xref: /openbmc/linux/kernel/kexec.c (revision 3d3337de)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt)	"kexec: " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50 
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56 
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59 
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66 
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage *image);
69 #endif
70 
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res = {
73 	.name  = "Crash kernel",
74 	.start = 0,
75 	.end   = 0,
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
77 };
78 struct resource crashk_low_res = {
79 	.name  = "Crash kernel",
80 	.start = 0,
81 	.end   = 0,
82 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 };
84 
85 int kexec_should_crash(struct task_struct *p)
86 {
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
92 /*
93  * When kexec transitions to the new kernel there is a one-to-one
94  * mapping between physical and virtual addresses.  On processors
95  * where you can disable the MMU this is trivial, and easy.  For
96  * others it is still a simple predictable page table to setup.
97  *
98  * In that environment kexec copies the new kernel to its final
99  * resting place.  This means I can only support memory whose
100  * physical address can fit in an unsigned long.  In particular
101  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102  * If the assembly stub has more restrictive requirements
103  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104  * defined more restrictively in <asm/kexec.h>.
105  *
106  * The code for the transition from the current kernel to the
107  * the new kernel is placed in the control_code_buffer, whose size
108  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109  * page of memory is necessary, but some architectures require more.
110  * Because this memory must be identity mapped in the transition from
111  * virtual to physical addresses it must live in the range
112  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113  * modifiable.
114  *
115  * The assembly stub in the control code buffer is passed a linked list
116  * of descriptor pages detailing the source pages of the new kernel,
117  * and the destination addresses of those source pages.  As this data
118  * structure is not used in the context of the current OS, it must
119  * be self-contained.
120  *
121  * The code has been made to work with highmem pages and will use a
122  * destination page in its final resting place (if it happens
123  * to allocate it).  The end product of this is that most of the
124  * physical address space, and most of RAM can be used.
125  *
126  * Future directions include:
127  *  - allocating a page table with the control code buffer identity
128  *    mapped, to simplify machine_kexec and make kexec_on_panic more
129  *    reliable.
130  */
131 
132 /*
133  * KIMAGE_NO_DEST is an impossible destination address..., for
134  * allocating pages whose destination address we do not care about.
135  */
136 #define KIMAGE_NO_DEST (-1UL)
137 
138 static int kimage_is_destination_range(struct kimage *image,
139 				       unsigned long start, unsigned long end);
140 static struct page *kimage_alloc_page(struct kimage *image,
141 				       gfp_t gfp_mask,
142 				       unsigned long dest);
143 
144 static int copy_user_segment_list(struct kimage *image,
145 				  unsigned long nr_segments,
146 				  struct kexec_segment __user *segments)
147 {
148 	int ret;
149 	size_t segment_bytes;
150 
151 	/* Read in the segments */
152 	image->nr_segments = nr_segments;
153 	segment_bytes = nr_segments * sizeof(*segments);
154 	ret = copy_from_user(image->segment, segments, segment_bytes);
155 	if (ret)
156 		ret = -EFAULT;
157 
158 	return ret;
159 }
160 
161 static int sanity_check_segment_list(struct kimage *image)
162 {
163 	int result, i;
164 	unsigned long nr_segments = image->nr_segments;
165 
166 	/*
167 	 * Verify we have good destination addresses.  The caller is
168 	 * responsible for making certain we don't attempt to load
169 	 * the new image into invalid or reserved areas of RAM.  This
170 	 * just verifies it is an address we can use.
171 	 *
172 	 * Since the kernel does everything in page size chunks ensure
173 	 * the destination addresses are page aligned.  Too many
174 	 * special cases crop of when we don't do this.  The most
175 	 * insidious is getting overlapping destination addresses
176 	 * simply because addresses are changed to page size
177 	 * granularity.
178 	 */
179 	result = -EADDRNOTAVAIL;
180 	for (i = 0; i < nr_segments; i++) {
181 		unsigned long mstart, mend;
182 
183 		mstart = image->segment[i].mem;
184 		mend   = mstart + image->segment[i].memsz;
185 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186 			return result;
187 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188 			return result;
189 	}
190 
191 	/* Verify our destination addresses do not overlap.
192 	 * If we alloed overlapping destination addresses
193 	 * through very weird things can happen with no
194 	 * easy explanation as one segment stops on another.
195 	 */
196 	result = -EINVAL;
197 	for (i = 0; i < nr_segments; i++) {
198 		unsigned long mstart, mend;
199 		unsigned long j;
200 
201 		mstart = image->segment[i].mem;
202 		mend   = mstart + image->segment[i].memsz;
203 		for (j = 0; j < i; j++) {
204 			unsigned long pstart, pend;
205 			pstart = image->segment[j].mem;
206 			pend   = pstart + image->segment[j].memsz;
207 			/* Do the segments overlap ? */
208 			if ((mend > pstart) && (mstart < pend))
209 				return result;
210 		}
211 	}
212 
213 	/* Ensure our buffer sizes are strictly less than
214 	 * our memory sizes.  This should always be the case,
215 	 * and it is easier to check up front than to be surprised
216 	 * later on.
217 	 */
218 	result = -EINVAL;
219 	for (i = 0; i < nr_segments; i++) {
220 		if (image->segment[i].bufsz > image->segment[i].memsz)
221 			return result;
222 	}
223 
224 	/*
225 	 * Verify we have good destination addresses.  Normally
226 	 * the caller is responsible for making certain we don't
227 	 * attempt to load the new image into invalid or reserved
228 	 * areas of RAM.  But crash kernels are preloaded into a
229 	 * reserved area of ram.  We must ensure the addresses
230 	 * are in the reserved area otherwise preloading the
231 	 * kernel could corrupt things.
232 	 */
233 
234 	if (image->type == KEXEC_TYPE_CRASH) {
235 		result = -EADDRNOTAVAIL;
236 		for (i = 0; i < nr_segments; i++) {
237 			unsigned long mstart, mend;
238 
239 			mstart = image->segment[i].mem;
240 			mend = mstart + image->segment[i].memsz - 1;
241 			/* Ensure we are within the crash kernel limits */
242 			if ((mstart < crashk_res.start) ||
243 			    (mend > crashk_res.end))
244 				return result;
245 		}
246 	}
247 
248 	return 0;
249 }
250 
251 static struct kimage *do_kimage_alloc_init(void)
252 {
253 	struct kimage *image;
254 
255 	/* Allocate a controlling structure */
256 	image = kzalloc(sizeof(*image), GFP_KERNEL);
257 	if (!image)
258 		return NULL;
259 
260 	image->head = 0;
261 	image->entry = &image->head;
262 	image->last_entry = &image->head;
263 	image->control_page = ~0; /* By default this does not apply */
264 	image->type = KEXEC_TYPE_DEFAULT;
265 
266 	/* Initialize the list of control pages */
267 	INIT_LIST_HEAD(&image->control_pages);
268 
269 	/* Initialize the list of destination pages */
270 	INIT_LIST_HEAD(&image->dest_pages);
271 
272 	/* Initialize the list of unusable pages */
273 	INIT_LIST_HEAD(&image->unusable_pages);
274 
275 	return image;
276 }
277 
278 static void kimage_free_page_list(struct list_head *list);
279 
280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281 			     unsigned long nr_segments,
282 			     struct kexec_segment __user *segments,
283 			     unsigned long flags)
284 {
285 	int ret;
286 	struct kimage *image;
287 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288 
289 	if (kexec_on_panic) {
290 		/* Verify we have a valid entry point */
291 		if ((entry < crashk_res.start) || (entry > crashk_res.end))
292 			return -EADDRNOTAVAIL;
293 	}
294 
295 	/* Allocate and initialize a controlling structure */
296 	image = do_kimage_alloc_init();
297 	if (!image)
298 		return -ENOMEM;
299 
300 	image->start = entry;
301 
302 	ret = copy_user_segment_list(image, nr_segments, segments);
303 	if (ret)
304 		goto out_free_image;
305 
306 	ret = sanity_check_segment_list(image);
307 	if (ret)
308 		goto out_free_image;
309 
310 	 /* Enable the special crash kernel control page allocation policy. */
311 	if (kexec_on_panic) {
312 		image->control_page = crashk_res.start;
313 		image->type = KEXEC_TYPE_CRASH;
314 	}
315 
316 	/*
317 	 * Find a location for the control code buffer, and add it
318 	 * the vector of segments so that it's pages will also be
319 	 * counted as destination pages.
320 	 */
321 	ret = -ENOMEM;
322 	image->control_code_page = kimage_alloc_control_pages(image,
323 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324 	if (!image->control_code_page) {
325 		pr_err("Could not allocate control_code_buffer\n");
326 		goto out_free_image;
327 	}
328 
329 	if (!kexec_on_panic) {
330 		image->swap_page = kimage_alloc_control_pages(image, 0);
331 		if (!image->swap_page) {
332 			pr_err("Could not allocate swap buffer\n");
333 			goto out_free_control_pages;
334 		}
335 	}
336 
337 	*rimage = image;
338 	return 0;
339 out_free_control_pages:
340 	kimage_free_page_list(&image->control_pages);
341 out_free_image:
342 	kfree(image);
343 	return ret;
344 }
345 
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348 {
349 	struct fd f = fdget(fd);
350 	int ret;
351 	struct kstat stat;
352 	loff_t pos;
353 	ssize_t bytes = 0;
354 
355 	if (!f.file)
356 		return -EBADF;
357 
358 	ret = vfs_getattr(&f.file->f_path, &stat);
359 	if (ret)
360 		goto out;
361 
362 	if (stat.size > INT_MAX) {
363 		ret = -EFBIG;
364 		goto out;
365 	}
366 
367 	/* Don't hand 0 to vmalloc, it whines. */
368 	if (stat.size == 0) {
369 		ret = -EINVAL;
370 		goto out;
371 	}
372 
373 	*buf = vmalloc(stat.size);
374 	if (!*buf) {
375 		ret = -ENOMEM;
376 		goto out;
377 	}
378 
379 	pos = 0;
380 	while (pos < stat.size) {
381 		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382 				    stat.size - pos);
383 		if (bytes < 0) {
384 			vfree(*buf);
385 			ret = bytes;
386 			goto out;
387 		}
388 
389 		if (bytes == 0)
390 			break;
391 		pos += bytes;
392 	}
393 
394 	if (pos != stat.size) {
395 		ret = -EBADF;
396 		vfree(*buf);
397 		goto out;
398 	}
399 
400 	*buf_len = pos;
401 out:
402 	fdput(f);
403 	return ret;
404 }
405 
406 /* Architectures can provide this probe function */
407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408 					 unsigned long buf_len)
409 {
410 	return -ENOEXEC;
411 }
412 
413 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414 {
415 	return ERR_PTR(-ENOEXEC);
416 }
417 
418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419 {
420 }
421 
422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423 					unsigned long buf_len)
424 {
425 	return -EKEYREJECTED;
426 }
427 
428 /* Apply relocations of type RELA */
429 int __weak
430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431 				 unsigned int relsec)
432 {
433 	pr_err("RELA relocation unsupported.\n");
434 	return -ENOEXEC;
435 }
436 
437 /* Apply relocations of type REL */
438 int __weak
439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440 			     unsigned int relsec)
441 {
442 	pr_err("REL relocation unsupported.\n");
443 	return -ENOEXEC;
444 }
445 
446 /*
447  * Free up memory used by kernel, initrd, and command line. This is temporary
448  * memory allocation which is not needed any more after these buffers have
449  * been loaded into separate segments and have been copied elsewhere.
