1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/console.h> 34 #include <linux/vmalloc.h> 35 #include <linux/swap.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/compiler.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/page.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/sections.h> 44 45 #include <crypto/hash.h> 46 #include <crypto/sha.h> 47 48 /* Per cpu memory for storing cpu states in case of system crash. */ 49 note_buf_t __percpu *crash_notes; 50 51 /* vmcoreinfo stuff */ 52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 54 size_t vmcoreinfo_size; 55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 56 57 /* Flag to indicate we are going to kexec a new kernel */ 58 bool kexec_in_progress = false; 59 60 /* 61 * Declare these symbols weak so that if architecture provides a purgatory, 62 * these will be overridden. 63 */ 64 char __weak kexec_purgatory[0]; 65 size_t __weak kexec_purgatory_size = 0; 66 67 #ifdef CONFIG_KEXEC_FILE 68 static int kexec_calculate_store_digests(struct kimage *image); 69 #endif 70 71 /* Location of the reserved area for the crash kernel */ 72 struct resource crashk_res = { 73 .name = "Crash kernel", 74 .start = 0, 75 .end = 0, 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 77 }; 78 struct resource crashk_low_res = { 79 .name = "Crash kernel", 80 .start = 0, 81 .end = 0, 82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 83 }; 84 85 int kexec_should_crash(struct task_struct *p) 86 { 87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 88 return 1; 89 return 0; 90 } 91 92 /* 93 * When kexec transitions to the new kernel there is a one-to-one 94 * mapping between physical and virtual addresses. On processors 95 * where you can disable the MMU this is trivial, and easy. For 96 * others it is still a simple predictable page table to setup. 97 * 98 * In that environment kexec copies the new kernel to its final 99 * resting place. This means I can only support memory whose 100 * physical address can fit in an unsigned long. In particular 101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 102 * If the assembly stub has more restrictive requirements 103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 104 * defined more restrictively in <asm/kexec.h>. 105 * 106 * The code for the transition from the current kernel to the 107 * the new kernel is placed in the control_code_buffer, whose size 108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 109 * page of memory is necessary, but some architectures require more. 110 * Because this memory must be identity mapped in the transition from 111 * virtual to physical addresses it must live in the range 112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 113 * modifiable. 114 * 115 * The assembly stub in the control code buffer is passed a linked list 116 * of descriptor pages detailing the source pages of the new kernel, 117 * and the destination addresses of those source pages. As this data 118 * structure is not used in the context of the current OS, it must 119 * be self-contained. 120 * 121 * The code has been made to work with highmem pages and will use a 122 * destination page in its final resting place (if it happens 123 * to allocate it). The end product of this is that most of the 124 * physical address space, and most of RAM can be used. 125 * 126 * Future directions include: 127 * - allocating a page table with the control code buffer identity 128 * mapped, to simplify machine_kexec and make kexec_on_panic more 129 * reliable. 130 */ 131 132 /* 133 * KIMAGE_NO_DEST is an impossible destination address..., for 134 * allocating pages whose destination address we do not care about. 135 */ 136 #define KIMAGE_NO_DEST (-1UL) 137 138 static int kimage_is_destination_range(struct kimage *image, 139 unsigned long start, unsigned long end); 140 static struct page *kimage_alloc_page(struct kimage *image, 141 gfp_t gfp_mask, 142 unsigned long dest); 143 144 static int copy_user_segment_list(struct kimage *image, 145 unsigned long nr_segments, 146 struct kexec_segment __user *segments) 147 { 148 int ret; 149 size_t segment_bytes; 150 151 /* Read in the segments */ 152 image->nr_segments = nr_segments; 153 segment_bytes = nr_segments * sizeof(*segments); 154 ret = copy_from_user(image->segment, segments, segment_bytes); 155 if (ret) 156 ret = -EFAULT; 157 158 return ret; 159 } 160 161 static int sanity_check_segment_list(struct kimage *image) 162 { 163 int result, i; 164 unsigned long nr_segments = image->nr_segments; 165 166 /* 167 * Verify we have good destination addresses. The caller is 168 * responsible for making certain we don't attempt to load 169 * the new image into invalid or reserved areas of RAM. This 170 * just verifies it is an address we can use. 171 * 172 * Since the kernel does everything in page size chunks ensure 173 * the destination addresses are page aligned. Too many 174 * special cases crop of when we don't do this. The most 175 * insidious is getting overlapping destination addresses 176 * simply because addresses are changed to page size 177 * granularity. 178 */ 179 result = -EADDRNOTAVAIL; 180 for (i = 0; i < nr_segments; i++) { 181 unsigned long mstart, mend; 182 183 mstart = image->segment[i].mem; 184 mend = mstart + image->segment[i].memsz; 185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 186 return result; 187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 188 return result; 189 } 190 191 /* Verify our destination addresses do not overlap. 192 * If we alloed overlapping destination addresses 193 * through very weird things can happen with no 194 * easy explanation as one segment stops on another. 195 */ 196 result = -EINVAL; 197 for (i = 0; i < nr_segments; i++) { 198 unsigned long mstart, mend; 199 unsigned long j; 200 201 mstart = image->segment[i].mem; 202 mend = mstart + image->segment[i].memsz; 203 for (j = 0; j < i; j++) { 204 unsigned long pstart, pend; 205 pstart = image->segment[j].mem; 206 pend = pstart + image->segment[j].memsz; 207 /* Do the segments overlap ? */ 208 if ((mend > pstart) && (mstart < pend)) 209 return result; 210 } 211 } 212 213 /* Ensure our buffer sizes are strictly less than 214 * our memory sizes. This should always be the case, 215 * and it is easier to check up front than to be surprised 216 * later on. 217 */ 218 result = -EINVAL; 219 for (i = 0; i < nr_segments; i++) { 220 if (image->segment[i].bufsz > image->segment[i].memsz) 221 return result; 222 } 223 224 /* 225 * Verify we have good destination addresses. Normally 226 * the caller is responsible for making certain we don't 227 * attempt to load the new image into invalid or reserved 228 * areas of RAM. But crash kernels are preloaded into a 229 * reserved area of ram. We must ensure the addresses 230 * are in the reserved area otherwise preloading the 231 * kernel could corrupt things. 232 */ 233 234 if (image->type == KEXEC_TYPE_CRASH) { 235 result = -EADDRNOTAVAIL; 236 for (i = 0; i < nr_segments; i++) { 237 unsigned long mstart, mend; 238 239 mstart = image->segment[i].mem; 240 mend = mstart + image->segment[i].memsz - 1; 241 /* Ensure we are within the crash kernel limits */ 242 if ((mstart < crashk_res.start) || 243 (mend > crashk_res.end)) 244 return result; 245 } 246 } 247 248 return 0; 249 } 250 251 static struct kimage *do_kimage_alloc_init(void) 252 { 253 struct kimage *image; 254 255 /* Allocate a controlling structure */ 256 image = kzalloc(sizeof(*image), GFP_KERNEL); 257 if (!image) 258 return NULL; 259 260 image->head = 0; 261 image->entry = &image->head; 262 image->last_entry = &image->head; 263 image->control_page = ~0; /* By default this does not apply */ 264 image->type = KEXEC_TYPE_DEFAULT; 265 266 /* Initialize the list of control pages */ 267 INIT_LIST_HEAD(&image->control_pages); 268 269 /* Initialize the list of destination pages */ 270 INIT_LIST_HEAD(&image->dest_pages); 271 272 /* Initialize the list of unusable pages */ 273 INIT_LIST_HEAD(&image->unusable_pages); 274 275 return image; 276 } 277 278 static void kimage_free_page_list(struct list_head *list); 279 280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 281 unsigned long nr_segments, 282 struct kexec_segment __user *segments, 283 unsigned long flags) 284 { 285 int ret; 286 struct kimage *image; 287 bool kexec_on_panic = flags & KEXEC_ON_CRASH; 288 289 if (kexec_on_panic) { 290 /* Verify we have a valid entry point */ 291 if ((entry < crashk_res.start) || (entry > crashk_res.end)) 292 return -EADDRNOTAVAIL; 293 } 294 295 /* Allocate and initialize a controlling structure */ 296 image = do_kimage_alloc_init(); 297 if (!image) 298 return -ENOMEM; 299 300 image->start = entry; 301 302 ret = copy_user_segment_list(image, nr_segments, segments); 303 if (ret) 304 goto out_free_image; 305 306 ret = sanity_check_segment_list(image); 307 if (ret) 308 goto out_free_image; 309 310 /* Enable the special crash kernel control page allocation policy. */ 311 if (kexec_on_panic) { 312 image->control_page = crashk_res.start; 313 image->type = KEXEC_TYPE_CRASH; 314 } 315 316 /* 317 * Find a location for the control code buffer, and add it 318 * the vector of segments so that it's pages will also be 319 * counted as destination pages. 