warning("crashkernel: ':' expected\n"); 1292 return -EINVAL; 1293 } 1294 cur++; 1295 1296 size = memparse(cur, &tmp); 1297 if (cur == tmp) { 1298 pr_warning("Memory value expected\n"); 1299 return -EINVAL; 1300 } 1301 cur = tmp; 1302 if (size >= system_ram) { 1303 pr_warning("crashkernel: invalid size\n"); 1304 return -EINVAL; 1305 } 1306 1307 /* match ? */ 1308 if (system_ram >= start && system_ram < end) { 1309 *crash_size = size; 1310 break; 1311 } 1312 } while (*cur++ == ','); 1313 1314 if (*crash_size > 0) { 1315 while (*cur && *cur != ' ' && *cur != '@') 1316 cur++; 1317 if (*cur == '@') { 1318 cur++; 1319 *crash_base = memparse(cur, &tmp); 1320 if (cur == tmp) { 1321 pr_warning("Memory value expected " 1322 "after '@'\n"); 1323 return -EINVAL; 1324 } 1325 } 1326 } 1327 1328 return 0; 1329 } 1330 1331 /* 1332 * That function parses "simple" (old) crashkernel command lines like 1333 * 1334 * crashkernel=size[@offset] 1335 * 1336 * It returns 0 on success and -EINVAL on failure. 1337 */ 1338 static int __init parse_crashkernel_simple(char *cmdline, 1339 unsigned long long *crash_size, 1340 unsigned long long *crash_base) 1341 { 1342 char *cur = cmdline; 1343 1344 *crash_size = memparse(cmdline, &cur); 1345 if (cmdline == cur) { 1346 pr_warning("crashkernel: memory value expected\n"); 1347 return -EINVAL; 1348 } 1349 1350 if (*cur == '@') 1351 *crash_base = memparse(cur+1, &cur); 1352 else if (*cur != ' ' && *cur != '\0') { 1353 pr_warning("crashkernel: unrecognized char\n"); 1354 return -EINVAL; 1355 } 1356 1357 return 0; 1358 } 1359 1360 #define SUFFIX_HIGH 0 1361 #define SUFFIX_LOW 1 1362 #define SUFFIX_NULL 2 1363 static __initdata char *suffix_tbl[] = { 1364 [SUFFIX_HIGH] = ",high", 1365 [SUFFIX_LOW] = ",low", 1366 [SUFFIX_NULL] = NULL, 1367 }; 1368 1369 /* 1370 * That function parses "suffix" crashkernel command lines like 1371 * 1372 * crashkernel=size,[high|low] 1373 * 1374 * It returns 0 on success and -EINVAL on failure. 1375 */ 1376 static int __init parse_crashkernel_suffix(char *cmdline, 1377 unsigned long long *crash_size, 1378 unsigned long long *crash_base, 1379 const char *suffix) 1380 { 1381 char *cur = cmdline; 1382 1383 *crash_size = memparse(cmdline, &cur); 1384 if (cmdline == cur) { 1385 pr_warn("crashkernel: memory value expected\n"); 1386 return -EINVAL; 1387 } 1388 1389 /* check with suffix */ 1390 if (strncmp(cur, suffix, strlen(suffix))) { 1391 pr_warn("crashkernel: unrecognized char\n"); 1392 return -EINVAL; 1393 } 1394 cur += strlen(suffix); 1395 if (*cur != ' ' && *cur != '\0') { 1396 pr_warn("crashkernel: unrecognized char\n"); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static __init char *get_last_crashkernel(char *cmdline, 1404 const char *name, 1405 const char *suffix) 1406 { 1407 char *p = cmdline, *ck_cmdline = NULL; 1408 1409 /* find crashkernel and use the last one if there are more */ 1410 p = strstr(p, name); 1411 while (p) { 1412 char *end_p = strchr(p, ' '); 1413 char *q; 1414 1415 if (!end_p) 1416 end_p = p + strlen(p); 1417 1418 if (!suffix) { 1419 int i; 1420 1421 /* skip the one with any known suffix */ 1422 for (i = 0; suffix_tbl[i]; i++) { 1423 q = end_p - strlen(suffix_tbl[i]); 1424 if (!strncmp(q, suffix_tbl[i], 1425 strlen(suffix_tbl[i]))) 1426 goto next; 1427 } 1428 ck_cmdline = p; 1429 } else { 1430 q = end_p - strlen(suffix); 1431 if (!strncmp(q, suffix, strlen(suffix))) 1432 ck_cmdline = p; 1433 } 1434 next: 1435 p = strstr(p+1, name); 1436 } 1437 1438 if (!ck_cmdline) 1439 return NULL; 1440 1441 return ck_cmdline; 1442 } 1443 1444 static int __init __parse_crashkernel(char *cmdline, 1445 unsigned long long system_ram, 1446 unsigned long long *crash_size, 1447 unsigned long long *crash_base, 1448 const char *name, 1449 const char *suffix) 1450 { 1451 char *first_colon, *first_space; 1452 char *ck_cmdline; 1453 1454 BUG_ON(!crash_size || !crash_base); 1455 *crash_size = 0; 1456 *crash_base = 0; 1457 1458 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1459 1460 if (!ck_cmdline) 1461 return -EINVAL; 1462 1463 ck_cmdline += strlen(name); 1464 1465 if (suffix) 1466 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1467 crash_base, suffix); 1468 /* 1469 * if the commandline contains a ':', then that's the extended 1470 * syntax -- if not, it must be the classic syntax 1471 */ 1472 first_colon = strchr(ck_cmdline, ':'); 1473 first_space = strchr(ck_cmdline, ' '); 1474 if (first_colon && (!first_space || first_colon < first_space)) 1475 return parse_crashkernel_mem(ck_cmdline, system_ram, 1476 crash_size, crash_base); 1477 1478 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1479 } 1480 1481 /* 1482 * That function is the entry point for command line parsing and should be 1483 * called from the arch-specific code. 1484 */ 1485 int __init parse_crashkernel(char *cmdline, 1486 unsigned long long system_ram, 1487 unsigned long long *crash_size, 1488 unsigned long long *crash_base) 1489 { 1490 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1491 "crashkernel=", NULL); 1492 } 1493 1494 int __init parse_crashkernel_high(char *cmdline, 1495 unsigned long long system_ram, 1496 unsigned long long *crash_size, 1497 unsigned long long *crash_base) 1498 { 1499 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1500 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1501 } 1502 1503 int __init parse_crashkernel_low(char *cmdline, 1504 unsigned long long system_ram, 1505 unsigned long long *crash_size, 1506 unsigned long long *crash_base) 1507 { 1508 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1509 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1510 } 1511 1512 static void update_vmcoreinfo_note(void) 1513 { 1514 u32 *buf = vmcoreinfo_note; 1515 1516 if (!vmcoreinfo_size) 1517 return; 1518 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1519 vmcoreinfo_size); 1520 final_note(buf); 1521 } 1522 1523 void crash_save_vmcoreinfo(void) 1524 { 1525 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1526 update_vmcoreinfo_note(); 1527 } 1528 1529 void vmcoreinfo_append_str(const char *fmt, ...) 1530 { 1531 va_list args; 1532 char buf[0x50]; 1533 size_t r; 1534 1535 va_start(args, fmt); 1536 r = vsnprintf(buf, sizeof(buf), fmt, args); 1537 va_end(args); 1538 1539 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1540 1541 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1542 1543 vmcoreinfo_size += r; 1544 } 1545 1546 /* 1547 * provide an empty default implementation here -- architecture 1548 * code may override this 1549 */ 1550 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1551 {} 1552 1553 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1554 { 1555 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1556 } 1557 1558 static int __init crash_save_vmcoreinfo_init(void) 1559 { 1560 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1561 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1562 1563 VMCOREINFO_SYMBOL(init_uts_ns); 1564 VMCOREINFO_SYMBOL(node_online_map); 1565 #ifdef CONFIG_MMU 1566 VMCOREINFO_SYMBOL(swapper_pg_dir); 1567 #endif 1568 VMCOREINFO_SYMBOL(_stext); 1569 VMCOREINFO_SYMBOL(vmap_area_list); 1570 1571 #ifndef CONFIG_NEED_MULTIPLE_NODES 1572 VMCOREINFO_SYMBOL(mem_map); 1573 VMCOREINFO_SYMBOL(contig_page_data); 1574 #endif 1575 #ifdef CONFIG_SPARSEMEM 1576 VMCOREINFO_SYMBOL(mem_section); 1577 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1578 VMCOREINFO_STRUCT_SIZE(mem_section); 1579 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1580 #endif 1581 VMCOREINFO_STRUCT_SIZE(page); 