450  */
451 static void kimage_file_post_load_cleanup(struct kimage *image)
452 {
453 	struct purgatory_info *pi = &image->purgatory_info;
454 
455 	vfree(image->kernel_buf);
456 	image->kernel_buf = NULL;
457 
458 	vfree(image->initrd_buf);
459 	image->initrd_buf = NULL;
460 
461 	kfree(image->cmdline_buf);
462 	image->cmdline_buf = NULL;
463 
464 	vfree(pi->purgatory_buf);
465 	pi->purgatory_buf = NULL;
466 
467 	vfree(pi->sechdrs);
468 	pi->sechdrs = NULL;
469 
470 	/* See if architecture has anything to cleanup post load */
471 	arch_kimage_file_post_load_cleanup(image);
472 
473 	/*
474 	 * Above call should have called into bootloader to free up
475 	 * any data stored in kimage->image_loader_data. It should
476 	 * be ok now to free it up.
477 	 */
478 	kfree(image->image_loader_data);
479 	image->image_loader_data = NULL;
480 }
481 
482 /*
483  * In file mode list of segments is prepared by kernel. Copy relevant
484  * data from user space, do error checking, prepare segment list
485  */
486 static int
487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488 			     const char __user *cmdline_ptr,
489 			     unsigned long cmdline_len, unsigned flags)
490 {
491 	int ret = 0;
492 	void *ldata;
493 
494 	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495 				&image->kernel_buf_len);
496 	if (ret)
497 		return ret;
498 
499 	/* Call arch image probe handlers */
500 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501 					    image->kernel_buf_len);
502 
503 	if (ret)
504 		goto out;
505 
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508 					   image->kernel_buf_len);
509 	if (ret) {
510 		pr_debug("kernel signature verification failed.\n");
511 		goto out;
512 	}
513 	pr_debug("kernel signature verification successful.\n");
514 #endif
515 	/* It is possible that there no initramfs is being loaded */
516 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517 		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518 					&image->initrd_buf_len);
519 		if (ret)
520 			goto out;
521 	}
522 
523 	if (cmdline_len) {
524 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525 		if (!image->cmdline_buf) {
526 			ret = -ENOMEM;
527 			goto out;
528 		}
529 
530 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531 				     cmdline_len);
532 		if (ret) {
533 			ret = -EFAULT;
534 			goto out;
535 		}
536 
537 		image->cmdline_buf_len = cmdline_len;
538 
539 		/* command line should be a string with last byte null */
540 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541 			ret = -EINVAL;
542 			goto out;
543 		}
544 	}
545 
546 	/* Call arch image load handlers */
547 	ldata = arch_kexec_kernel_image_load(image);
548 
549 	if (IS_ERR(ldata)) {
550 		ret = PTR_ERR(ldata);
551 		goto out;
552 	}
553 
554 	image->image_loader_data = ldata;
555 out:
556 	/* In case of error, free up all allocated memory in this function */
557 	if (ret)
558 		kimage_file_post_load_cleanup(image);
559 	return ret;
560 }
561 
562 static int
563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564 		       int initrd_fd, const char __user *cmdline_ptr,
565 		       unsigned long cmdline_len, unsigned long flags)
566 {
567 	int ret;
568 	struct kimage *image;
569 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570 
571 	image = do_kimage_alloc_init();
572 	if (!image)
573 		return -ENOMEM;
574 
575 	image->file_mode = 1;
576 
577 	if (kexec_on_panic) {
578 		/* Enable special crash kernel control page alloc policy. */
579 		image->control_page = crashk_res.start;
580 		image->type = KEXEC_TYPE_CRASH;
581 	}
582 
583 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584 					   cmdline_ptr, cmdline_len, flags);
585 	if (ret)
586 		goto out_free_image;
587 
588 	ret = sanity_check_segment_list(image);
589 	if (ret)
590 		goto out_free_post_load_bufs;
591 
592 	ret = -ENOMEM;
593 	image->control_code_page = kimage_alloc_control_pages(image,
594 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
595 	if (!image->control_code_page) {
596 		pr_err("Could not allocate control_code_buffer\n");
597 		goto out_free_post_load_bufs;
598 	}
599 
600 	if (!kexec_on_panic) {
601 		image->swap_page = kimage_alloc_control_pages(image, 0);
602 		if (!image->swap_page) {
603 			pr_err("Could not allocate swap buffer\n");
604 			goto out_free_control_pages;
605 		}
606 	}
607 
608 	*rimage = image;
609 	return 0;
610 out_free_control_pages:
611 	kimage_free_page_list(&image->control_pages);
612 out_free_post_load_bufs:
613 	kimage_file_post_load_cleanup(image);
614 out_free_image:
615 	kfree(image);
616 	return ret;
617 }
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620 #endif /* CONFIG_KEXEC_FILE */
621 
622 static int kimage_is_destination_range(struct kimage *image,
623 					unsigned long start,
624 					unsigned long end)
625 {
626 	unsigned long i;
627 
628 	for (i = 0; i < image->nr_segments; i++) {
629 		unsigned long mstart, mend;
630 
631 		mstart = image->segment[i].mem;
632 		mend = mstart + image->segment[i].memsz;
633 		if ((end > mstart) && (start < mend))
634 			return 1;
635 	}
636 
637 	return 0;
638 }
639 
640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641 {
642 	struct page *pages;
643 
644 	pages = alloc_pages(gfp_mask, order);
645 	if (pages) {
646 		unsigned int count, i;
647 		pages->mapping = NULL;
648 		set_page_private(pages, order);
649 		count = 1 << order;
650 		for (i = 0; i < count; i++)
651 			SetPageReserved(pages + i);
652 	}
653 
654 	return pages;
655 }
656 
657 static void kimage_free_pages(struct page *page)
658 {
659 	unsigned int order, count, i;
660 
661 	order = page_private(page);
662 	count = 1 << order;
663 	for (i = 0; i < count; i++)
664 		ClearPageReserved(page + i);
665 	__free_pages(page, order);
666 }
667 
668 static void kimage_free_page_list(struct list_head *list)
669 {
670 	struct list_head *pos, *next;
671 
672 	list_for_each_safe(pos, next, list) {
673 		struct page *page;
674 
675 		page = list_entry(pos, struct page, lru);
676 		list_del(&page->lru);
677 		kimage_free_pages(page);
678 	}
679 }
680 
681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682 							unsigned int order)
683 {
684 	/* Control pages are special, they are the intermediaries
685 	 * that are needed while we copy the rest of the pages
686 	 * to their final resting place.  As such they must
687 	 * not conflict with either the destination addresses
688 	 * or memory the kernel is already using.
689 	 *
690 	 * The only case where we really need more than one of
691 	 * these are for architectures where we cannot disable
692 	 * the MMU and must instead generate an identity mapped
693 	 * page table for all of the memory.
694 	 *
695 	 * At worst this runs in O(N) of the image size.
696 	 */
697 	struct list_head extra_pages;
698 	struct page *pages;
699 	unsigned int count;
700 
701 	count = 1 << order;
702 	INIT_LIST_HEAD(&extra_pages);
703 
704 	/* Loop while I can allocate a page and the page allocated
705 	 * is a destination page.
706 	 */
707 	do {
708 		unsigned long pfn, epfn, addr, eaddr;
709 
710 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
711 		if (!pages)
712 			break;
713 		pfn   = page_to_pfn(pages);
714 		epfn  = pfn + count;
715 		addr  = pfn << PAGE_SHIFT;
716 		eaddr = epfn << PAGE_SHIFT;
717 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
718 			      kimage_is_destination_range(image, addr, eaddr)) {
719 			list_add(&pages->lru, &extra_pages);
720 			pages = NULL;
721 		}
722 	} while (!pages);
723 
724 	if (pages) {
725 		/* Remember the allocated page... */
726 		list_add(&pages->lru, &image->control_pages);
727 
728 		/* Because the page is already in it's destination
729 		 * location we will never allocate another page at
730 		 * that address.  Therefore kimage_alloc_pages
731 		 * will not return it (again) and we don't need
732 		 * to give it an entry in image->segment[].
733 		 */
734 	}
735 	/* Deal with the destination pages I have inadvertently allocated.
736 	 *
737 	 * Ideally I would convert multi-page allocations into single
738 	 * page allocations, and add everything to image->dest_pages.
739 	 *
740 	 * For now it is simpler to just free the pages.
741 	 */
742 	kimage_free_page_list(&extra_pages);
743 
744 	return pages;
745 }
746 
747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748 						      unsigned int order)
749 {
750 	/* Control pages are special, they are the intermediaries
751 	 * that are needed while we copy the rest of the pages
752 	 * to their final resting place.  As such they must
753 	 * not conflict with either the destination addresses
754 	 * or memory the kernel is already using.
755 	 *
756 	 * Control pages are also the only pags we must allocate
757 	 * when loading a crash kernel.  All of the other pages
758 	 * are specified by the segments and we just memcpy
759 	 * into them directly.