320 */ 321 ret = -ENOMEM; 322 image->control_code_page = kimage_alloc_control_pages(image, 323 get_order(KEXEC_CONTROL_PAGE_SIZE)); 324 if (!image->control_code_page) { 325 pr_err("Could not allocate control_code_buffer\n"); 326 goto out_free_image; 327 } 328 329 if (!kexec_on_panic) { 330 image->swap_page = kimage_alloc_control_pages(image, 0); 331 if (!image->swap_page) { 332 pr_err("Could not allocate swap buffer\n"); 333 goto out_free_control_pages; 334 } 335 } 336 337 *rimage = image; 338 return 0; 339 out_free_control_pages: 340 kimage_free_page_list(&image->control_pages); 341 out_free_image: 342 kfree(image); 343 return ret; 344 } 345 346 #ifdef CONFIG_KEXEC_FILE 347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) 348 { 349 struct fd f = fdget(fd); 350 int ret; 351 struct kstat stat; 352 loff_t pos; 353 ssize_t bytes = 0; 354 355 if (!f.file) 356 return -EBADF; 357 358 ret = vfs_getattr(&f.file->f_path, &stat); 359 if (ret) 360 goto out; 361 362 if (stat.size > INT_MAX) { 363 ret = -EFBIG; 364 goto out; 365 } 366 367 /* Don't hand 0 to vmalloc, it whines. */ 368 if (stat.size == 0) { 369 ret = -EINVAL; 370 goto out; 371 } 372 373 *buf = vmalloc(stat.size); 374 if (!*buf) { 375 ret = -ENOMEM; 376 goto out; 377 } 378 379 pos = 0; 380 while (pos < stat.size) { 381 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, 382 stat.size - pos); 383 if (bytes < 0) { 384 vfree(*buf); 385 ret = bytes; 386 goto out; 387 } 388 389 if (bytes == 0) 390 break; 391 pos += bytes; 392 } 393 394 if (pos != stat.size) { 395 ret = -EBADF; 396 vfree(*buf); 397 goto out; 398 } 399 400 *buf_len = pos; 401 out: 402 fdput(f); 403 return ret; 404 } 405 406 /* Architectures can provide this probe function */ 407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 408 unsigned long buf_len) 409 { 410 return -ENOEXEC; 411 } 412 413 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 414 { 415 return ERR_PTR(-ENOEXEC); 416 } 417 418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 419 { 420 } 421 422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 423 unsigned long buf_len) 424 { 425 return -EKEYREJECTED; 426 } 427 428 /* Apply relocations of type RELA */ 429 int __weak 430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 431 unsigned int relsec) 432 { 433 pr_err("RELA relocation unsupported.\n"); 434 return -ENOEXEC; 435 } 436 437 /* Apply relocations of type REL */ 438 int __weak 439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 440 unsigned int relsec) 441 { 442 pr_err("REL relocation unsupported.\n"); 443 return -ENOEXEC; 444 } 445 446 /* 447 * Free up memory used by kernel, initrd, and command line. This is temporary 448 * memory allocation which is not needed any more after these buffers have 449 * been loaded into separate segments and have been copied elsewhere. 450 */ 451 static void kimage_file_post_load_cleanup(struct kimage *image) 452 { 453 struct purgatory_info *pi = &image->purgatory_info; 454 455 vfree(image->kernel_buf); 456 image->kernel_buf = NULL; 457 458 vfree(image->initrd_buf); 459 image->initrd_buf = NULL; 460 461 kfree(image->cmdline_buf); 462 image->cmdline_buf = NULL; 463 464 vfree(pi->purgatory_buf); 465 pi->purgatory_buf = NULL; 466 467 vfree(pi->sechdrs); 468 pi->sechdrs = NULL; 469 470 /* See if architecture has anything to cleanup post load */ 471 arch_kimage_file_post_load_cleanup(image); 472 473 /* 474 * Above call should have called into bootloader to free up 475 * any data stored in kimage->image_loader_data. It should 476 * be ok now to free it up. 477 */ 478 kfree(image->image_loader_data); 479 image->image_loader_data = NULL; 480 } 481 482 /* 483 * In file mode list of segments is prepared by kernel. Copy relevant 484 * data from user space, do error checking, prepare segment list 485 */ 486 static int 487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 488 const char __user *cmdline_ptr, 489 unsigned long cmdline_len, unsigned flags) 490 { 491 int ret = 0; 492 void *ldata; 493 494 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, 495 &image->kernel_buf_len); 496 if (ret) 497 return ret; 498 499 /* Call arch image probe handlers */ 500 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 501 image->kernel_buf_len); 502 503 if (ret) 504 goto out; 505 506 #ifdef CONFIG_KEXEC_VERIFY_SIG 507 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 508 image->kernel_buf_len); 509 if (ret) { 510 pr_debug("kernel signature verification failed.\n"); 511 goto out; 512 } 513 pr_debug("kernel signature verification successful.\n"); 514 #endif 515 /* It is possible that there no initramfs is being loaded */ 516 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 517 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, 518 &image->initrd_buf_len); 519 if (ret) 520 goto out; 521 } 522 523 if (cmdline_len) { 524 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); 525 if (!image->cmdline_buf) { 526 ret = -ENOMEM; 527 goto out; 528 } 529 530 ret = copy_from_user(image->cmdline_buf, cmdline_ptr, 531 cmdline_len); 532 if (ret) { 533 ret = -EFAULT; 534 goto out; 535 } 536 537 image->cmdline_buf_len = cmdline_len; 538 539 /* command line should be a string with last byte null */ 540 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 541 ret = -EINVAL; 542 goto out; 543 } 544 } 545 546 /* Call arch image load handlers */ 547 ldata = arch_kexec_kernel_image_load(image); 548 549 if (IS_ERR(ldata)) { 550 ret = PTR_ERR(ldata); 551 goto out; 552 } 553 554 image->image_loader_data = ldata; 555 out: 556 /* In case of error, free up all allocated memory in this function */ 557 if (ret) 558 kimage_file_post_load_cleanup(image); 559 return ret; 560 } 561 562 static int 563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 564 int initrd_fd, const char __user *cmdline_ptr, 565 unsigned long cmdline_len, unsigned long flags) 566 { 567 int ret; 568 struct kimage *image; 569 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 570 571 image = do_kimage_alloc_init(); 572 if (!image) 573 return -ENOMEM; 574 575 image->file_mode = 1; 576 577 if (kexec_on_panic) { 578 /* Enable special crash kernel control page alloc policy. */ 579 image->control_page = crashk_res.start; 580 image->type = KEXEC_TYPE_CRASH; 581 } 582 583 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 584 cmdline_ptr, cmdline_len, flags); 585 if (ret) 586 goto out_free_image; 587 588 ret = sanity_check_segment_list(image); 589 if (ret) 590 goto out_free_post_load_bufs; 591 592 ret = -ENOMEM; 593 image->control_code_page = kimage_alloc_control_pages(image, 594 get_order(KEXEC_CONTROL_PAGE_SIZE)); 595 if (!image->control_code_page) { 596 pr_err("Could not allocate control_code_buffer\n"); 597 goto out_free_post_load_bufs; 598 } 599 600 if (!kexec_on_panic) { 601 image->swap_page = kimage_alloc_control_pages(image, 0); 602 if (!image->swap_page) { 603 pr_err("Could not allocate swap buffer\n"); 604 goto out_free_control_pages; 605 } 606 } 607 608 *rimage = image; 609 return 0; 610 out_free_control_pages: 611 kimage_free_page_list(&image->control_pages); 612 out_free_post_load_bufs: 613 kimage_file_post_load_cleanup(image); 614 out_free_image: 615 kfree(image); 616 return ret; 617 } 618 #else /* CONFIG_KEXEC_FILE */ 619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { } 620 #endif /* CONFIG_KEXEC_FILE */ 621 622 static int kimage_is_destination_range(struct kimage *image, 623 unsigned long start, 624 unsigned long end) 625 { 626 unsigned long i; 627 628 for (i = 0; i < image->nr_segments; i++) { 629 unsigned long mstart, mend; 630 631 mstart = image->segment[i].mem; 632 mend = mstart + image->segment[i].memsz; 633 if ((end > mstart) && (start < mend)) 634 return 1; 635 } 636 637 return 0; 638 } 639 640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 641 { 642 struct page *pages; 643 644 pages = alloc_pages(gfp_mask, order); 645 if (pages) { 646 unsigned int count, i; 647 pages->mapping = NULL; 648 set_page_private(pages, order); 649 count = 1 << order; 650 for (i = 0; i < count; i++) 651 SetPageReserved(pages + i); 652 } 653 654 return pages; 655 } 656 657 static void kimage_free_pages(struct page *page) 658 { 659 unsigned int order, count, i; 660 661 order = page_private(page); 662 count = 1 << order; 663 for (i = 0; i < count; i++) 664 ClearPageReserved(page + i); 665 __free_pages(page, order); 666 } 667 668 static void kimage_free_page_list(struct list_head *list) 669 { 670 struct list_head *pos, *next; 671 672 list_for_each_safe(pos, next, list) { 673 struct page *page; 674 675 page = list_entry(pos, struct page, lru); 676 list_del(&page->lru); 677 kimage_free_pages(page); 678 } 679 } 680 681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 682 unsigned int order) 683 { 684 /* Control pages are special, they are the intermediaries 685 * that are needed while we copy the rest of the pages 686 * to their final resting place. As such they must 687 * not conflict with either the destination addresses 688 * or memory the kernel is already using. 689 * 690 * The only case where we really need more than one of 691 * these are for architectures where we cannot disable 692 * the MMU and must instead generate an identity mapped 693 * page table for all of the memory. 