1582 VMCOREINFO_STRUCT_SIZE(pglist_data); 1583 VMCOREINFO_STRUCT_SIZE(zone); 1584 VMCOREINFO_STRUCT_SIZE(free_area); 1585 VMCOREINFO_STRUCT_SIZE(list_head); 1586 VMCOREINFO_SIZE(nodemask_t); 1587 VMCOREINFO_OFFSET(page, flags); 1588 VMCOREINFO_OFFSET(page, _count); 1589 VMCOREINFO_OFFSET(page, mapping); 1590 VMCOREINFO_OFFSET(page, lru); 1591 VMCOREINFO_OFFSET(page, _mapcount); 1592 VMCOREINFO_OFFSET(page, private); 1593 VMCOREINFO_OFFSET(pglist_data, node_zones); 1594 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1595 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1596 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1597 #endif 1598 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1599 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1600 VMCOREINFO_OFFSET(pglist_data, node_id); 1601 VMCOREINFO_OFFSET(zone, free_area); 1602 VMCOREINFO_OFFSET(zone, vm_stat); 1603 VMCOREINFO_OFFSET(zone, spanned_pages); 1604 VMCOREINFO_OFFSET(free_area, free_list); 1605 VMCOREINFO_OFFSET(list_head, next); 1606 VMCOREINFO_OFFSET(list_head, prev); 1607 VMCOREINFO_OFFSET(vmap_area, va_start); 1608 VMCOREINFO_OFFSET(vmap_area, list); 1609 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1610 log_buf_kexec_setup(); 1611 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1612 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1613 VMCOREINFO_NUMBER(PG_lru); 1614 VMCOREINFO_NUMBER(PG_private); 1615 VMCOREINFO_NUMBER(PG_swapcache); 1616 VMCOREINFO_NUMBER(PG_slab); 1617 #ifdef CONFIG_MEMORY_FAILURE 1618 VMCOREINFO_NUMBER(PG_hwpoison); 1619 #endif 1620 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 1621 1622 arch_crash_save_vmcoreinfo(); 1623 update_vmcoreinfo_note(); 1624 1625 return 0; 1626 } 1627 1628 module_init(crash_save_vmcoreinfo_init) 1629 1630 /* 1631 * Move into place and start executing a preloaded standalone 1632 * executable. If nothing was preloaded return an error. 1633 */ 1634 int kernel_kexec(void) 1635 { 1636 int error = 0; 1637 1638 if (!mutex_trylock(&kexec_mutex)) 1639 return -EBUSY; 1640 if (!kexec_image) { 1641 error = -EINVAL; 1642 goto Unlock; 1643 } 1644 1645 #ifdef CONFIG_KEXEC_JUMP 1646 if (kexec_image->preserve_context) { 1647 lock_system_sleep(); 1648 pm_prepare_console(); 1649 error = freeze_processes(); 1650 if (error) { 1651 error = -EBUSY; 1652 goto Restore_console; 1653 } 1654 suspend_console(); 1655 error = dpm_suspend_start(PMSG_FREEZE); 1656 if (error) 1657 goto Resume_console; 1658 /* At this point, dpm_suspend_start() has been called, 1659 * but *not* dpm_suspend_end(). We *must* call 1660 * dpm_suspend_end() now. Otherwise, drivers for 1661 * some devices (e.g. interrupt controllers) become 1662 * desynchronized with the actual state of the 1663 * hardware at resume time, and evil weirdness ensues. 1664 */ 1665 error = dpm_suspend_end(PMSG_FREEZE); 1666 if (error) 1667 goto Resume_devices; 1668 error = disable_nonboot_cpus(); 1669 if (error) 1670 goto Enable_cpus; 1671 local_irq_disable(); 1672 error = syscore_suspend(); 1673 if (error) 1674 goto Enable_irqs; 1675 } else 1676 #endif 1677 { 1678 kernel_restart_prepare(NULL); 1679 printk(KERN_EMERG "Starting new kernel\n"); 1680 machine_shutdown(); 1681 } 1682 1683 machine_kexec(kexec_image); 1684 1685 #ifdef CONFIG_KEXEC_JUMP 1686 if (kexec_image->preserve_context) { 1687 syscore_resume(); 1688 Enable_irqs: 1689 local_irq_enable(); 1690 Enable_cpus: 1691 enable_nonboot_cpus(); 1692 dpm_resume_start(PMSG_RESTORE); 1693 Resume_devices: 1694 dpm_resume_end(PMSG_RESTORE); 1695 Resume_console: 1696 resume_console(); 1697 thaw_processes(); 1698 Restore_console: 1699 pm_restore_console(); 1700 unlock_system_sleep(); 1701 } 1702 #endif 1703 1704 Unlock: 1705 mutex_unlock(&kexec_mutex); 1706 return error; 1707 } 1708