760 	 *
761 	 * The only case where we really need more than one of
762 	 * these are for architectures where we cannot disable
763 	 * the MMU and must instead generate an identity mapped
764 	 * page table for all of the memory.
765 	 *
766 	 * Given the low demand this implements a very simple
767 	 * allocator that finds the first hole of the appropriate
768 	 * size in the reserved memory region, and allocates all
769 	 * of the memory up to and including the hole.
770 	 */
771 	unsigned long hole_start, hole_end, size;
772 	struct page *pages;
773 
774 	pages = NULL;
775 	size = (1 << order) << PAGE_SHIFT;
776 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777 	hole_end   = hole_start + size - 1;
778 	while (hole_end <= crashk_res.end) {
779 		unsigned long i;
780 
781 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782 			break;
783 		/* See if I overlap any of the segments */
784 		for (i = 0; i < image->nr_segments; i++) {
785 			unsigned long mstart, mend;
786 
787 			mstart = image->segment[i].mem;
788 			mend   = mstart + image->segment[i].memsz - 1;
789 			if ((hole_end >= mstart) && (hole_start <= mend)) {
790 				/* Advance the hole to the end of the segment */
791 				hole_start = (mend + (size - 1)) & ~(size - 1);
792 				hole_end   = hole_start + size - 1;
793 				break;
794 			}
795 		}
796 		/* If I don't overlap any segments I have found my hole! */
797 		if (i == image->nr_segments) {
798 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799 			break;
800 		}
801 	}
802 	if (pages)
803 		image->control_page = hole_end;
804 
805 	return pages;
806 }
807 
808 
809 struct page *kimage_alloc_control_pages(struct kimage *image,
810 					 unsigned int order)
811 {
812 	struct page *pages = NULL;
813 
814 	switch (image->type) {
815 	case KEXEC_TYPE_DEFAULT:
816 		pages = kimage_alloc_normal_control_pages(image, order);
817 		break;
818 	case KEXEC_TYPE_CRASH:
819 		pages = kimage_alloc_crash_control_pages(image, order);
820 		break;
821 	}
822 
823 	return pages;
824 }
825 
826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827 {
828 	if (*image->entry != 0)
829 		image->entry++;
830 
831 	if (image->entry == image->last_entry) {
832 		kimage_entry_t *ind_page;
833 		struct page *page;
834 
835 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
836 		if (!page)
837 			return -ENOMEM;
838 
839 		ind_page = page_address(page);
840 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841 		image->entry = ind_page;
842 		image->last_entry = ind_page +
843 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844 	}
845 	*image->entry = entry;
846 	image->entry++;
847 	*image->entry = 0;
848 
849 	return 0;
850 }
851 
852 static int kimage_set_destination(struct kimage *image,
853 				   unsigned long destination)
854 {
855 	int result;
856 
857 	destination &= PAGE_MASK;
858 	result = kimage_add_entry(image, destination | IND_DESTINATION);
859 
860 	return result;
861 }
862 
863 
864 static int kimage_add_page(struct kimage *image, unsigned long page)
865 {
866 	int result;
867 
868 	page &= PAGE_MASK;
869 	result = kimage_add_entry(image, page | IND_SOURCE);
870 
871 	return result;
872 }
873 
874 
875 static void kimage_free_extra_pages(struct kimage *image)
876 {
877 	/* Walk through and free any extra destination pages I may have */
878 	kimage_free_page_list(&image->dest_pages);
879 
880 	/* Walk through and free any unusable pages I have cached */
881 	kimage_free_page_list(&image->unusable_pages);
882 
883 }
884 static void kimage_terminate(struct kimage *image)
885 {
886 	if (*image->entry != 0)
887 		image->entry++;
888 
889 	*image->entry = IND_DONE;
890 }
891 
892 #define for_each_kimage_entry(image, ptr, entry) \
893 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
894 		ptr = (entry & IND_INDIRECTION) ? \
895 			phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
896 
897 static void kimage_free_entry(kimage_entry_t entry)
898 {
899 	struct page *page;
900 
901 	page = pfn_to_page(entry >> PAGE_SHIFT);
902 	kimage_free_pages(page);
903 }
904 
905 static void kimage_free(struct kimage *image)
906 {
907 	kimage_entry_t *ptr, entry;
908 	kimage_entry_t ind = 0;
909 
910 	if (!image)
911 		return;
912 
913 	kimage_free_extra_pages(image);
914 	for_each_kimage_entry(image, ptr, entry) {
915 		if (entry & IND_INDIRECTION) {
916 			/* Free the previous indirection page */
917 			if (ind & IND_INDIRECTION)
918 				kimage_free_entry(ind);
919 			/* Save this indirection page until we are
920 			 * done with it.
921 			 */
922 			ind = entry;
923 		} else if (entry & IND_SOURCE)
924 			kimage_free_entry(entry);
925 	}
926 	/* Free the final indirection page */
927 	if (ind & IND_INDIRECTION)
928 		kimage_free_entry(ind);
929 
930 	/* Handle any machine specific cleanup */
931 	machine_kexec_cleanup(image);
932 
933 	/* Free the kexec control pages... */
934 	kimage_free_page_list(&image->control_pages);
935 
936 	/*
937 	 * Free up any temporary buffers allocated. This might hit if
938 	 * error occurred much later after buffer allocation.
939 	 */
940 	if (image->file_mode)
941 		kimage_file_post_load_cleanup(image);
942 
943 	kfree(image);
944 }
945 
946 static kimage_entry_t *kimage_dst_used(struct kimage *image,
947 					unsigned long page)
948 {
949 	kimage_entry_t *ptr, entry;
950 	unsigned long destination = 0;
951 
952 	for_each_kimage_entry(image, ptr, entry) {
953 		if (entry & IND_DESTINATION)
954 			destination = entry & PAGE_MASK;
955 		else if (entry & IND_SOURCE) {
956 			if (page == destination)
957 				return ptr;
958 			destination += PAGE_SIZE;
959 		}
960 	}
961 
962 	return NULL;
963 }
964 
965 static struct page *kimage_alloc_page(struct kimage *image,
966 					gfp_t gfp_mask,
967 					unsigned long destination)
968 {
969 	/*
970 	 * Here we implement safeguards to ensure that a source page
971 	 * is not copied to its destination page before the data on
972 	 * the destination page is no longer useful.
973 	 *
974 	 * To do this we maintain the invariant that a source page is
975 	 * either its own destination page, or it is not a
976 	 * destination page at all.
977 	 *
978 	 * That is slightly stronger than required, but the proof
979 	 * that no problems will not occur is trivial, and the
980 	 * implementation is simply to verify.
981 	 *
982 	 * When allocating all pages normally this algorithm will run
983 	 * in O(N) time, but in the worst case it will run in O(N^2)
984 	 * time.   If the runtime is a problem the data structures can
985 	 * be fixed.
986 	 */
987 	struct page *page;
988 	unsigned long addr;
989 
990 	/*
991 	 * Walk through the list of destination pages, and see if I
992 	 * have a match.
993 	 */
994 	list_for_each_entry(page, &image->dest_pages, lru) {
995 		addr = page_to_pfn(page) << PAGE_SHIFT;
996 		if (addr == destination) {
997 			list_del(&page->lru);
998 			return page;
999 		}
1000 	}
1001 	page = NULL;
1002 	while (1) {
1003 		kimage_entry_t *old;
1004 
1005 		/* Allocate a page, if we run out of memory give up */
1006 		page = kimage_alloc_pages(gfp_mask, 0);
1007 		if (!page)
1008 			return NULL;
1009 		/* If the page cannot be used file it away */
1010 		if (page_to_pfn(page) >
1011 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1012 			list_add(&page->lru, &image->unusable_pages);
1013 			continue;
1014 		}
1015 		addr = page_to_pfn(page) << PAGE_SHIFT;
1016 
1017 		/* If it is the destination page we want use it */
1018 		if (addr == destination)
1019 			break;
1020 
1021 		/* If the page is not a destination page use it */
1022 		if (!kimage_is_destination_range(image, addr,
1023 						  addr + PAGE_SIZE))
1024 			break;
1025 
1026 		/*
1027 		 * I know that the page is someones destination page.
1028 		 * See if there is already a source page for this
1029 		 * destination page.  And if so swap the source pages.
1030 		 */
1031 		old = kimage_dst_used(image, addr);
1032 		if (old) {
1033 			/* If so move it */
1034 			unsigned long old_addr;
1035 			struct page *old_page;
1036 
1037 			old_addr = *old & PAGE_MASK;
1038 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1039 			copy_highpage(page, old_page);
1040 			*old = addr | (*old & ~PAGE_MASK);
1041 
1042 			/* The old page I have found cannot be a
1043 			 * destination page, so return it if it's
1044 			 * gfp_flags honor the ones passed in.
1045 			 */
1046 			if (!(gfp_mask & __GFP_HIGHMEM) &&
1047 			    PageHighMem(old_page)) {
1048 				kimage_free_pages(old_page);
1049 				continue;
1050 			}
1051 			addr = old_addr;
1052 			page = old_page;
1053 			break;
1054 		} else {
1055 			/* Place the page on the destination list I
1056 			 * will use it later.