694 * 695 * At worst this runs in O(N) of the image size. 696 */ 697 struct list_head extra_pages; 698 struct page *pages; 699 unsigned int count; 700 701 count = 1 << order; 702 INIT_LIST_HEAD(&extra_pages); 703 704 /* Loop while I can allocate a page and the page allocated 705 * is a destination page. 706 */ 707 do { 708 unsigned long pfn, epfn, addr, eaddr; 709 710 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 711 if (!pages) 712 break; 713 pfn = page_to_pfn(pages); 714 epfn = pfn + count; 715 addr = pfn << PAGE_SHIFT; 716 eaddr = epfn << PAGE_SHIFT; 717 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 718 kimage_is_destination_range(image, addr, eaddr)) { 719 list_add(&pages->lru, &extra_pages); 720 pages = NULL; 721 } 722 } while (!pages); 723 724 if (pages) { 725 /* Remember the allocated page... */ 726 list_add(&pages->lru, &image->control_pages); 727 728 /* Because the page is already in it's destination 729 * location we will never allocate another page at 730 * that address. Therefore kimage_alloc_pages 731 * will not return it (again) and we don't need 732 * to give it an entry in image->segment[]. 733 */ 734 } 735 /* Deal with the destination pages I have inadvertently allocated. 736 * 737 * Ideally I would convert multi-page allocations into single 738 * page allocations, and add everything to image->dest_pages. 739 * 740 * For now it is simpler to just free the pages. 741 */ 742 kimage_free_page_list(&extra_pages); 743 744 return pages; 745 } 746 747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 748 unsigned int order) 749 { 750 /* Control pages are special, they are the intermediaries 751 * that are needed while we copy the rest of the pages 752 * to their final resting place. As such they must 753 * not conflict with either the destination addresses 754 * or memory the kernel is already using. 755 * 756 * Control pages are also the only pags we must allocate 757 * when loading a crash kernel. All of the other pages 758 * are specified by the segments and we just memcpy 759 * into them directly. 760 * 761 * The only case where we really need more than one of 762 * these are for architectures where we cannot disable 763 * the MMU and must instead generate an identity mapped 764 * page table for all of the memory. 765 * 766 * Given the low demand this implements a very simple 767 * allocator that finds the first hole of the appropriate 768 * size in the reserved memory region, and allocates all 769 * of the memory up to and including the hole. 770 */ 771 unsigned long hole_start, hole_end, size; 772 struct page *pages; 773 774 pages = NULL; 775 size = (1 << order) << PAGE_SHIFT; 776 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 777 hole_end = hole_start + size - 1; 778 while (hole_end <= crashk_res.end) { 779 unsigned long i; 780 781 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 782 break; 783 /* See if I overlap any of the segments */ 784 for (i = 0; i < image->nr_segments; i++) { 785 unsigned long mstart, mend; 786 787 mstart = image->segment[i].mem; 788 mend = mstart + image->segment[i].memsz - 1; 789 if ((hole_end >= mstart) && (hole_start <= mend)) { 790 /* Advance the hole to the end of the segment */ 791 hole_start = (mend + (size - 1)) & ~(size - 1); 792 hole_end = hole_start + size - 1; 793 break; 794 } 795 } 796 /* If I don't overlap any segments I have found my hole! */ 797 if (i == image->nr_segments) { 798 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 799 break; 800 } 801 } 802 if (pages) 803 image->control_page = hole_end; 804 805 return pages; 806 } 807 808 809 struct page *kimage_alloc_control_pages(struct kimage *image, 810 unsigned int order) 811 { 812 struct page *pages = NULL; 813 814 switch (image->type) { 815 case KEXEC_TYPE_DEFAULT: 816 pages = kimage_alloc_normal_control_pages(image, order); 817 break; 818 case KEXEC_TYPE_CRASH: 819 pages = kimage_alloc_crash_control_pages(image, order); 820 break; 821 } 822 823 return pages; 824 } 825 826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 827 { 828 if (*image->entry != 0) 829 image->entry++; 830 831 if (image->entry == image->last_entry) { 832 kimage_entry_t *ind_page; 833 struct page *page; 834 835 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 836 if (!page) 837 return -ENOMEM; 838 839 ind_page = page_address(page); 840 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 841 image->entry = ind_page; 842 image->last_entry = ind_page + 843 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 844 } 845 *image->entry = entry; 846 image->entry++; 847 *image->entry = 0; 848 849 return 0; 850 } 851 852 static int kimage_set_destination(struct kimage *image, 853 unsigned long destination) 854 { 855 int result; 856 857 destination &= PAGE_MASK; 858 result = kimage_add_entry(image, destination | IND_DESTINATION); 859 860 return result; 861 } 862 863 864 static int kimage_add_page(struct kimage *image, unsigned long page) 865 { 866 int result; 867 868 page &= PAGE_MASK; 869 result = kimage_add_entry(image, page | IND_SOURCE); 870 871 return result; 872 } 873 874 875 static void kimage_free_extra_pages(struct kimage *image) 876 { 877 /* Walk through and free any extra destination pages I may have */ 878 kimage_free_page_list(&image->dest_pages); 879 880 /* Walk through and free any unusable pages I have cached */ 881 kimage_free_page_list(&image->unusable_pages); 882 883 } 884 static void kimage_terminate(struct kimage *image) 885 { 886 if (*image->entry != 0) 887 image->entry++; 888 889 *image->entry = IND_DONE; 890 } 891 892 #define for_each_kimage_entry(image, ptr, entry) \ 893 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 894 ptr = (entry & IND_INDIRECTION) ? \ 895 phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 896 897 static void kimage_free_entry(kimage_entry_t entry) 898 { 899 struct page *page; 900 901 page = pfn_to_page(entry >> PAGE_SHIFT); 902 kimage_free_pages(page); 903 } 904 905 static void kimage_free(struct kimage *image) 906 { 907 kimage_entry_t *ptr, entry; 908 kimage_entry_t ind = 0; 909 910 if (!image) 911 return; 912 913 kimage_free_extra_pages(image); 914 for_each_kimage_entry(image, ptr, entry) { 915 if (entry & IND_INDIRECTION) { 916 /* Free the previous indirection page */ 917 if (ind & IND_INDIRECTION) 918 kimage_free_entry(ind); 919 /* Save this indirection page until we are 920 * done with it. 921 */ 922 ind = entry; 923 } else if (entry & IND_SOURCE) 924 kimage_free_entry(entry); 925 } 926 /* Free the final indirection page */ 927 if (ind & IND_INDIRECTION) 928 kimage_free_entry(ind); 929 930 /* Handle any machine specific cleanup */ 931 machine_kexec_cleanup(image); 932 933 /* Free the kexec control pages... */ 934 kimage_free_page_list(&image->control_pages); 935 936 /* 937 * Free up any temporary buffers allocated. This might hit if 938 * error occurred much later after buffer allocation. 939 */ 940 if (image->file_mode) 941 kimage_file_post_load_cleanup(image); 942 943 kfree(image); 944 } 945 946 static kimage_entry_t *kimage_dst_used(struct kimage *image, 947 unsigned long page) 948 { 949 kimage_entry_t *ptr, entry; 950 unsigned long destination = 0; 951 952 for_each_kimage_entry(image, ptr, entry) { 953 if (entry & IND_DESTINATION) 954 destination = entry & PAGE_MASK; 955 else if (entry & IND_SOURCE) { 956 if (page == destination) 957 return ptr; 958 destination += PAGE_SIZE; 959 } 960 } 961 962 return NULL; 963 } 964 965 static struct page *kimage_alloc_page(struct kimage *image, 966 gfp_t gfp_mask, 967 unsigned long destination) 968 { 969 /* 970 * Here we implement safeguards to ensure that a source page 971 * is not copied to its destination page before the data on 972 * the destination page is no longer useful. 973 * 974 * To do this we maintain the invariant that a source page is 975 * either its own destination page, or it is not a 976 * destination page at all. 977 * 978 * That is slightly stronger than required, but the proof 979 * that no problems will not occur is trivial, and the 980 * implementation is simply to verify. 981 * 982 * When allocating all pages normally this algorithm will run 983 * in O(N) time, but in the worst case it will run in O(N^2) 984 * time. If the runtime is a problem the data structures can 985 * be fixed. 986 */ 987 struct page *page; 988 unsigned long addr; 989 990 /* 991 * Walk through the list of destination pages, and see if I 992 * have a match. 993 */ 994 list_for_each_entry(page, &image->dest_pages, lru) { 995 addr = page_to_pfn(page) << PAGE_SHIFT; 996 if (addr == destination) { 997 list_del(&page->lru); 998 return page; 999 } 1000 } 1001 page = NULL; 1002 while (1) { 1003 kimage_entry_t *old; 1004 1005 /* Allocate a page, if we run out of memory give up */ 1006 page = kimage_alloc_pages(gfp_mask, 0); 1007 if (!page) 1008 return NULL; 1009 /* If the page cannot be used file it away */ 1010 if (page_to_pfn(page) > 1011 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 1012 list_add(&page->lru, &image->unusable_pages); 1013 continue; 1014 } 1015 addr = page_to_pfn(page) << PAGE_SHIFT; 1016 1017 /* If it is the destination page we want use it */ 1018 if (addr == destination) 1019 break; 1020 1021 /* If the page is not a destination page use it */ 1022 if (!kimage_is_destination_range(image, addr, 1023 addr + PAGE_SIZE)) 1024 break; 1025 1026 /* 1027 * I know that the page is someones destination page. 1028 * See if there is already a source page for this 1029 * destination page. And if so swap the source pages. 1030 */ 1031 old = kimage_dst_used(image, addr); 1032 if (old) { 1033 /* If so move it */ 1034 unsigned long old_addr; 1035 struct page *old_page; 1036 1037 old_addr = *old & PAGE_MASK; 1038 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 1039 copy_highpage(page, old_page); 1040 *old = addr | (*old & ~PAGE_MASK); 1041 1042 /* The old page I have found cannot be a 1043 * destination page, so return it if it's 1044 * gfp_flags honor the ones passed in. 1045 */ 1046 if (!(gfp_mask & __GFP_HIGHMEM) && 1047 PageHighMem(old_page)) { 1048 kimage_free_pages(old_page); 1049 continue; 1050 } 1051 addr = old_addr; 1052 page = old_page; 1053 break; 1054 } else { 1055 /* Place the page on the destination list I 1056 * will use it later. 1057 */ 1058 list_add(&page->lru, &image->dest_pages); 1059 } 1060 } 1061 1062 return page; 1063 } 1064 1065 static int kimage_load_normal_segment(struct kimage *image, 1066 struct kexec_segment *segment) 1067 { 1068 unsigned long maddr; 1069 size_t ubytes, mbytes; 1070 int result; 1071 unsigned char __user *buf = NULL; 1072 unsigned char *kbuf = NULL; 1073 1074 result = 0; 1075 if (image->file_mode) 1076 kbuf = segment->kbuf; 1077 else 1078 buf = segment->buf; 1079 ubytes = segment->bufsz; 1080 mbytes = segment->memsz; 1081 maddr = segment->mem; 1082 1083 result = kimage_set_destination(image, maddr); 1084 if (result < 0) 1085 goto out; 1086 1087 while (mbytes) { 1088 struct page *page; 1089 char *ptr; 1090 size_t uchunk, mchunk; 1091 1092 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 1093 if (!page) { 1094 result = -ENOMEM; 1095 goto out; 1096 } 1097 result = kimage_add_page(image, page_to_pfn(page) 1098 << PAGE_SHIFT); 1099 if (result < 0) 1100 goto out; 1101 1102 ptr = kmap(page); 1103 /* Start with a clear page */ 1104 clear_page(ptr); 1105 ptr += maddr & ~PAGE_MASK; 1106 mchunk = min_t(size_t, mbytes, 1107 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1108 uchunk = min(ubytes, mchunk); 1109 1110 /* For file based kexec, source pages are in kernel memory */ 1111 if (image->file_mode) 1112 memcpy(ptr, kbuf, uchunk); 1113 else 1114 result = copy_from_user(ptr, buf, uchunk); 1115 kunmap(page); 1116 if (result) { 1117 result = -EFAULT; 1118 goto out; 1119 } 1120 ubytes -= uchunk; 1121 maddr += mchunk; 1122 if (image->file_mode) 1123 kbuf += mchunk; 1124 else 1125 buf += mchunk; 1126 mbytes -= mchunk; 1127 } 1128 out: 1129 return result; 1130 } 1131 1132 static int kimage_load_crash_segment(struct kimage *image, 1133 struct kexec_segment *segment) 1134 { 1135 /* For crash dumps kernels we simply copy the data from 1136 * user space to it's destination. 1137 * We do things a page at a time for the sake of kmap. 1138 */ 1139 unsigned long maddr; 1140 size_t ubytes, mbytes; 1141 int result; 1142 unsigned char __user *buf = NULL; 1143 unsigned char *kbuf = NULL; 1144 1145 result = 0; 1146 if (image->file_mode) 1147 kbuf = segment->kbuf; 1148 else 1149 buf = segment->buf; 1150 ubytes = segment->bufsz; 1151 mbytes = segment->memsz; 1152 maddr = segment->mem; 1153 while (mbytes) { 1154 struct page *page; 1155 char *ptr; 1156 size_t uchunk, mchunk; 1157 1158 page = pfn_to_page(maddr >> PAGE_SHIFT); 1159 if (!page) { 1160 result = -ENOMEM; 1161 goto out; 1162 } 1163 ptr = kmap(page); 1164 ptr += maddr & ~PAGE_MASK; 1165 mchunk = min_t(size_t, mbytes, 1166 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1167 uchunk = min(ubytes, mchunk); 1168 if (mchunk > uchunk) { 1169 /* Zero the trailing part of the page */ 1170 memset(ptr + uchunk, 0, mchunk - uchunk); 1171 } 1172 1173 /* For file based kexec, source pages are in kernel memory */ 1174 if (image->file_mode) 1175 memcpy(ptr, kbuf, uchunk); 1176 else 1177 result = copy_from_user(ptr, buf, uchunk); 1178 kexec_flush_icache_page(page); 1179 kunmap(page); 1180 if (result) { 1181 result = -EFAULT; 1182 goto out; 1183 } 1184 ubytes -= uchunk; 1185 maddr += mchunk; 1186 if (image->file_mode) 1187 kbuf += mchunk; 1188 else 1189 buf += mchunk; 1190 mbytes -= mchunk; 1191 } 1192 out: 1193 return result; 1194 } 1195 1196 static int kimage_load_segment(struct kimage *image, 1197 struct kexec_segment *segment) 1198 { 1199 int result = -ENOMEM; 1200 1201 switch (image->type) { 1202 case KEXEC_TYPE_DEFAULT: 1203 result = kimage_load_normal_segment(image, segment); 1204 break; 1205 case KEXEC_TYPE_CRASH: 1206 result = kimage_load_crash_segment(image, segment); 1207 break; 1208 } 1209 1210 return result; 1211 } 1212 1213 /* 1214 * Exec Kernel system call: for obvious reasons only root may call it. 1215 * 1216 * This call breaks up into three pieces. 1217 * - A generic part which loads the new kernel from the current 1218 * address space, and very carefully places the data in the 1219 * allocated pages. 1220 * 1221 * - A generic part that interacts with the kernel and tells all of 1222 * the devices to shut down. Preventing on-going dmas, and placing 1223 * the devices in a consistent state so a later kernel can 1224 * reinitialize them. 1225 * 1226 * - A machine specific part that includes the syscall number 1227 * and then copies the image to it's final destination. And 1228 * jumps into the image at entry. 1229 * 1230 * kexec does not sync, or unmount filesystems so if you need 1231 * that to happen you need to do that yourself. 1232 */ 1233 struct kimage *kexec_image; 1234 struct kimage *kexec_crash_image; 1235 int kexec_load_disabled; 1236 1237 static DEFINE_MUTEX(kexec_mutex); 1238 1239 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 1240 struct kexec_segment __user *, segments, unsigned long, flags) 1241 { 1242 struct kimage **dest_image, *image; 1243 int result; 1244 1245 /* We only trust the superuser with rebooting the system. */ 1246 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1247 return -EPERM; 1248 1249 /* 1250 * Verify we have a legal set of flags 1251 * This leaves us room for future extensions. 1252 */ 1253 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 1254 return -EINVAL; 1255 1256 /* Verify we are on the appropriate architecture */ 1257 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 1258 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 1259 return -EINVAL; 1260 1261 /* Put an artificial cap on the number 1262 * of segments passed to kexec_load. 1263 */ 1264 if (nr_segments > KEXEC_SEGMENT_MAX) 1265 return -EINVAL; 1266 1267 image = NULL; 1268 result = 0; 1269 1270 /* Because we write directly to the reserved memory 1271 * region when loading crash kernels we need a mutex here to 1272 * prevent multiple crash kernels from attempting to load 1273 * simultaneously, and to prevent a crash kernel from loading 1274 * over the top of a in use crash kernel. 1275 * 1276 * KISS: always take the mutex. 1277 */ 1278 if (!mutex_trylock(&kexec_mutex)) 1279 return -EBUSY; 1280 1281 dest_image = &kexec_image; 1282 if (flags & KEXEC_ON_CRASH) 1283 dest_image = &kexec_crash_image; 1284 if (nr_segments > 0) { 1285 unsigned long i; 1286 1287 if (flags & KEXEC_ON_CRASH) { 1288 /* 1289 * Loading another kernel to switch to if this one 1290 * crashes. Free any current crash dump kernel before 1291 * we corrupt it. 1292 */ 1293 1294 kimage_free(xchg(&kexec_crash_image, NULL)); 1295 result = kimage_alloc_init(&image, entry, nr_segments, 1296 segments, flags); 1297 crash_map_reserved_pages(); 1298 } else { 1299 /* Loading another kernel to reboot into. */ 1300 1301 result = kimage_alloc_init(&image, entry, nr_segments, 1302 segments, flags); 1303 } 1304 if (result) 1305 goto out; 1306 1307 if (flags & KEXEC_PRESERVE_CONTEXT) 1308 image->preserve_context = 1; 1309 result = machine_kexec_prepare(image); 1310 if (result) 1311 goto out; 1312 1313 for (i = 0; i < nr_segments; i++) { 1314 result = kimage_load_segment(image, &image->segment[i]); 1315 if (result) 1316 goto out; 1317 } 1318 kimage_terminate(image); 1319 if (flags & KEXEC_ON_CRASH) 1320 crash_unmap_reserved_pages(); 1321 } 1322 /* Install the new kernel, and Uninstall the old */ 1323 image = xchg(dest_image, image); 1324 1325 out: 1326 mutex_unlock(&kexec_mutex); 1327 kimage_free(image); 1328 1329 return result; 1330 } 1331 1332 /* 1333 * Add and remove page tables for crashkernel memory 1334 * 1335 * Provide an empty default implementation here -- architecture 1336 * code may override this 1337 */ 1338 void __weak crash_map_reserved_pages(void) 1339 {} 1340 1341 void __weak crash_unmap_reserved_pages(void) 1342 {} 1343 1344 #ifdef CONFIG_COMPAT 1345 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 1346 compat_ulong_t, nr_segments, 1347 struct compat_kexec_segment __user *, segments, 1348 compat_ulong_t, flags) 1349 { 1350 struct compat_kexec_segment in; 1351 struct kexec_segment out, __user *ksegments; 1352 unsigned long i, result; 1353 1354 /* Don't allow clients that don't understand the native 1355 * architecture to do anything. 