1057 			 */
1058 			list_add(&page->lru, &image->dest_pages);
1059 		}
1060 	}
1061 
1062 	return page;
1063 }
1064 
1065 static int kimage_load_normal_segment(struct kimage *image,
1066 					 struct kexec_segment *segment)
1067 {
1068 	unsigned long maddr;
1069 	size_t ubytes, mbytes;
1070 	int result;
1071 	unsigned char __user *buf = NULL;
1072 	unsigned char *kbuf = NULL;
1073 
1074 	result = 0;
1075 	if (image->file_mode)
1076 		kbuf = segment->kbuf;
1077 	else
1078 		buf = segment->buf;
1079 	ubytes = segment->bufsz;
1080 	mbytes = segment->memsz;
1081 	maddr = segment->mem;
1082 
1083 	result = kimage_set_destination(image, maddr);
1084 	if (result < 0)
1085 		goto out;
1086 
1087 	while (mbytes) {
1088 		struct page *page;
1089 		char *ptr;
1090 		size_t uchunk, mchunk;
1091 
1092 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1093 		if (!page) {
1094 			result  = -ENOMEM;
1095 			goto out;
1096 		}
1097 		result = kimage_add_page(image, page_to_pfn(page)
1098 								<< PAGE_SHIFT);
1099 		if (result < 0)
1100 			goto out;
1101 
1102 		ptr = kmap(page);
1103 		/* Start with a clear page */
1104 		clear_page(ptr);
1105 		ptr += maddr & ~PAGE_MASK;
1106 		mchunk = min_t(size_t, mbytes,
1107 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1108 		uchunk = min(ubytes, mchunk);
1109 
1110 		/* For file based kexec, source pages are in kernel memory */
1111 		if (image->file_mode)
1112 			memcpy(ptr, kbuf, uchunk);
1113 		else
1114 			result = copy_from_user(ptr, buf, uchunk);
1115 		kunmap(page);
1116 		if (result) {
1117 			result = -EFAULT;
1118 			goto out;
1119 		}
1120 		ubytes -= uchunk;
1121 		maddr  += mchunk;
1122 		if (image->file_mode)
1123 			kbuf += mchunk;
1124 		else
1125 			buf += mchunk;
1126 		mbytes -= mchunk;
1127 	}
1128 out:
1129 	return result;
1130 }
1131 
1132 static int kimage_load_crash_segment(struct kimage *image,
1133 					struct kexec_segment *segment)
1134 {
1135 	/* For crash dumps kernels we simply copy the data from
1136 	 * user space to it's destination.
1137 	 * We do things a page at a time for the sake of kmap.
1138 	 */
1139 	unsigned long maddr;
1140 	size_t ubytes, mbytes;
1141 	int result;
1142 	unsigned char __user *buf = NULL;
1143 	unsigned char *kbuf = NULL;
1144 
1145 	result = 0;
1146 	if (image->file_mode)
1147 		kbuf = segment->kbuf;
1148 	else
1149 		buf = segment->buf;
1150 	ubytes = segment->bufsz;
1151 	mbytes = segment->memsz;
1152 	maddr = segment->mem;
1153 	while (mbytes) {
1154 		struct page *page;
1155 		char *ptr;
1156 		size_t uchunk, mchunk;
1157 
1158 		page = pfn_to_page(maddr >> PAGE_SHIFT);
1159 		if (!page) {
1160 			result  = -ENOMEM;
1161 			goto out;
1162 		}
1163 		ptr = kmap(page);
1164 		ptr += maddr & ~PAGE_MASK;
1165 		mchunk = min_t(size_t, mbytes,
1166 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1167 		uchunk = min(ubytes, mchunk);
1168 		if (mchunk > uchunk) {
1169 			/* Zero the trailing part of the page */
1170 			memset(ptr + uchunk, 0, mchunk - uchunk);
1171 		}
1172 
1173 		/* For file based kexec, source pages are in kernel memory */
1174 		if (image->file_mode)
1175 			memcpy(ptr, kbuf, uchunk);
1176 		else
1177 			result = copy_from_user(ptr, buf, uchunk);
1178 		kexec_flush_icache_page(page);
1179 		kunmap(page);
1180 		if (result) {
1181 			result = -EFAULT;
1182 			goto out;
1183 		}
1184 		ubytes -= uchunk;
1185 		maddr  += mchunk;
1186 		if (image->file_mode)
1187 			kbuf += mchunk;
1188 		else
1189 			buf += mchunk;
1190 		mbytes -= mchunk;
1191 	}
1192 out:
1193 	return result;
1194 }
1195 
1196 static int kimage_load_segment(struct kimage *image,
1197 				struct kexec_segment *segment)
1198 {
1199 	int result = -ENOMEM;
1200 
1201 	switch (image->type) {
1202 	case KEXEC_TYPE_DEFAULT:
1203 		result = kimage_load_normal_segment(image, segment);
1204 		break;
1205 	case KEXEC_TYPE_CRASH:
1206 		result = kimage_load_crash_segment(image, segment);
1207 		break;
1208 	}
1209 
1210 	return result;
1211 }
1212 
1213 /*
1214  * Exec Kernel system call: for obvious reasons only root may call it.
1215  *
1216  * This call breaks up into three pieces.
1217  * - A generic part which loads the new kernel from the current
1218  *   address space, and very carefully places the data in the
1219  *   allocated pages.
1220  *
1221  * - A generic part that interacts with the kernel and tells all of
1222  *   the devices to shut down.  Preventing on-going dmas, and placing
1223  *   the devices in a consistent state so a later kernel can
1224  *   reinitialize them.
1225  *
1226  * - A machine specific part that includes the syscall number
1227  *   and then copies the image to it's final destination.  And
1228  *   jumps into the image at entry.
1229  *
1230  * kexec does not sync, or unmount filesystems so if you need
1231  * that to happen you need to do that yourself.
1232  */
1233 struct kimage *kexec_image;
1234 struct kimage *kexec_crash_image;
1235 int kexec_load_disabled;
1236 
1237 static DEFINE_MUTEX(kexec_mutex);
1238 
1239 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1240 		struct kexec_segment __user *, segments, unsigned long, flags)
1241 {
1242 	struct kimage **dest_image, *image;
1243 	int result;
1244 
1245 	/* We only trust the superuser with rebooting the system. */
1246 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1247 		return -EPERM;
1248 
1249 	/*
1250 	 * Verify we have a legal set of flags
1251 	 * This leaves us room for future extensions.
1252 	 */
1253 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1254 		return -EINVAL;
1255 
1256 	/* Verify we are on the appropriate architecture */
1257 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1258 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1259 		return -EINVAL;
1260 
1261 	/* Put an artificial cap on the number
1262 	 * of segments passed to kexec_load.
1263 	 */
1264 	if (nr_segments > KEXEC_SEGMENT_MAX)
1265 		return -EINVAL;
1266 
1267 	image = NULL;
1268 	result = 0;
1269 
1270 	/* Because we write directly to the reserved memory
1271 	 * region when loading crash kernels we need a mutex here to
1272 	 * prevent multiple crash  kernels from attempting to load
1273 	 * simultaneously, and to prevent a crash kernel from loading
1274 	 * over the top of a in use crash kernel.
1275 	 *
1276 	 * KISS: always take the mutex.
1277 	 */
1278 	if (!mutex_trylock(&kexec_mutex))
1279 		return -EBUSY;
1280 
1281 	dest_image = &kexec_image;
1282 	if (flags & KEXEC_ON_CRASH)
1283 		dest_image = &kexec_crash_image;
1284 	if (nr_segments > 0) {
1285 		unsigned long i;
1286 
1287 		if (flags & KEXEC_ON_CRASH) {
1288 			/*
1289 			 * Loading another kernel to switch to if this one
1290 			 * crashes.  Free any current crash dump kernel before
1291 			 * we corrupt it.
1292 			 */
1293 
1294 			kimage_free(xchg(&kexec_crash_image, NULL));
1295 			result = kimage_alloc_init(&image, entry, nr_segments,
1296 						   segments, flags);
1297 			crash_map_reserved_pages();
1298 		} else {
1299 			/* Loading another kernel to reboot into. */
1300 
1301 			result = kimage_alloc_init(&image, entry, nr_segments,
1302 						   segments, flags);
1303 		}
1304 		if (result)
1305 			goto out;
1306 
1307 		if (flags & KEXEC_PRESERVE_CONTEXT)
1308 			image->preserve_context = 1;
1309 		result = machine_kexec_prepare(image);
1310 		if (result)
1311 			goto out;
1312 
1313 		for (i = 0; i < nr_segments; i++) {
1314 			result = kimage_load_segment(image, &image->segment[i]);
1315 			if (result)
1316 				goto out;
1317 		}
1318 		kimage_terminate(image);
1319 		if (flags & KEXEC_ON_CRASH)
1320 			crash_unmap_reserved_pages();
1321 	}
1322 	/* Install the new kernel, and  Uninstall the old */
1323 	image = xchg(dest_image, image);
1324 
1325 out:
1326 	mutex_unlock(&kexec_mutex);
1327 	kimage_free(image);
1328 
1329 	return result;
1330 }
1331 
1332 /*
1333  * Add and remove page tables for crashkernel memory
1334  *
1335  * Provide an empty default implementation here -- architecture
1336  * code may override this
1337  */
1338 void __weak crash_map_reserved_pages(void)
1339 {}
1340 
1341 void __weak crash_unmap_reserved_pages(void)
1342 {}
1343 
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1346 		       compat_ulong_t, nr_segments,
1347 		       struct compat_kexec_segment __user *, segments,
1348 		       compat_ulong_t, flags)
1349 {
1350 	struct compat_kexec_segment in;
1351 	struct kexec_segment out, __user *ksegments;
1352 	unsigned long i, result;
1353 
1354 	/* Don't allow clients that don't understand the native
1355 	 * architecture to do anything.
1356 	 */
1357 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1358 		return -EINVAL;
1359 
1360 	if (nr_segments > KEXEC_SEGMENT_MAX)
1361 		return -EINVAL;
1362 
1363 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1364 	for (i = 0; i < nr_segments; i++) {
1365 		result = copy_from_user(&in, &segments[i], sizeof(in));
1366 		if (result)
1367 			return -EFAULT;
1368 
1369 		out.buf   = compat_ptr(in.buf);
1370 		out.bufsz = in.bufsz;
1371 		out.mem   = in.mem;
1372 		out.memsz = in.memsz;
1373 
1374 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1375 		if (result)
1376 			return -EFAULT;
1377 	}
1378 
1379 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1380 }
1381 #endif
1382 
1383 #ifdef CONFIG_KEXEC_FILE
1384 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1385 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1386 		unsigned long, flags)
1387 {
1388 	int ret = 0, i;
1389 	struct kimage **dest_image, *image;
1390 
1391 	/* We only trust the superuser with rebooting the system. */
1392 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1393 		return -EPERM;
1394 
1395 	/* Make sure we have a legal set of flags */
1396 	if (flags != (flags & KEXEC_FILE_FLAGS))
1397 		return -EINVAL;
1398 
1399 	image = NULL;
1400 
1401 	if (!mutex_trylock(&kexec_mutex))
1402 		return -EBUSY;
1403 
1404 	dest_image = &kexec_image;
1405 	if (flags & KEXEC_FILE_ON_CRASH)
1406 		dest_image = &kexec_crash_image;
1407 
1408 	if (flags & KEXEC_FILE_UNLOAD)
1409 		goto exchange;
1410 
1411 	/*
1412 	 * In case of crash, new kernel gets loaded in reserved region. It is
1413 	 * same memory where old crash kernel might be loaded. Free any
1414 	 * current crash dump kernel before we corrupt it.
1415 	 */
1416 	if (flags & KEXEC_FILE_ON_CRASH)
1417 		kimage_free(xchg(&kexec_crash_image, NULL));
1418 
1419 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1420 				     cmdline_len, flags);
1421 	if (ret)
1422 		goto out;
1423 
1424 	ret = machine_kexec_prepare(image);
1425 	if (ret)
1426 		goto out;
1427 
1428 	ret = kexec_calculate_store_digests(image);
1429 	if (ret)
1430 		goto out;
1431 
1432 	for (i = 0; i < image->nr_segments; i++) {
1433 		struct kexec_segment *ksegment;
1434 
1435 		ksegment = &image->segment[i];
1436 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1437 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1438 			 ksegment->memsz);
1439 
1440 		ret = kimage_load_segment(image, &image->segment[i]);
1441 		if (ret)
1442 			goto out;
1443 	}
1444 
1445 	kimage_terminate(image);
1446 
1447 	/*
1448 	 * Free up any temporary buffers allocated which are not needed
1449 	 * after image has been loaded
1450 	 */
1451 	kimage_file_post_load_cleanup(image);
1452 exchange:
1453 	image = xchg(dest_image, image);
1454 out:
1455 	mutex_unlock(&kexec_mutex);
1456 	kimage_free(image);
1457 	return ret;
1458 }
1459 
1460 #endif /* CONFIG_KEXEC_FILE */
1461 
1462 void crash_kexec(struct pt_regs *regs)
1463 {
1464 	/* Take the kexec_mutex here to prevent sys_kexec_load
1465 	 * running on one cpu from replacing the crash kernel
1466 	 * we are using after a panic on a different cpu.
1467 	 *
1468 	 * If the crash kernel was not located in a fixed area
1469 	 * of memory the xchg(&kexec_crash_image) would be
1470 	 * sufficient.  But since I reuse the memory...
1471 	 */
1472 	if (mutex_trylock(&kexec_mutex)) {
1473 		if (kexec_crash_image) {
1474 			struct pt_regs fixed_regs;
1475 
1476 			crash_setup_regs(&fixed_regs, regs);
1477 			crash_save_vmcoreinfo();
1478 			machine_crash_shutdown(&fixed_regs);
1479 			machine_kexec(kexec_crash_image);
1480 		}
1481 		mutex_unlock(&kexec_mutex);
1482 	}
1483 }
1484 
1485 size_t crash_get_memory_size(void)
1486 {
1487 	size_t size = 0;
1488 	mutex_lock(&kexec_mutex);
1489 	if (crashk_res.end != crashk_res.start)
1490 		size = resource_size(&crashk_res);
1491 	mutex_unlock(&kexec_mutex);
1492 	return size;
1493 }
1494 
1495 void __weak crash_free_reserved_phys_range(unsigned long begin,
1496 					   unsigned long end)
1497 {
1498 	unsigned long addr;
1499 
1500 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1501 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1502 }
1503 
1504 int crash_shrink_memory(unsigned long new_size)
1505 {
1506 	int ret = 0;
1507 	unsigned long start, end;
1508 	unsigned long old_size;
1509 	struct resource *ram_res;
1510 
1511 	mutex_lock(&kexec_mutex);
1512 
1513 	if (kexec_crash_image) {
1514 		ret = -ENOENT;
1515 		goto unlock;
1516 	}
1517 	start = crashk_res.start;
1518 	end = crashk_res.end;
1519 	old_size = (end == 0) ? 0 : end - start + 1;
1520 	if (new_size >= old_size) {
1521 		ret = (new_size == old_size) ? 0 : -EINVAL;
1522 		goto unlock;
1523 	}
1524 
1525 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1526 	if (!ram_res) {
1527 		ret = -ENOMEM;
1528 		goto unlock;
1529 	}
1530 
1531 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1532 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1533 
1534 	crash_map_reserved_pages();
1535 	crash_free_reserved_phys_range(end, crashk_res.end);
1536 
1537 	if ((start == end) && (crashk_res.parent != NULL))
1538 		release_resource(&crashk_res);
1539 
1540 	ram_res->start = end;
1541 	ram_res->end = crashk_res.end;
1542 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1543 	ram_res->name = "System RAM";
1544 
1545 	crashk_res.end = end - 1;
1546 
1547 	insert_resource(&iomem_resource, ram_res);
1548 	crash_unmap_reserved_pages();
1549 
1550 unlock:
1551 	mutex_unlock(&kexec_mutex);
1552 	return ret;
1553 }
1554 
1555 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1556 			    size_t data_len)
1557 {
1558 	struct elf_note note;
1559 
1560 	note.n_namesz = strlen(name) + 1;
1561 	note.n_descsz = data_len;
1562 	note.n_type   = type;
1563 	memcpy(buf, &note, sizeof(note));
1564 	buf += (sizeof(note) + 3)/4;
1565 	memcpy(buf, name, note.n_namesz);
1566 	buf += (note.n_namesz + 3)/4;
1567 	memcpy(buf, data, note.n_descsz);
1568 	buf += (note.n_descsz + 3)/4;
1569 
1570 	return buf;
1571 }
1572 
1573 static void final_note(u32 *buf)
1574 {
1575 	struct elf_note note;
1576 
1577 	note.n_namesz = 0;
1578 	note.n_descsz = 0;
1579 	note.n_type   = 0;
1580 	memcpy(buf, &note, sizeof(note));
1581 }
1582 
1583 void crash_save_cpu(struct pt_regs *regs, int cpu)
1584 {
1585 	struct elf_prstatus prstatus;
1586 	u32 *buf;
1587 
1588 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1589 		return;
1590 
1591 	/* Using ELF notes here is opportunistic.
1592 	 * I need a well defined structure format
1593 	 * for the data I pass, and I need tags
1594 	 * on the data to indicate what information I have
1595 	 * squirrelled away.  ELF notes happen to provide
1596 	 * all of that, so there is no need to invent something new.
1597 	 */
1598 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1599 	if (!buf)
1600 		return;
1601 	memset(&prstatus, 0, sizeof(prstatus));
1602 	prstatus.pr_pid = current->pid;
1603 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1604 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1605 			      &prstatus, sizeof(prstatus));
1606 	final_note(buf);
1607 }
1608 
1609 static int __init crash_notes_memory_init(void)
1610 {
1611 	/* Allocate memory for saving cpu registers. */
1612 	crash_notes = alloc_percpu(note_buf_t);
1613 	if (!crash_notes) {
1614 		pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1615 		return -ENOMEM;
1616 	}
1617 	return 0;
1618 }
1619 subsys_initcall(crash_notes_memory_init);
1620 
1621 
1622 /*
1623  * parsing the "crashkernel" commandline
1624  *
1625  * this code is intended to be called from architecture specific code
1626  */
1627 
1628 
1629 /*
1630  * This function parses command lines in the format
1631  *
1632  *   crashkernel=ramsize-range:size[,...][@offset]
1633  *
1634  * The function returns 0 on success and -EINVAL on failure.
1635  */
1636 static int __init parse_crashkernel_mem(char *cmdline,
1637 					unsigned long long system_ram,
1638 					unsigned long long *crash_size,
1639 					unsigned long long *crash_base)
1640 {
1641 	char *cur = cmdline, *tmp;
1642 
1643 	/* for each entry of the comma-separated list */
1644 	do {
1645 		unsigned long long start, end = ULLONG_MAX, size;
1646 
1647 		/* get the start of the range */
1648 		start = memparse(cur, &tmp);
1649 		if (cur == tmp) {
1650 			pr_warn("crashkernel: Memory value expected\n");
1651 			return -EINVAL;
1652 		}
1653 		cur = tmp;
1654 		if (*cur != '-') {
1655 			pr_warn("crashkernel: '-' expected\n");
1656 			return -EINVAL;
1657 		}
1658 		cur++;
1659 
1660 		/* if no ':' is here, than we read the end */
1661 		if (*cur != ':') {
1662 			end = memparse(cur, &tmp);
1663 			if (cur == tmp) {
1664 				pr_warn("crashkernel: Memory value expected\n");
1665 				return -EINVAL;
1666 			}
1667 			cur = tmp;
1668 			if (end <= start) {
1669 				pr_warn("crashkernel: end <= start\n");
1670 				return -EINVAL;
1671 			}
1672 		}
1673 
1674 		if (*cur != ':') {
1675 			pr_warn("crashkernel: ':' expected\n");
1676 			return -EINVAL;
1677 		}
1678 		cur++;
1679 
1680 		size = memparse(cur, &tmp);
1681 		if (cur == tmp) {
1682 			pr_warn("Memory value expected\n");
1683 			return -EINVAL;
1684 		}
1685 		cur = tmp;
1686 		if (size >= system_ram) {
1687 			pr_warn("crashkernel: invalid size\n");
1688 			return -EINVAL;
1689 		}
1690 
1691 		/* match ? */
1692 		if (system_ram >= start && system_ram < end) {
1693 			*crash_size = size;
1694 			break;
1695 		}
1696 	} while (*cur++ == ',');
1697 
1698 	if (*crash_size > 0) {
1699 		while (*cur && *cur != ' ' && *cur != '@')
1700 			cur++;
1701 		if (*cur == '@') {
1702 			cur++;
1703 			*crash_base = memparse(cur, &tmp);
1704 			if (cur == tmp) {
1705 				pr_warn("Memory value expected after '@'\n");
1706 				return -EINVAL;
1707 			}
1708 		}
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 /*
1715  * That function parses "simple" (old) crashkernel command lines like
1716  *
1717  *	crashkernel=size[@offset]
1718  *
1719  * It returns 0 on success and -EINVAL on failure.