1356 */ 1357 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1358 return -EINVAL; 1359 1360 if (nr_segments > KEXEC_SEGMENT_MAX) 1361 return -EINVAL; 1362 1363 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1364 for (i = 0; i < nr_segments; i++) { 1365 result = copy_from_user(&in, &segments[i], sizeof(in)); 1366 if (result) 1367 return -EFAULT; 1368 1369 out.buf = compat_ptr(in.buf); 1370 out.bufsz = in.bufsz; 1371 out.mem = in.mem; 1372 out.memsz = in.memsz; 1373 1374 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1375 if (result) 1376 return -EFAULT; 1377 } 1378 1379 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1380 } 1381 #endif 1382 1383 #ifdef CONFIG_KEXEC_FILE 1384 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 1385 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 1386 unsigned long, flags) 1387 { 1388 int ret = 0, i; 1389 struct kimage **dest_image, *image; 1390 1391 /* We only trust the superuser with rebooting the system. */ 1392 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1393 return -EPERM; 1394 1395 /* Make sure we have a legal set of flags */ 1396 if (flags != (flags & KEXEC_FILE_FLAGS)) 1397 return -EINVAL; 1398 1399 image = NULL; 1400 1401 if (!mutex_trylock(&kexec_mutex)) 1402 return -EBUSY; 1403 1404 dest_image = &kexec_image; 1405 if (flags & KEXEC_FILE_ON_CRASH) 1406 dest_image = &kexec_crash_image; 1407 1408 if (flags & KEXEC_FILE_UNLOAD) 1409 goto exchange; 1410 1411 /* 1412 * In case of crash, new kernel gets loaded in reserved region. It is 1413 * same memory where old crash kernel might be loaded. Free any 1414 * current crash dump kernel before we corrupt it. 1415 */ 1416 if (flags & KEXEC_FILE_ON_CRASH) 1417 kimage_free(xchg(&kexec_crash_image, NULL)); 1418 1419 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 1420 cmdline_len, flags); 1421 if (ret) 1422 goto out; 1423 1424 ret = machine_kexec_prepare(image); 1425 if (ret) 1426 goto out; 1427 1428 ret = kexec_calculate_store_digests(image); 1429 if (ret) 1430 goto out; 1431 1432 for (i = 0; i < image->nr_segments; i++) { 1433 struct kexec_segment *ksegment; 1434 1435 ksegment = &image->segment[i]; 1436 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 1437 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 1438 ksegment->memsz); 1439 1440 ret = kimage_load_segment(image, &image->segment[i]); 1441 if (ret) 1442 goto out; 1443 } 1444 1445 kimage_terminate(image); 1446 1447 /* 1448 * Free up any temporary buffers allocated which are not needed 1449 * after image has been loaded 1450 */ 1451 kimage_file_post_load_cleanup(image); 1452 exchange: 1453 image = xchg(dest_image, image); 1454 out: 1455 mutex_unlock(&kexec_mutex); 1456 kimage_free(image); 1457 return ret; 1458 } 1459 1460 #endif /* CONFIG_KEXEC_FILE */ 1461 1462 void crash_kexec(struct pt_regs *regs) 1463 { 1464 /* Take the kexec_mutex here to prevent sys_kexec_load 1465 * running on one cpu from replacing the crash kernel 1466 * we are using after a panic on a different cpu. 1467 * 1468 * If the crash kernel was not located in a fixed area 1469 * of memory the xchg(&kexec_crash_image) would be 1470 * sufficient. But since I reuse the memory... 1471 */ 1472 if (mutex_trylock(&kexec_mutex)) { 1473 if (kexec_crash_image) { 1474 struct pt_regs fixed_regs; 1475 1476 crash_setup_regs(&fixed_regs, regs); 1477 crash_save_vmcoreinfo(); 1478 machine_crash_shutdown(&fixed_regs); 1479 machine_kexec(kexec_crash_image); 1480 } 1481 mutex_unlock(&kexec_mutex); 1482 } 1483 } 1484 1485 size_t crash_get_memory_size(void) 1486 { 1487 size_t size = 0; 1488 mutex_lock(&kexec_mutex); 1489 if (crashk_res.end != crashk_res.start) 1490 size = resource_size(&crashk_res); 1491 mutex_unlock(&kexec_mutex); 1492 return size; 1493 } 1494 1495 void __weak crash_free_reserved_phys_range(unsigned long begin, 1496 unsigned long end) 1497 { 1498 unsigned long addr; 1499 1500 for (addr = begin; addr < end; addr += PAGE_SIZE) 1501 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1502 } 1503 1504 int crash_shrink_memory(unsigned long new_size) 1505 { 1506 int ret = 0; 1507 unsigned long start, end; 1508 unsigned long old_size; 1509 struct resource *ram_res; 1510 1511 mutex_lock(&kexec_mutex); 1512 1513 if (kexec_crash_image) { 1514 ret = -ENOENT; 1515 goto unlock; 1516 } 1517 start = crashk_res.start; 1518 end = crashk_res.end; 1519 old_size = (end == 0) ? 0 : end - start + 1; 1520 if (new_size >= old_size) { 1521 ret = (new_size == old_size) ? 0 : -EINVAL; 1522 goto unlock; 1523 } 1524 1525 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1526 if (!ram_res) { 1527 ret = -ENOMEM; 1528 goto unlock; 1529 } 1530 1531 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1532 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1533 1534 crash_map_reserved_pages(); 1535 crash_free_reserved_phys_range(end, crashk_res.end); 1536 1537 if ((start == end) && (crashk_res.parent != NULL)) 1538 release_resource(&crashk_res); 1539 1540 ram_res->start = end; 1541 ram_res->end = crashk_res.end; 1542 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1543 ram_res->name = "System RAM"; 1544 1545 crashk_res.end = end - 1; 1546 1547 insert_resource(&iomem_resource, ram_res); 1548 crash_unmap_reserved_pages(); 1549 1550 unlock: 1551 mutex_unlock(&kexec_mutex); 1552 return ret; 1553 } 1554 1555 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1556 size_t data_len) 1557 { 1558 struct elf_note note; 1559 1560 note.n_namesz = strlen(name) + 1; 1561 note.n_descsz = data_len; 1562 note.n_type = type; 1563 memcpy(buf, ¬e, sizeof(note)); 1564 buf += (sizeof(note) + 3)/4; 1565 memcpy(buf, name, note.n_namesz); 1566 buf += (note.n_namesz + 3)/4; 1567 memcpy(buf, data, note.n_descsz); 1568 buf += (note.n_descsz + 3)/4; 1569 1570 return buf; 1571 } 1572 1573 static void final_note(u32 *buf) 1574 { 1575 struct elf_note note; 1576 1577 note.n_namesz = 0; 1578 note.n_descsz = 0; 1579 note.n_type = 0; 1580 memcpy(buf, ¬e, sizeof(note)); 1581 } 1582 1583 void crash_save_cpu(struct pt_regs *regs, int cpu) 1584 { 1585 struct elf_prstatus prstatus; 1586 u32 *buf; 1587 1588 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1589 return; 1590 1591 /* Using ELF notes here is opportunistic. 1592 * I need a well defined structure format 1593 * for the data I pass, and I need tags 1594 * on the data to indicate what information I have 1595 * squirrelled away. ELF notes happen to provide 1596 * all of that, so there is no need to invent something new. 1597 */ 1598 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1599 if (!buf) 1600 return; 1601 memset(&prstatus, 0, sizeof(prstatus)); 1602 prstatus.pr_pid = current->pid; 1603 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1604 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1605 &prstatus, sizeof(prstatus)); 1606 final_note(buf); 1607 } 1608 1609 static int __init crash_notes_memory_init(void) 1610 { 1611 /* Allocate memory for saving cpu registers. */ 1612 crash_notes = alloc_percpu(note_buf_t); 1613 if (!crash_notes) { 1614 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); 1615 return -ENOMEM; 1616 } 1617 return 0; 1618 } 1619 subsys_initcall(crash_notes_memory_init); 1620 1621 1622 /* 1623 * parsing the "crashkernel" commandline 1624 * 1625 * this code is intended to be called from architecture specific code 1626 */ 1627 1628 1629 /* 1630 * This function parses command lines in the format 1631 * 1632 * crashkernel=ramsize-range:size[,...][@offset] 1633 * 1634 * The function returns 0 on success and -EINVAL on failure. 1635 */ 1636 static int __init parse_crashkernel_mem(char *cmdline, 1637 unsigned long long system_ram, 1638 unsigned long long *crash_size, 1639 unsigned long long *crash_base) 1640 { 1641 char *cur = cmdline, *tmp; 1642 1643 /* for each entry of the comma-separated list */ 1644 do { 1645 unsigned long long start, end = ULLONG_MAX, size; 1646 1647 /* get the start of the range */ 1648 start = memparse(cur, &tmp); 1649 if (cur == tmp) { 1650 pr_warn("crashkernel: Memory value expected\n"); 1651 return -EINVAL; 1652 } 1653 cur = tmp; 1654 if (*cur != '-') { 1655 pr_warn("crashkernel: '-' expected\n"); 1656 return -EINVAL; 1657 } 1658 cur++; 1659 1660 /* if no ':' is here, than we read the end */ 1661 if (*cur != ':') { 1662 end = memparse(cur, &tmp); 1663 if (cur == tmp) { 1664 pr_warn("crashkernel: Memory value expected\n"); 1665 return -EINVAL; 1666 } 1667 cur = tmp; 1668 if (end <= start) { 1669 pr_warn("crashkernel: end <= start\n"); 1670 return -EINVAL; 1671 } 1672 } 1673 1674 if (*cur != ':') { 1675 pr_warn("crashkernel: ':' expected\n"); 1676 return -EINVAL; 1677 } 1678 cur++; 1679 1680 size = memparse(cur, &tmp); 1681 if (cur == tmp) { 1682 pr_warn("Memory value expected\n"); 1683 return -EINVAL; 1684 } 1685 cur = tmp; 1686 if (size >= system_ram) { 1687 pr_warn("crashkernel: invalid size\n"); 1688 return -EINVAL; 1689 } 1690 1691 /* match ? */ 1692 if (system_ram >= start && system_ram < end) { 1693 *crash_size = size; 1694 break; 1695 } 1696 } while (*cur++ == ','); 1697 1698 if (*crash_size > 0) { 1699 while (*cur && *cur != ' ' && *cur != '@') 1700 cur++; 1701 if (*cur == '@') { 1702 cur++; 1703 *crash_base = memparse(cur, &tmp); 1704 if (cur == tmp) { 1705 pr_warn("Memory value expected after '@'\n"); 1706 return -EINVAL; 1707 } 1708 } 1709 } 1710 1711 return 0; 1712 } 1713 1714 /* 1715 * That function parses "simple" (old) crashkernel command lines like 1716 * 1717 * crashkernel=size[@offset] 1718 * 1719 * It returns 0 on success and -EINVAL on failure. 1720 */ 1721 static int __init parse_crashkernel_simple(char *cmdline, 1722 unsigned long long *crash_size, 1723 unsigned long long *crash_base) 1724 { 1725 char *cur = cmdline; 1726 1727 *crash_size = memparse(cmdline, &cur); 1728 if (cmdline == cur) { 1729 pr_warn("crashkernel: memory value expected\n"); 1730 return -EINVAL; 1731 } 1732 1733 if (*cur == '@') 1734 *crash_base = memparse(cur+1, &cur); 1735 else if (*cur != ' ' && *cur != '\0') { 1736 pr_warn("crashkernel: unrecognized char\n"); 1737 return -EINVAL; 1738 } 1739 1740 return 0; 1741 } 1742 1743 #define SUFFIX_HIGH 0 1744 #define SUFFIX_LOW 1 1745 #define SUFFIX_NULL 2 1746 static __initdata char *suffix_tbl[] = { 1747 [SUFFIX_HIGH] = ",high", 1748 [SUFFIX_LOW] = ",low", 1749 [SUFFIX_NULL] = NULL, 1750 }; 1751 1752 /* 1753 * That function parses "suffix" crashkernel command lines like 1754 * 1755 * crashkernel=size,[high|low] 1756 * 1757 * It returns 0 on success and -EINVAL on failure. 