1720  */
1721 static int __init parse_crashkernel_simple(char *cmdline,
1722 					   unsigned long long *crash_size,
1723 					   unsigned long long *crash_base)
1724 {
1725 	char *cur = cmdline;
1726 
1727 	*crash_size = memparse(cmdline, &cur);
1728 	if (cmdline == cur) {
1729 		pr_warn("crashkernel: memory value expected\n");
1730 		return -EINVAL;
1731 	}
1732 
1733 	if (*cur == '@')
1734 		*crash_base = memparse(cur+1, &cur);
1735 	else if (*cur != ' ' && *cur != '\0') {
1736 		pr_warn("crashkernel: unrecognized char\n");
1737 		return -EINVAL;
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 #define SUFFIX_HIGH 0
1744 #define SUFFIX_LOW  1
1745 #define SUFFIX_NULL 2
1746 static __initdata char *suffix_tbl[] = {
1747 	[SUFFIX_HIGH] = ",high",
1748 	[SUFFIX_LOW]  = ",low",
1749 	[SUFFIX_NULL] = NULL,
1750 };
1751 
1752 /*
1753  * That function parses "suffix"  crashkernel command lines like
1754  *
1755  *	crashkernel=size,[high|low]
1756  *
1757  * It returns 0 on success and -EINVAL on failure.
1758  */
1759 static int __init parse_crashkernel_suffix(char *cmdline,
1760 					   unsigned long long	*crash_size,
1761 					   const char *suffix)
1762 {
1763 	char *cur = cmdline;
1764 
1765 	*crash_size = memparse(cmdline, &cur);
1766 	if (cmdline == cur) {
1767 		pr_warn("crashkernel: memory value expected\n");
1768 		return -EINVAL;
1769 	}
1770 
1771 	/* check with suffix */
1772 	if (strncmp(cur, suffix, strlen(suffix))) {
1773 		pr_warn("crashkernel: unrecognized char\n");
1774 		return -EINVAL;
1775 	}
1776 	cur += strlen(suffix);
1777 	if (*cur != ' ' && *cur != '\0') {
1778 		pr_warn("crashkernel: unrecognized char\n");
1779 		return -EINVAL;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 static __init char *get_last_crashkernel(char *cmdline,
1786 			     const char *name,
1787 			     const char *suffix)
1788 {
1789 	char *p = cmdline, *ck_cmdline = NULL;
1790 
1791 	/* find crashkernel and use the last one if there are more */
1792 	p = strstr(p, name);
1793 	while (p) {
1794 		char *end_p = strchr(p, ' ');
1795 		char *q;
1796 
1797 		if (!end_p)
1798 			end_p = p + strlen(p);
1799 
1800 		if (!suffix) {
1801 			int i;
1802 
1803 			/* skip the one with any known suffix */
1804 			for (i = 0; suffix_tbl[i]; i++) {
1805 				q = end_p - strlen(suffix_tbl[i]);
1806 				if (!strncmp(q, suffix_tbl[i],
1807 					     strlen(suffix_tbl[i])))
1808 					goto next;
1809 			}
1810 			ck_cmdline = p;
1811 		} else {
1812 			q = end_p - strlen(suffix);
1813 			if (!strncmp(q, suffix, strlen(suffix)))
1814 				ck_cmdline = p;
1815 		}
1816 next:
1817 		p = strstr(p+1, name);
1818 	}
1819 
1820 	if (!ck_cmdline)
1821 		return NULL;
1822 
1823 	return ck_cmdline;
1824 }
1825 
1826 static int __init __parse_crashkernel(char *cmdline,
1827 			     unsigned long long system_ram,
1828 			     unsigned long long *crash_size,
1829 			     unsigned long long *crash_base,
1830 			     const char *name,
1831 			     const char *suffix)
1832 {
1833 	char	*first_colon, *first_space;
1834 	char	*ck_cmdline;
1835 
1836 	BUG_ON(!crash_size || !crash_base);
1837 	*crash_size = 0;
1838 	*crash_base = 0;
1839 
1840 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1841 
1842 	if (!ck_cmdline)
1843 		return -EINVAL;
1844 
1845 	ck_cmdline += strlen(name);
1846 
1847 	if (suffix)
1848 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1849 				suffix);
1850 	/*
1851 	 * if the commandline contains a ':', then that's the extended
1852 	 * syntax -- if not, it must be the classic syntax
1853 	 */
1854 	first_colon = strchr(ck_cmdline, ':');
1855 	first_space = strchr(ck_cmdline, ' ');
1856 	if (first_colon && (!first_space || first_colon < first_space))
1857 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1858 				crash_size, crash_base);
1859 
1860 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1861 }
1862 
1863 /*
1864  * That function is the entry point for command line parsing and should be
1865  * called from the arch-specific code.
1866  */
1867 int __init parse_crashkernel(char *cmdline,
1868 			     unsigned long long system_ram,
1869 			     unsigned long long *crash_size,
1870 			     unsigned long long *crash_base)
1871 {
1872 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1873 					"crashkernel=", NULL);
1874 }
1875 
1876 int __init parse_crashkernel_high(char *cmdline,
1877 			     unsigned long long system_ram,
1878 			     unsigned long long *crash_size,
1879 			     unsigned long long *crash_base)
1880 {
1881 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1882 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1883 }
1884 
1885 int __init parse_crashkernel_low(char *cmdline,
1886 			     unsigned long long system_ram,
1887 			     unsigned long long *crash_size,
1888 			     unsigned long long *crash_base)
1889 {
1890 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1891 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1892 }
1893 
1894 static void update_vmcoreinfo_note(void)
1895 {
1896 	u32 *buf = vmcoreinfo_note;
1897 
1898 	if (!vmcoreinfo_size)
1899 		return;
1900 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1901 			      vmcoreinfo_size);
1902 	final_note(buf);
1903 }
1904 
1905 void crash_save_vmcoreinfo(void)
1906 {
1907 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1908 	update_vmcoreinfo_note();
1909 }
1910 
1911 void vmcoreinfo_append_str(const char *fmt, ...)
1912 {
1913 	va_list args;
1914 	char buf[0x50];
1915 	size_t r;
1916 
1917 	va_start(args, fmt);
1918 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1919 	va_end(args);
1920 
1921 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1922 
1923 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1924 
1925 	vmcoreinfo_size += r;
1926 }
1927 
1928 /*
1929  * provide an empty default implementation here -- architecture
1930  * code may override this
1931  */
1932 void __weak arch_crash_save_vmcoreinfo(void)
1933 {}
1934 
1935 unsigned long __weak paddr_vmcoreinfo_note(void)
1936 {
1937 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1938 }
1939 
1940 static int __init crash_save_vmcoreinfo_init(void)
1941 {
1942 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1943 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1944 
1945 	VMCOREINFO_SYMBOL(init_uts_ns);
1946 	VMCOREINFO_SYMBOL(node_online_map);
1947 #ifdef CONFIG_MMU
1948 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1949 #endif
1950 	VMCOREINFO_SYMBOL(_stext);
1951 	VMCOREINFO_SYMBOL(vmap_area_list);
1952 
1953 #ifndef CONFIG_NEED_MULTIPLE_NODES
1954 	VMCOREINFO_SYMBOL(mem_map);
1955 	VMCOREINFO_SYMBOL(contig_page_data);
1956 #endif
1957 #ifdef CONFIG_SPARSEMEM
1958 	VMCOREINFO_SYMBOL(mem_section);
1959 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1960 	VMCOREINFO_STRUCT_SIZE(mem_section);
1961 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1962 #endif
1963 	VMCOREINFO_STRUCT_SIZE(page);
1964 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1965 	VMCOREINFO_STRUCT_SIZE(zone);
1966 	VMCOREINFO_STRUCT_SIZE(free_area);
1967 	VMCOREINFO_STRUCT_SIZE(list_head);
1968 	VMCOREINFO_SIZE(nodemask_t);
1969 	VMCOREINFO_OFFSET(page, flags);
1970 	VMCOREINFO_OFFSET(page, _count);
1971 	VMCOREINFO_OFFSET(page, mapping);
1972 	VMCOREINFO_OFFSET(page, lru);
1973 	VMCOREINFO_OFFSET(page, _mapcount);
1974 	VMCOREINFO_OFFSET(page, private);
1975 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1976 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1977 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1978 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1979 #endif
1980 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1981 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1982 	VMCOREINFO_OFFSET(pglist_data, node_id);
1983 	VMCOREINFO_OFFSET(zone, free_area);
1984 	VMCOREINFO_OFFSET(zone, vm_stat);
1985 	VMCOREINFO_OFFSET(zone, spanned_pages);
1986 	VMCOREINFO_OFFSET(free_area, free_list);
1987 	VMCOREINFO_OFFSET(list_head, next);
1988 	VMCOREINFO_OFFSET(list_head, prev);
1989 	VMCOREINFO_OFFSET(vmap_area, va_start);
1990 	VMCOREINFO_OFFSET(vmap_area, list);
1991 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1992 	log_buf_kexec_setup();
1993 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1994 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1995 	VMCOREINFO_NUMBER(PG_lru);
1996 	VMCOREINFO_NUMBER(PG_private);
1997 	VMCOREINFO_NUMBER(PG_swapcache);
1998 	VMCOREINFO_NUMBER(PG_slab);
1999 #ifdef CONFIG_MEMORY_FAILURE
2000 	VMCOREINFO_NUMBER(PG_hwpoison);
2001 #endif
2002 	VMCOREINFO_NUMBER(PG_head_mask);
2003 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2004 #ifdef CONFIG_HUGETLBFS
2005 	VMCOREINFO_SYMBOL(free_huge_page);
2006 #endif
2007 
2008 	arch_crash_save_vmcoreinfo();
2009 	update_vmcoreinfo_note();
2010 
2011 	return 0;
2012 }
2013 
2014 subsys_initcall(crash_save_vmcoreinfo_init);
2015 
2016 #ifdef CONFIG_KEXEC_FILE
2017 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2018 				    struct kexec_buf *kbuf)
2019 {
2020 	struct kimage *image = kbuf->image;
2021 	unsigned long temp_start, temp_end;
2022 
2023 	temp_end = min(end, kbuf->buf_max);
2024 	temp_start = temp_end - kbuf->memsz;
2025 
2026 	do {
2027 		/* align down start */
2028 		temp_start = temp_start & (~(kbuf->buf_align - 1));
2029 
2030 		if (temp_start < start || temp_start < kbuf->buf_min)
2031 			return 0;
2032 
2033 		temp_end = temp_start + kbuf->memsz - 1;
2034 
2035 		/*
2036 		 * Make sure this does not conflict with any of existing
2037 		 * segments
2038 		 */
2039 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2040 			temp_start = temp_start - PAGE_SIZE;
2041 			continue;
2042 		}
2043 
2044 		/* We found a suitable memory range */
2045 		break;
2046 	} while (1);
2047 
2048 	/* If we are here, we found a suitable memory range */
2049 	kbuf->mem = temp_start;
2050 
2051 	/* Success, stop navigating through remaining System RAM ranges */
2052 	return 1;
2053 }
2054 
2055 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2056 				     struct kexec_buf *kbuf)
2057 {
2058 	struct kimage *image = kbuf->image;
2059 	unsigned long temp_start, temp_end;
2060 
2061 	temp_start = max(start, kbuf->buf_min);
2062 
2063 	do {
2064 		temp_start = ALIGN(temp_start, kbuf->buf_align);
2065 		temp_end = temp_start + kbuf->memsz - 1;
2066 
2067 		if (temp_end > end || temp_end > kbuf->buf_max)
2068 			return 0;
2069 		/*
2070 		 * Make sure this does not conflict with any of existing
2071 		 * segments
2072 		 */
2073 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2074 			temp_start = temp_start + PAGE_SIZE;
2075 			continue;
2076 		}
2077 
2078 		/* We found a suitable memory range */
2079 		break;
2080 	} while (1);
2081 
2082 	/* If we are here, we found a suitable memory range */
2083 	kbuf->mem = temp_start;
2084 
2085 	/* Success, stop navigating through remaining System RAM ranges */
2086 	return 1;
2087 }
2088 
2089 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2090 {
2091 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2092 	unsigned long sz = end - start + 1;
2093 
2094 	/* Returning 0 will take to next memory range */
2095 	if (sz < kbuf->memsz)
2096 		return 0;
2097 
2098 	if (end < kbuf->buf_min || start > kbuf->buf_max)
2099 		return 0;
2100 
2101 	/*
2102 	 * Allocate memory top down with-in ram range. Otherwise bottom up
2103 	 * allocation.
2104 	 */
2105 	if (kbuf->top_down)
2106 		return locate_mem_hole_top_down(start, end, kbuf);
2107 	return locate_mem_hole_bottom_up(start, end, kbuf);
2108 }
2109 
2110 /*
2111  * Helper function for placing a buffer in a kexec segment. This assumes
2112  * that kexec_mutex is held.
2113  */
2114 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2115 		     unsigned long memsz, unsigned long buf_align,
2116 		     unsigned long buf_min, unsigned long buf_max,
2117 		     bool top_down, unsigned long *load_addr)
2118 {
2119 
2120 	struct kexec_segment *ksegment;
2121 	struct kexec_buf buf, *kbuf;
2122 	int ret;
2123 
2124 	/* Currently adding segment this way is allowed only in file mode */
2125 	if (!image->file_mode)
2126 		return -EINVAL;
2127 
2128 	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2129 		return -EINVAL;
2130 
2131 	/*
2132 	 * Make sure we are not trying to add buffer after allocating
2133 	 * control pages. All segments need to be placed first before
2134 	 * any control pages are allocated. As control page allocation
2135 	 * logic goes through list of segments to make sure there are
2136 	 * no destination overlaps.
2137 	 */
2138 	if (!list_empty(&image->control_pages)) {
2139 		WARN_ON(1);
2140 		return -EINVAL;
2141 	}
2142 
2143 	memset(&buf, 0, sizeof(struct kexec_buf));
2144 	kbuf = &buf;
2145 	kbuf->image = image;
2146 	kbuf->buffer = buffer;
2147 	kbuf->bufsz = bufsz;
2148 
2149 	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2150 	kbuf->buf_align = max(buf_align, PAGE_SIZE);
2151 	kbuf->buf_min = buf_min;
2152 	kbuf->buf_max = buf_max;
2153 	kbuf->top_down = top_down;
2154 
2155 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
2156 	if (image->type == KEXEC_TYPE_CRASH)
2157 		ret = walk_iomem_res("Crash kernel",
2158 				     IORESOURCE_MEM | IORESOURCE_BUSY,
2159 				     crashk_res.start, crashk_res.end, kbuf,
2160 				     locate_mem_hole_callback);
2161 	else
2162 		ret = walk_system_ram_res(0, -1, kbuf,
2163 					  locate_mem_hole_callback);
2164 	if (ret != 1) {
2165 		/* A suitable memory range could not be found for buffer */
2166 		return -EADDRNOTAVAIL;
2167 	}
2168 
2169 	/* Found a suitable memory range */
2170 	ksegment = &image->segment[image->nr_segments];
2171 	ksegment->kbuf = kbuf->buffer;
2172 	ksegment->bufsz = kbuf->bufsz;
2173 	ksegment->mem = kbuf->mem;
2174 	ksegment->memsz = kbuf->memsz;
2175 	image->nr_segments++;
2176 	*load_addr = ksegment->mem;
2177 	return 0;
2178 }
2179 
2180 /* Calculate and store the digest of segments */
2181 static int kexec_calculate_store_digests(struct kimage *image)
2182 {
2183 	struct crypto_shash *tfm;
2184 	struct shash_desc *desc;
2185 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2186 	size_t desc_size, nullsz;
2187 	char *digest;
2188 	void *zero_buf;
2189 	struct kexec_sha_region *sha_regions;
2190 	struct purgatory_info *pi = &image->purgatory_info;
2191 
2192 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2193 	zero_buf_sz = PAGE_SIZE;
2194 
2195 	tfm = crypto_alloc_shash("sha256", 0, 0);
2196 	if (IS_ERR(tfm)) {
2197 		ret = PTR_ERR(tfm);
2198 		goto out;
2199 	}
2200 
2201 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2202 	desc = kzalloc(desc_size, GFP_KERNEL);
2203 	if (!desc) {
2204 		ret = -ENOMEM;
2205 		goto out_free_tfm;
2206 	}
2207 
2208 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2209 	sha_regions = vzalloc(sha_region_sz);
2210 	if (!sha_regions)
2211 		goto out_free_desc;
2212 
2213 	desc->tfm   = tfm;
2214 	desc->flags = 0;
2215 
2216 	ret = crypto_shash_init(desc);
2217 	if (ret < 0)
2218 		goto out_free_sha_regions;
2219 
2220 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2221 	if (!digest) {
2222 		ret = -ENOMEM;
2223 		goto out_free_sha_regions;
2224 	}
2225 
2226 	for (j = i = 0; i < image->nr_segments; i++) {
2227 		struct kexec_segment *ksegment;
2228 
2229 		ksegment = &image->segment[i];
2230 		/*
2231 		 * Skip purgatory as it will be modified once we put digest
2232 		 * info in purgatory.
2233 		 */
2234 		if (ksegment->kbuf == pi->purgatory_buf)
2235 			continue;
2236 
2237 		ret = crypto_shash_update(desc, ksegment->kbuf,
2238 					  ksegment->bufsz);
2239 		if (ret)
2240 			break;
2241 
2242 		/*
2243 		 * Assume rest of the buffer is filled with zero and
2244 		 * update digest accordingly.
2245 		 */
2246 		nullsz = ksegment->memsz - ksegment->bufsz;
2247 		while (nullsz) {
2248 			unsigned long bytes = nullsz;
2249 
2250 			if (bytes > zero_buf_sz)
2251 				bytes = zero_buf_sz;
2252 			ret = crypto_shash_update(desc, zero_buf, bytes);
2253 			if (ret)
2254 				break;
2255 			nullsz -= bytes;
2256 		}
2257 
2258 		if (ret)
2259 			break;
2260 
2261 		sha_regions[j].start = ksegment->mem;
2262 		sha_regions[j].len = ksegment->memsz;
2263 		j++;
2264 	}
2265 
2266 	if (!ret) {
2267 		ret = crypto_shash_final(desc, digest);
2268 		if (ret)
2269 			goto out_free_digest;
2270 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2271 						sha_regions, sha_region_sz, 0);
2272 		if (ret)
2273 			goto out_free_digest;
2274 
2275 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2276 						digest, SHA256_DIGEST_SIZE, 0);
2277 		if (ret)
2278 			goto out_free_digest;
2279 	}
2280 
2281 out_free_digest:
2282 	kfree(digest);
2283 out_free_sha_regions:
2284 	vfree(sha_regions);
2285 out_free_desc:
2286 	kfree(desc);
2287 out_free_tfm:
2288 	kfree(tfm);
2289 out:
2290 	return ret;
2291 }
2292 
2293 /* Actually load purgatory. Lot of code taken from kexec-tools */
2294 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2295 				  unsigned long max, int top_down)
2296 {
2297 	struct purgatory_info *pi = &image->purgatory_info;
2298 	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2299 	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2300 	unsigned char *buf_addr, *src;
2301 	int i, ret = 0, entry_sidx = -1;
2302 	const Elf_Shdr *sechdrs_c;
2303 	Elf_Shdr *sechdrs = NULL;
2304 	void *purgatory_buf = NULL;
2305 
2306 	/*
2307 	 * sechdrs_c points to section headers in purgatory and are read
2308 	 * only. No modifications allowed.
2309 	 */
2310 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2311 
2312 	/*
2313 	 * We can not modify sechdrs_c[] and its fields. It is read only.
2314 	 * Copy it over to a local copy where one can store some temporary
2315 	 * data and free it at the end. We need to modify ->sh_addr and
2316 	 * ->sh_offset fields to keep track of permanent and temporary
2317 	 * locations of sections.
2318 	 */
2319 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2320 	if (!sechdrs)
2321 		return -ENOMEM;
2322 
2323 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2324 
2325 	/*
2326 	 * We seem to have multiple copies of sections. First copy is which
2327 	 * is embedded in kernel in read only section. Some of these sections
2328 	 * will be copied to a temporary buffer and relocated. And these
2329 	 * sections will finally be copied to their final destination at
2330 	 * segment load time.