1758 */ 1759 static int __init parse_crashkernel_suffix(char *cmdline, 1760 unsigned long long *crash_size, 1761 const char *suffix) 1762 { 1763 char *cur = cmdline; 1764 1765 *crash_size = memparse(cmdline, &cur); 1766 if (cmdline == cur) { 1767 pr_warn("crashkernel: memory value expected\n"); 1768 return -EINVAL; 1769 } 1770 1771 /* check with suffix */ 1772 if (strncmp(cur, suffix, strlen(suffix))) { 1773 pr_warn("crashkernel: unrecognized char\n"); 1774 return -EINVAL; 1775 } 1776 cur += strlen(suffix); 1777 if (*cur != ' ' && *cur != '\0') { 1778 pr_warn("crashkernel: unrecognized char\n"); 1779 return -EINVAL; 1780 } 1781 1782 return 0; 1783 } 1784 1785 static __init char *get_last_crashkernel(char *cmdline, 1786 const char *name, 1787 const char *suffix) 1788 { 1789 char *p = cmdline, *ck_cmdline = NULL; 1790 1791 /* find crashkernel and use the last one if there are more */ 1792 p = strstr(p, name); 1793 while (p) { 1794 char *end_p = strchr(p, ' '); 1795 char *q; 1796 1797 if (!end_p) 1798 end_p = p + strlen(p); 1799 1800 if (!suffix) { 1801 int i; 1802 1803 /* skip the one with any known suffix */ 1804 for (i = 0; suffix_tbl[i]; i++) { 1805 q = end_p - strlen(suffix_tbl[i]); 1806 if (!strncmp(q, suffix_tbl[i], 1807 strlen(suffix_tbl[i]))) 1808 goto next; 1809 } 1810 ck_cmdline = p; 1811 } else { 1812 q = end_p - strlen(suffix); 1813 if (!strncmp(q, suffix, strlen(suffix))) 1814 ck_cmdline = p; 1815 } 1816 next: 1817 p = strstr(p+1, name); 1818 } 1819 1820 if (!ck_cmdline) 1821 return NULL; 1822 1823 return ck_cmdline; 1824 } 1825 1826 static int __init __parse_crashkernel(char *cmdline, 1827 unsigned long long system_ram, 1828 unsigned long long *crash_size, 1829 unsigned long long *crash_base, 1830 const char *name, 1831 const char *suffix) 1832 { 1833 char *first_colon, *first_space; 1834 char *ck_cmdline; 1835 1836 BUG_ON(!crash_size || !crash_base); 1837 *crash_size = 0; 1838 *crash_base = 0; 1839 1840 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1841 1842 if (!ck_cmdline) 1843 return -EINVAL; 1844 1845 ck_cmdline += strlen(name); 1846 1847 if (suffix) 1848 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1849 suffix); 1850 /* 1851 * if the commandline contains a ':', then that's the extended 1852 * syntax -- if not, it must be the classic syntax 1853 */ 1854 first_colon = strchr(ck_cmdline, ':'); 1855 first_space = strchr(ck_cmdline, ' '); 1856 if (first_colon && (!first_space || first_colon < first_space)) 1857 return parse_crashkernel_mem(ck_cmdline, system_ram, 1858 crash_size, crash_base); 1859 1860 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1861 } 1862 1863 /* 1864 * That function is the entry point for command line parsing and should be 1865 * called from the arch-specific code. 1866 */ 1867 int __init parse_crashkernel(char *cmdline, 1868 unsigned long long system_ram, 1869 unsigned long long *crash_size, 1870 unsigned long long *crash_base) 1871 { 1872 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1873 "crashkernel=", NULL); 1874 } 1875 1876 int __init parse_crashkernel_high(char *cmdline, 1877 unsigned long long system_ram, 1878 unsigned long long *crash_size, 1879 unsigned long long *crash_base) 1880 { 1881 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1882 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1883 } 1884 1885 int __init parse_crashkernel_low(char *cmdline, 1886 unsigned long long system_ram, 1887 unsigned long long *crash_size, 1888 unsigned long long *crash_base) 1889 { 1890 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1891 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1892 } 1893 1894 static void update_vmcoreinfo_note(void) 1895 { 1896 u32 *buf = vmcoreinfo_note; 1897 1898 if (!vmcoreinfo_size) 1899 return; 1900 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1901 vmcoreinfo_size); 1902 final_note(buf); 1903 } 1904 1905 void crash_save_vmcoreinfo(void) 1906 { 1907 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1908 update_vmcoreinfo_note(); 1909 } 1910 1911 void vmcoreinfo_append_str(const char *fmt, ...) 1912 { 1913 va_list args; 1914 char buf[0x50]; 1915 size_t r; 1916 1917 va_start(args, fmt); 1918 r = vscnprintf(buf, sizeof(buf), fmt, args); 1919 va_end(args); 1920 1921 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1922 1923 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1924 1925 vmcoreinfo_size += r; 1926 } 1927 1928 /* 1929 * provide an empty default implementation here -- architecture 1930 * code may override this 1931 */ 1932 void __weak arch_crash_save_vmcoreinfo(void) 1933 {} 1934 1935 unsigned long __weak paddr_vmcoreinfo_note(void) 1936 { 1937 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1938 } 1939 1940 static int __init crash_save_vmcoreinfo_init(void) 1941 { 1942 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1943 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1944 1945 VMCOREINFO_SYMBOL(init_uts_ns); 1946 VMCOREINFO_SYMBOL(node_online_map); 1947 #ifdef CONFIG_MMU 1948 VMCOREINFO_SYMBOL(swapper_pg_dir); 1949 #endif 1950 VMCOREINFO_SYMBOL(_stext); 1951 VMCOREINFO_SYMBOL(vmap_area_list); 1952 1953 #ifndef CONFIG_NEED_MULTIPLE_NODES 1954 VMCOREINFO_SYMBOL(mem_map); 1955 VMCOREINFO_SYMBOL(contig_page_data); 1956 #endif 1957 #ifdef CONFIG_SPARSEMEM 1958 VMCOREINFO_SYMBOL(mem_section); 1959 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1960 VMCOREINFO_STRUCT_SIZE(mem_section); 1961 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1962 #endif 1963 VMCOREINFO_STRUCT_SIZE(page); 1964 VMCOREINFO_STRUCT_SIZE(pglist_data); 1965 VMCOREINFO_STRUCT_SIZE(zone); 1966 VMCOREINFO_STRUCT_SIZE(free_area); 1967 VMCOREINFO_STRUCT_SIZE(list_head); 1968 VMCOREINFO_SIZE(nodemask_t); 1969 VMCOREINFO_OFFSET(page, flags); 1970 VMCOREINFO_OFFSET(page, _count); 1971 VMCOREINFO_OFFSET(page, mapping); 1972 VMCOREINFO_OFFSET(page, lru); 1973 VMCOREINFO_OFFSET(page, _mapcount); 1974 VMCOREINFO_OFFSET(page, private); 1975 VMCOREINFO_OFFSET(pglist_data, node_zones); 1976 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1977 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1978 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1979 #endif 1980 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1981 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1982 VMCOREINFO_OFFSET(pglist_data, node_id); 1983 VMCOREINFO_OFFSET(zone, free_area); 1984 VMCOREINFO_OFFSET(zone, vm_stat); 1985 VMCOREINFO_OFFSET(zone, spanned_pages); 1986 VMCOREINFO_OFFSET(free_area, free_list); 1987 VMCOREINFO_OFFSET(list_head, next); 1988 VMCOREINFO_OFFSET(list_head, prev); 1989 VMCOREINFO_OFFSET(vmap_area, va_start); 1990 VMCOREINFO_OFFSET(vmap_area, list); 1991 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1992 log_buf_kexec_setup(); 1993 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1994 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1995 VMCOREINFO_NUMBER(PG_lru); 1996 VMCOREINFO_NUMBER(PG_private); 1997 VMCOREINFO_NUMBER(PG_swapcache); 1998 VMCOREINFO_NUMBER(PG_slab); 1999 #ifdef CONFIG_MEMORY_FAILURE 2000 VMCOREINFO_NUMBER(PG_hwpoison); 2001 #endif 2002 VMCOREINFO_NUMBER(PG_head_mask); 2003 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 2004 #ifdef CONFIG_HUGETLBFS 2005 VMCOREINFO_SYMBOL(free_huge_page); 2006 #endif 2007 2008 arch_crash_save_vmcoreinfo(); 2009 update_vmcoreinfo_note(); 2010 2011 return 0; 2012 } 2013 2014 subsys_initcall(crash_save_vmcoreinfo_init); 2015 2016 #ifdef CONFIG_KEXEC_FILE 2017 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 2018 struct kexec_buf *kbuf) 2019 { 2020 struct kimage *image = kbuf->image; 2021 unsigned long temp_start, temp_end; 2022 2023 temp_end = min(end, kbuf->buf_max); 2024 temp_start = temp_end - kbuf->memsz; 2025 2026 do { 2027 /* align down start */ 2028 temp_start = temp_start & (~(kbuf->buf_align - 1)); 2029 2030 if (temp_start < start || temp_start < kbuf->buf_min) 2031 return 0; 2032 2033 temp_end = temp_start + kbuf->memsz - 1; 2034 2035 /* 2036 * Make sure this does not conflict with any of existing 2037 * segments 2038 */ 2039 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2040 temp_start = temp_start - PAGE_SIZE; 2041 continue; 2042 } 2043 2044 /* We found a suitable memory range */ 2045 break; 2046 } while (1); 2047 2048 /* If we are here, we found a suitable memory range */ 2049 kbuf->mem = temp_start; 2050 2051 /* Success, stop navigating through remaining System RAM ranges */ 2052 return 1; 2053 } 2054 2055 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 2056 struct kexec_buf *kbuf) 2057 { 2058 struct kimage *image = kbuf->image; 2059 unsigned long temp_start, temp_end; 2060 2061 temp_start = max(start, kbuf->buf_min); 2062 2063 do { 2064 temp_start = ALIGN(temp_start, kbuf->buf_align); 2065 temp_end = temp_start + kbuf->memsz - 1; 2066 2067 if (temp_end > end || temp_end > kbuf->buf_max) 2068 return 0; 2069 /* 2070 * Make sure this does not conflict with any of existing 2071 * segments 2072 */ 2073 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2074 temp_start = temp_start + PAGE_SIZE; 2075 continue; 2076 } 2077 2078 /* We found a suitable memory range */ 2079 break; 2080 } while (1); 2081 2082 /* If we are here, we found a suitable memory range */ 2083 kbuf->mem = temp_start; 2084 2085 /* Success, stop navigating through remaining System RAM ranges */ 2086 return 1; 2087 } 2088 2089 static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 2090 { 2091 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 2092 unsigned long sz = end - start + 1; 2093 2094 /* Returning 0 will take to next memory range */ 2095 if (sz < kbuf->memsz) 2096 return 0; 2097 2098 if (end < kbuf->buf_min || start > kbuf->buf_max) 2099 return 0; 2100 2101 /* 2102 * Allocate memory top down with-in ram range. Otherwise bottom up 2103 * allocation. 2104 */ 2105 if (kbuf->top_down) 2106 return locate_mem_hole_top_down(start, end, kbuf); 2107 return locate_mem_hole_bottom_up(start, end, kbuf); 2108 } 2109 2110 /* 2111 * Helper function for placing a buffer in a kexec segment. This assumes 2112 * that kexec_mutex is held. 2113 */ 2114 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, 2115 unsigned long memsz, unsigned long buf_align, 2116 unsigned long buf_min, unsigned long buf_max, 2117 bool top_down, unsigned long *load_addr) 2118 { 2119 2120 struct kexec_segment *ksegment; 2121 struct kexec_buf buf, *kbuf; 2122 int ret; 2123 2124 /* Currently adding segment this way is allowed only in file mode */ 2125 if (!image->file_mode) 2126 return -EINVAL; 2127 2128 if (image->nr_segments >= KEXEC_SEGMENT_MAX) 2129 return -EINVAL; 2130 2131 /* 2132 * Make sure we are not trying to add buffer after allocating 2133 * control pages. All segments need to be placed first before 2134 * any control pages are allocated. As control page allocation 2135 * logic goes through list of segments to make sure there are 2136 * no destination overlaps. 2137 */ 2138 if (!list_empty(&image->control_pages)) { 2139 WARN_ON(1); 2140 return -EINVAL; 2141 } 2142 2143 memset(&buf, 0, sizeof(struct kexec_buf)); 2144 kbuf = &buf; 2145 kbuf->image = image; 2146 kbuf->buffer = buffer; 2147 kbuf->bufsz = bufsz; 2148 2149 kbuf->memsz = ALIGN(memsz, PAGE_SIZE); 2150 kbuf->buf_align = max(buf_align, PAGE_SIZE); 2151 kbuf->buf_min = buf_min; 2152 kbuf->buf_max = buf_max; 2153 kbuf->top_down = top_down; 2154 2155 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 2156 if (image->type == KEXEC_TYPE_CRASH) 2157 ret = walk_iomem_res("Crash kernel", 2158 IORESOURCE_MEM | IORESOURCE_BUSY, 2159 crashk_res.start, crashk_res.end, kbuf, 2160 locate_mem_hole_callback); 2161 else 2162 ret = walk_system_ram_res(0, -1, kbuf, 2163 locate_mem_hole_callback); 2164 if (ret != 1) { 2165 /* A suitable memory range could not be found for buffer */ 2166 return -EADDRNOTAVAIL; 2167 } 2168 2169 /* Found a suitable memory range */ 2170 ksegment = &image->segment[image->nr_segments]; 2171 ksegment->kbuf = kbuf->buffer; 2172 ksegment->bufsz = kbuf->bufsz; 2173 ksegment->mem = kbuf->mem; 2174 ksegment->memsz = kbuf->memsz; 2175 image->nr_segments++; 2176 *load_addr = ksegment->mem; 2177 return 0; 2178 } 2179 2180 /* Calculate and store the digest of segments */ 2181 static int kexec_calculate_store_digests(struct kimage *image) 2182 { 2183 struct crypto_shash *tfm; 2184 struct shash_desc *desc; 2185 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 2186 size_t desc_size, nullsz; 2187 char *digest; 2188 void *zero_buf; 2189 struct kexec_sha_region *sha_regions; 2190 struct purgatory_info *pi = &image->purgatory_info; 2191 2192 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 2193 zero_buf_sz = PAGE_SIZE; 2194 2195 tfm = crypto_alloc_shash("sha256", 0, 0); 2196 if (IS_ERR(tfm)) { 2197 ret = PTR_ERR(tfm); 2198 goto out; 2199 } 2200 2201 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 2202 desc = kzalloc(desc_size, GFP_KERNEL); 2203 if (!desc) { 2204 ret = -ENOMEM; 2205 goto out_free_tfm; 2206 } 2207 2208 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 2209 sha_regions = vzalloc(sha_region_sz); 2210 if (!sha_regions) 2211 goto out_free_desc; 2212 2213 desc->tfm = tfm; 2214 desc->flags = 0; 2215 2216 ret = crypto_shash_init(desc); 2217 if (ret < 0) 2218 goto out_free_sha_regions; 2219 2220 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 2221 if (!digest) { 2222 ret = -ENOMEM; 2223 goto out_free_sha_regions; 2224 } 2225 2226 for (j = i = 0; i < image->nr_segments; i++) { 2227 struct kexec_segment *ksegment; 2228 2229 ksegment = &image->segment[i]; 2230 /* 2231 * Skip purgatory as it will be modified once we put digest 2232 * info in purgatory. 2233 */ 2234 if (ksegment->kbuf == pi->purgatory_buf) 2235 continue; 2236 2237 ret = crypto_shash_update(desc, ksegment->kbuf, 2238 ksegment->bufsz); 2239 if (ret) 2240 break; 2241 2242 /* 2243 * Assume rest of the buffer is filled with zero and 2244 * update digest accordingly. 2245 */ 2246 nullsz = ksegment->memsz - ksegment->bufsz; 2247 while (nullsz) { 2248 unsigned long bytes = nullsz; 2249 2250 if (bytes > zero_buf_sz) 2251 bytes = zero_buf_sz; 2252 ret = crypto_shash_update(desc, zero_buf, bytes); 2253 if (ret) 2254 break; 2255 nullsz -= bytes; 2256 } 2257 2258 if (ret) 2259 break; 2260 2261 sha_regions[j].start = ksegment->mem; 2262 sha_regions[j].len = ksegment->memsz; 2263 j++; 2264 } 2265 2266 if (!ret) { 2267 ret = crypto_shash_final(desc, digest); 2268 if (ret) 2269 goto out_free_digest; 2270 ret = kexec_purgatory_get_set_symbol(image, "sha_regions", 2271 sha_regions, sha_region_sz, 0); 2272 if (ret) 2273 goto out_free_digest; 2274 2275 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", 2276 digest, SHA256_DIGEST_SIZE, 0); 2277 if (ret) 2278 goto out_free_digest; 2279 } 2280 2281 out_free_digest: 2282 kfree(digest); 2283 out_free_sha_regions: 2284 vfree(sha_regions); 2285 out_free_desc: 2286 kfree(desc); 2287 out_free_tfm: 2288 kfree(tfm); 2289 out: 2290 return ret; 2291 } 2292 2293 /* Actually load purgatory. Lot of code taken from kexec-tools */ 2294 static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 2295 unsigned long max, int top_down) 2296 { 2297 struct purgatory_info *pi = &image->purgatory_info; 2298 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; 2299 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; 2300 unsigned char *buf_addr, *src; 2301 int i, ret = 0, entry_sidx = -1; 2302 const Elf_Shdr *sechdrs_c; 2303 Elf_Shdr *sechdrs = NULL; 2304 void *purgatory_buf = NULL; 2305 2306 /* 2307 * sechdrs_c points to section headers in purgatory and are read 2308 * only. No modifications allowed. 2309 */ 2310 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 2311 2312 /* 2313 * We can not modify sechdrs_c[] and its fields. It is read only. 2314 * Copy it over to a local copy where one can store some temporary 2315 * data and free it at the end. We need to modify ->sh_addr and 2316 * ->sh_offset fields to keep track of permanent and temporary 2317 * locations of sections. 2318 */ 2319 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2320 if (!sechdrs) 2321 return -ENOMEM; 2322 2323 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2324 2325 /* 2326 * We seem to have multiple copies of sections. First copy is which 2327 * is embedded in kernel in read only section. Some of these sections 2328 * will be copied to a temporary buffer and relocated. And these 2329 * sections will finally be copied to their final destination at 2330 * segment load time. 2331 * 2332 * Use ->sh_offset to reflect section address in memory. It will 2333 * point to original read only copy if section is not allocatable. 2334 * Otherwise it will point to temporary copy which will be relocated. 2335 * 2336 * Use ->sh_addr to contain final address of the section where it 2337 * will go during execution time. 2338 */ 2339 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2340 if (sechdrs[i].sh_type == SHT_NOBITS) 2341 continue; 2342 2343 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 2344 sechdrs[i].sh_offset; 2345 } 2346 2347 /* 2348 * Identify entry point section and make entry relative to section 2349 * start. 2350 */ 2351 entry = pi->ehdr->e_entry; 2352 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2353 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2354 continue; 2355 2356 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 2357 continue; 2358 2359 /* Make entry section relative */ 2360 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 2361 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 2362 pi->ehdr->e_entry)) { 2363 entry_sidx = i; 2364 entry -= sechdrs[i].sh_addr; 2365 break; 2366 } 2367 } 2368 2369 /* Determine how much memory is needed to load relocatable object. */ 2370 buf_align = 1; 2371 bss_align = 1; 2372 buf_sz = 0; 2373 bss_sz = 0; 2374 2375 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2376 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2377 continue; 2378 2379 align = sechdrs[i].sh_addralign; 2380 if (sechdrs[i].sh_type != SHT_NOBITS) { 2381 if (buf_align < align) 2382 buf_align = align; 2383 buf_sz = ALIGN(buf_sz, align); 2384 buf_sz += sechdrs[i].sh_size; 2385 } else { 2386 /* bss section */ 2387 if (bss_align < align) 2388 bss_align = align; 2389 bss_sz = ALIGN(bss_sz, align); 2390 bss_sz += sechdrs[i].sh_size; 2391 } 2392 } 2393 2394 /* Determine the bss padding required to align bss properly */ 2395 bss_pad = 0; 2396 if (buf_sz & (bss_align - 1)) 2397 bss_pad = bss_align - (buf_sz & (bss_align - 1)); 2398 2399 memsz = buf_sz + bss_pad + bss_sz; 2400 2401 /* Allocate buffer for purgatory */ 2402 purgatory_buf = vzalloc(buf_sz); 2403 if (!purgatory_buf) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 2408 if (buf_align < bss_align) 2409 buf_align = bss_align; 2410 2411 /* Add buffer to segment list */ 2412 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, 2413 buf_align, min, max, top_down, 2414 &pi->purgatory_load_addr); 2415 if (ret) 2416 goto out; 2417 2418 /* Load SHF_ALLOC sections */ 2419 buf_addr = purgatory_buf; 2420 load_addr = curr_load_addr = pi->purgatory_load_addr; 2421 bss_addr = load_addr + buf_sz + bss_pad; 2422 2423 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2424 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2425 continue; 2426 2427 align = sechdrs[i].sh_addralign; 2428 if (sechdrs[i].sh_type != SHT_NOBITS) { 2429 curr_load_addr = ALIGN(curr_load_addr, align); 2430 offset = curr_load_addr - load_addr; 2431 /* We already modifed ->sh_offset to keep src addr */ 2432 src = (char *) sechdrs[i].sh_offset; 2433 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 2434 2435 /* Store load address and source address of section */ 2436 sechdrs[i].sh_addr = curr_load_addr; 2437 2438 /* 2439 * This section got copied to temporary buffer. Update 2440 * ->sh_offset accordingly. 2441 */ 2442 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 2443 2444 /* Advance to the next address */ 2445 curr_load_addr += sechdrs[i].sh_size; 2446 } else { 2447 bss_addr = ALIGN(bss_addr, align); 2448 sechdrs[i].sh_addr = bss_addr; 2449 bss_addr += sechdrs[i].sh_size; 2450 } 2451 } 2452 2453 /* Update entry point based on load address of text section */ 2454 if (entry_sidx >= 0) 2455 entry += sechdrs[entry_sidx].sh_addr; 2456 2457 /* Make kernel jump to purgatory after shutdown */ 2458 image->start = entry; 2459 2460 /* Used later to get/set symbol values */ 2461 pi->sechdrs = sechdrs; 2462 2463 /* 2464 * Used later to identify which section is purgatory and skip it 2465 * from checksumming. 2466 */ 2467 pi->purgatory_buf = purgatory_buf; 2468 return ret; 2469 out: 2470 vfree(sechdrs); 2471 vfree(purgatory_buf); 2472 return ret; 2473 } 2474 2475 static int kexec_apply_relocations(struct kimage *image) 2476 { 2477 int i, ret; 2478 struct purgatory_info *pi = &image->purgatory_info; 2479 Elf_Shdr *sechdrs = pi->sechdrs; 2480 2481 /* Apply relocations */ 2482 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2483 Elf_Shdr *section, *symtab; 2484 2485 if (sechdrs[i].sh_type != SHT_RELA && 2486 sechdrs[i].sh_type != SHT_REL) 2487 continue; 2488 2489 /* 2490 * For section of type SHT_RELA/SHT_REL, 2491 * ->sh_link contains section header index of associated 2492 * symbol table. And ->sh_info contains section header 2493 * index of section to which relocations apply. 2494 */ 2495 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 2496 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 2497 return -ENOEXEC; 2498 2499 section = &sechdrs[sechdrs[i].sh_info]; 2500 symtab = &sechdrs[sechdrs[i].sh_link]; 2501 2502 if (!(section->sh_flags & SHF_ALLOC)) 2503 continue; 2504 2505 /* 2506 * symtab->sh_link contain section header index of associated 2507 * string table. 2508 */ 2509 if (symtab->sh_link >= pi->ehdr->e_shnum) 2510 /* Invalid section number? */ 2511 continue; 2512 2513 /* 2514 * Respective architecture needs to provide support for applying 2515 * relocations of type SHT_RELA/SHT_REL. 2516 */ 2517 if (sechdrs[i].sh_type == SHT_RELA) 2518 ret = arch_kexec_apply_relocations_add(pi->ehdr, 2519 sechdrs, i); 2520 else if (sechdrs[i].sh_type == SHT_REL) 2521 ret = arch_kexec_apply_relocations(pi->ehdr, 2522 sechdrs, i); 2523 if (ret) 2524 return ret; 2525 } 2526 2527 return 0; 2528 } 2529 2530 /* Load relocatable purgatory object and relocate it appropriately */ 2531 int kexec_load_purgatory(struct kimage *image, unsigned long min, 2532 unsigned long max, int top_down, 2533 unsigned long *load_addr) 2534 { 2535 struct purgatory_info *pi = &image->purgatory_info; 2536 int ret; 2537 2538 if (kexec_purgatory_size <= 0) 2539 return -EINVAL; 2540 2541 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 2542 return -ENOEXEC; 2543 2544 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 2545 2546 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 2547 || pi->ehdr->e_type != ET_REL 2548 || !elf_check_arch(pi->ehdr) 2549 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 2550 return -ENOEXEC; 2551 2552 if (pi->ehdr->e_shoff >= kexec_purgatory_size 2553 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 2554 kexec_purgatory_size - pi->ehdr->e_shoff)) 2555 return -ENOEXEC; 2556 2557 ret = __kexec_load_purgatory(image, min, max, top_down); 2558 if (ret) 2559 return ret; 2560 2561 ret = kexec_apply_relocations(image); 2562 if (ret) 2563 goto out; 2564 2565 *load_addr = pi->purgatory_load_addr; 2566 return 0; 2567 out: 2568 vfree(pi->sechdrs); 2569 vfree(pi->purgatory_buf); 2570 return ret; 2571 } 2572 2573 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 2574 const char *name) 2575 { 2576 Elf_Sym *syms; 2577 Elf_Shdr *sechdrs; 2578 Elf_Ehdr *ehdr; 2579 int i, k; 2580 const char *strtab; 2581 2582 if (!pi->sechdrs || !pi->ehdr) 2583 return NULL; 2584 2585 sechdrs = pi->sechdrs; 2586 ehdr = pi->ehdr; 2587 2588 for (i = 0; i < ehdr->e_shnum; i++) { 2589 if (sechdrs[i].sh_type != SHT_SYMTAB) 2590 continue; 2591 2592 if (sechdrs[i].sh_link >= ehdr->e_shnum) 2593 /* Invalid strtab section number */ 2594 continue; 2595 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 2596 syms = (Elf_Sym *)sechdrs[i].sh_offset; 2597 2598 /* Go through symbols for a match */ 2599 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 2600 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 2601 continue; 2602 2603 if (strcmp(strtab + syms[k].st_name, name) != 0) 2604 continue; 2605 2606 if (syms[k].st_shndx == SHN_UNDEF || 2607 syms[k].st_shndx >= ehdr->e_shnum) { 2608 pr_debug("Symbol: %s has bad section index %d.\n", 2609 name, syms[k].st_shndx); 2610 return NULL; 2611 } 2612 2613 /* Found the symbol we are looking for */ 2614 return &syms[k]; 2615 } 2616 } 2617 2618 return NULL; 2619 } 2620 2621 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 2622 { 2623 struct purgatory_info *pi = &image->purgatory_info; 2624 Elf_Sym *sym; 2625 Elf_Shdr *sechdr; 2626 2627 sym = kexec_purgatory_find_symbol(pi, name); 2628 if (!sym) 2629 return ERR_PTR(-EINVAL); 2630 2631 sechdr = &pi->sechdrs[sym->st_shndx]; 2632 2633 /* 2634 * Returns the address where symbol will finally be loaded after 2635 * kexec_load_segment() 2636 */ 2637 return (void *)(sechdr->sh_addr + sym->st_value); 2638 } 2639 2640 /* 2641 * Get or set value of a symbol. If "get_value" is true, symbol value is 2642 * returned in buf otherwise symbol value is set based on value in buf. 2643 */ 2644 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 2645 void *buf, unsigned int size, bool get_value) 2646 { 2647 Elf_Sym *sym; 2648 Elf_Shdr *sechdrs; 2649 struct purgatory_info *pi = &image->purgatory_info; 2650 char *sym_buf; 2651 2652 sym = kexec_purgatory_find_symbol(pi, name); 2653 if (!sym) 2654 return -EINVAL; 2655 2656 if (sym->st_size != size) { 2657 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 2658 name, (unsigned long)sym->st_size, size); 2659 return -EINVAL; 2660 } 2661 2662 sechdrs = pi->sechdrs; 2663 2664 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 2665 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 2666 get_value ? "get" : "set"); 2667 return -EINVAL; 2668 } 2669 2670 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 2671 sym->st_value; 2672 2673 if (get_value) 2674 memcpy((void *)buf, sym_buf, size); 2675 else 2676 memcpy((void *)sym_buf, buf, size); 2677 2678 return 0; 2679 } 2680 #endif /* CONFIG_KEXEC_FILE */ 2681 2682 /* 2683 * Move into place and start executing a preloaded standalone 2684 * executable. If nothing was preloaded return an error. 2685 */ 2686 int kernel_kexec(void) 2687 { 2688 int error = 0; 2689 2690 if (!mutex_trylock(&kexec_mutex)) 2691 return -EBUSY; 2692 if (!kexec_image) { 2693 error = -EINVAL; 2694 goto Unlock; 2695 } 2696 2697 #ifdef CONFIG_KEXEC_JUMP 2698 if (kexec_image->preserve_context) { 2699 lock_system_sleep(); 2700 pm_prepare_console(); 2701 error = freeze_processes(); 2702 if (error) { 2703 error = -EBUSY; 2704 goto Restore_console; 2705 } 2706 suspend_console(); 2707 error = dpm_suspend_start(PMSG_FREEZE); 2708 if (error) 2709 goto Resume_console; 2710 /* At this point, dpm_suspend_start() has been called, 2711 * but *not* dpm_suspend_end(). We *must* call 2712 * dpm_suspend_end() now. Otherwise, drivers for 2713 * some devices (e.g. interrupt controllers) become 2714 * desynchronized with the actual state of the 2715 * hardware at resume time, and evil weirdness ensues. 2716 */ 2717 error = dpm_suspend_end(PMSG_FREEZE); 2718 if (error) 2719 goto Resume_devices; 2720 error = disable_nonboot_cpus(); 2721 if (error) 2722 goto Enable_cpus; 2723 local_irq_disable(); 2724 error = syscore_suspend(); 2725 if (error) 2726 goto Enable_irqs; 2727 } else 2728 #endif 2729 { 2730 kexec_in_progress = true; 2731 kernel_restart_prepare(NULL); 2732 migrate_to_reboot_cpu(); 2733 2734 /* 2735 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 2736 * no further code needs to use CPU hotplug (which is true in 2737 * the reboot case). However, the kexec path depends on using 2738 * CPU hotplug again; so re-enable it here. 2739 */ 2740 cpu_hotplug_enable(); 2741 pr_emerg("Starting new kernel\n"); 2742 machine_shutdown(); 2743 } 2744 2745 machine_kexec(kexec_image); 2746 2747 #ifdef CONFIG_KEXEC_JUMP 2748 if (kexec_image->preserve_context) { 2749 syscore_resume(); 2750 Enable_irqs: 2751 local_irq_enable(); 2752 Enable_cpus: 2753 enable_nonboot_cpus(); 2754 dpm_resume_start(PMSG_RESTORE); 2755 Resume_devices: 2756 dpm_resume_end(PMSG_RESTORE); 2757 Resume_console: 2758 resume_console(); 2759 thaw_processes(); 2760 Restore_console: 2761 pm_restore_console(); 2762 unlock_system_sleep(); 2763 } 2764 #endif 2765 2766 Unlock: 2767 mutex_unlock(&kexec_mutex); 2768 return error; 2769 } 2770