2331 	 *
2332 	 * Use ->sh_offset to reflect section address in memory. It will
2333 	 * point to original read only copy if section is not allocatable.
2334 	 * Otherwise it will point to temporary copy which will be relocated.
2335 	 *
2336 	 * Use ->sh_addr to contain final address of the section where it
2337 	 * will go during execution time.
2338 	 */
2339 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2340 		if (sechdrs[i].sh_type == SHT_NOBITS)
2341 			continue;
2342 
2343 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2344 						sechdrs[i].sh_offset;
2345 	}
2346 
2347 	/*
2348 	 * Identify entry point section and make entry relative to section
2349 	 * start.
2350 	 */
2351 	entry = pi->ehdr->e_entry;
2352 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2353 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2354 			continue;
2355 
2356 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2357 			continue;
2358 
2359 		/* Make entry section relative */
2360 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2361 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2362 		     pi->ehdr->e_entry)) {
2363 			entry_sidx = i;
2364 			entry -= sechdrs[i].sh_addr;
2365 			break;
2366 		}
2367 	}
2368 
2369 	/* Determine how much memory is needed to load relocatable object. */
2370 	buf_align = 1;
2371 	bss_align = 1;
2372 	buf_sz = 0;
2373 	bss_sz = 0;
2374 
2375 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2376 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2377 			continue;
2378 
2379 		align = sechdrs[i].sh_addralign;
2380 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2381 			if (buf_align < align)
2382 				buf_align = align;
2383 			buf_sz = ALIGN(buf_sz, align);
2384 			buf_sz += sechdrs[i].sh_size;
2385 		} else {
2386 			/* bss section */
2387 			if (bss_align < align)
2388 				bss_align = align;
2389 			bss_sz = ALIGN(bss_sz, align);
2390 			bss_sz += sechdrs[i].sh_size;
2391 		}
2392 	}
2393 
2394 	/* Determine the bss padding required to align bss properly */
2395 	bss_pad = 0;
2396 	if (buf_sz & (bss_align - 1))
2397 		bss_pad = bss_align - (buf_sz & (bss_align - 1));
2398 
2399 	memsz = buf_sz + bss_pad + bss_sz;
2400 
2401 	/* Allocate buffer for purgatory */
2402 	purgatory_buf = vzalloc(buf_sz);
2403 	if (!purgatory_buf) {
2404 		ret = -ENOMEM;
2405 		goto out;
2406 	}
2407 
2408 	if (buf_align < bss_align)
2409 		buf_align = bss_align;
2410 
2411 	/* Add buffer to segment list */
2412 	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2413 				buf_align, min, max, top_down,
2414 				&pi->purgatory_load_addr);
2415 	if (ret)
2416 		goto out;
2417 
2418 	/* Load SHF_ALLOC sections */
2419 	buf_addr = purgatory_buf;
2420 	load_addr = curr_load_addr = pi->purgatory_load_addr;
2421 	bss_addr = load_addr + buf_sz + bss_pad;
2422 
2423 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2424 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2425 			continue;
2426 
2427 		align = sechdrs[i].sh_addralign;
2428 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2429 			curr_load_addr = ALIGN(curr_load_addr, align);
2430 			offset = curr_load_addr - load_addr;
2431 			/* We already modifed ->sh_offset to keep src addr */
2432 			src = (char *) sechdrs[i].sh_offset;
2433 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2434 
2435 			/* Store load address and source address of section */
2436 			sechdrs[i].sh_addr = curr_load_addr;
2437 
2438 			/*
2439 			 * This section got copied to temporary buffer. Update
2440 			 * ->sh_offset accordingly.
2441 			 */
2442 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2443 
2444 			/* Advance to the next address */
2445 			curr_load_addr += sechdrs[i].sh_size;
2446 		} else {
2447 			bss_addr = ALIGN(bss_addr, align);
2448 			sechdrs[i].sh_addr = bss_addr;
2449 			bss_addr += sechdrs[i].sh_size;
2450 		}
2451 	}
2452 
2453 	/* Update entry point based on load address of text section */
2454 	if (entry_sidx >= 0)
2455 		entry += sechdrs[entry_sidx].sh_addr;
2456 
2457 	/* Make kernel jump to purgatory after shutdown */
2458 	image->start = entry;
2459 
2460 	/* Used later to get/set symbol values */
2461 	pi->sechdrs = sechdrs;
2462 
2463 	/*
2464 	 * Used later to identify which section is purgatory and skip it
2465 	 * from checksumming.
2466 	 */
2467 	pi->purgatory_buf = purgatory_buf;
2468 	return ret;
2469 out:
2470 	vfree(sechdrs);
2471 	vfree(purgatory_buf);
2472 	return ret;
2473 }
2474 
2475 static int kexec_apply_relocations(struct kimage *image)
2476 {
2477 	int i, ret;
2478 	struct purgatory_info *pi = &image->purgatory_info;
2479 	Elf_Shdr *sechdrs = pi->sechdrs;
2480 
2481 	/* Apply relocations */
2482 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2483 		Elf_Shdr *section, *symtab;
2484 
2485 		if (sechdrs[i].sh_type != SHT_RELA &&
2486 		    sechdrs[i].sh_type != SHT_REL)
2487 			continue;
2488 
2489 		/*
2490 		 * For section of type SHT_RELA/SHT_REL,
2491 		 * ->sh_link contains section header index of associated
2492 		 * symbol table. And ->sh_info contains section header
2493 		 * index of section to which relocations apply.
2494 		 */
2495 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2496 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2497 			return -ENOEXEC;
2498 
2499 		section = &sechdrs[sechdrs[i].sh_info];
2500 		symtab = &sechdrs[sechdrs[i].sh_link];
2501 
2502 		if (!(section->sh_flags & SHF_ALLOC))
2503 			continue;
2504 
2505 		/*
2506 		 * symtab->sh_link contain section header index of associated
2507 		 * string table.
2508 		 */
2509 		if (symtab->sh_link >= pi->ehdr->e_shnum)
2510 			/* Invalid section number? */
2511 			continue;
2512 
2513 		/*
2514 		 * Respective architecture needs to provide support for applying
2515 		 * relocations of type SHT_RELA/SHT_REL.
2516 		 */
2517 		if (sechdrs[i].sh_type == SHT_RELA)
2518 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
2519 							       sechdrs, i);
2520 		else if (sechdrs[i].sh_type == SHT_REL)
2521 			ret = arch_kexec_apply_relocations(pi->ehdr,
2522 							   sechdrs, i);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 /* Load relocatable purgatory object and relocate it appropriately */
2531 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2532 			 unsigned long max, int top_down,
2533 			 unsigned long *load_addr)
2534 {
2535 	struct purgatory_info *pi = &image->purgatory_info;
2536 	int ret;
2537 
2538 	if (kexec_purgatory_size <= 0)
2539 		return -EINVAL;
2540 
2541 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2542 		return -ENOEXEC;
2543 
2544 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2545 
2546 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2547 	    || pi->ehdr->e_type != ET_REL
2548 	    || !elf_check_arch(pi->ehdr)
2549 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2550 		return -ENOEXEC;
2551 
2552 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
2553 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2554 	    kexec_purgatory_size - pi->ehdr->e_shoff))
2555 		return -ENOEXEC;
2556 
2557 	ret = __kexec_load_purgatory(image, min, max, top_down);
2558 	if (ret)
2559 		return ret;
2560 
2561 	ret = kexec_apply_relocations(image);
2562 	if (ret)
2563 		goto out;
2564 
2565 	*load_addr = pi->purgatory_load_addr;
2566 	return 0;
2567 out:
2568 	vfree(pi->sechdrs);
2569 	vfree(pi->purgatory_buf);
2570 	return ret;
2571 }
2572 
2573 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2574 					    const char *name)
2575 {
2576 	Elf_Sym *syms;
2577 	Elf_Shdr *sechdrs;
2578 	Elf_Ehdr *ehdr;
2579 	int i, k;
2580 	const char *strtab;
2581 
2582 	if (!pi->sechdrs || !pi->ehdr)
2583 		return NULL;
2584 
2585 	sechdrs = pi->sechdrs;
2586 	ehdr = pi->ehdr;
2587 
2588 	for (i = 0; i < ehdr->e_shnum; i++) {
2589 		if (sechdrs[i].sh_type != SHT_SYMTAB)
2590 			continue;
2591 
2592 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
2593 			/* Invalid strtab section number */
2594 			continue;
2595 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2596 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
2597 
2598 		/* Go through symbols for a match */
2599 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2600 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2601 				continue;
2602 
2603 			if (strcmp(strtab + syms[k].st_name, name) != 0)
2604 				continue;
2605 
2606 			if (syms[k].st_shndx == SHN_UNDEF ||
2607 			    syms[k].st_shndx >= ehdr->e_shnum) {
2608 				pr_debug("Symbol: %s has bad section index %d.\n",
2609 						name, syms[k].st_shndx);
2610 				return NULL;
2611 			}
2612 
2613 			/* Found the symbol we are looking for */
2614 			return &syms[k];
2615 		}
2616 	}
2617 
2618 	return NULL;
2619 }
2620 
2621 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2622 {
2623 	struct purgatory_info *pi = &image->purgatory_info;
2624 	Elf_Sym *sym;
2625 	Elf_Shdr *sechdr;
2626 
2627 	sym = kexec_purgatory_find_symbol(pi, name);
2628 	if (!sym)
2629 		return ERR_PTR(-EINVAL);
2630 
2631 	sechdr = &pi->sechdrs[sym->st_shndx];
2632 
2633 	/*
2634 	 * Returns the address where symbol will finally be loaded after
2635 	 * kexec_load_segment()
2636 	 */
2637 	return (void *)(sechdr->sh_addr + sym->st_value);
2638 }
2639 
2640 /*
2641  * Get or set value of a symbol. If "get_value" is true, symbol value is
2642  * returned in buf otherwise symbol value is set based on value in buf.
2643  */
2644 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2645 				   void *buf, unsigned int size, bool get_value)
2646 {
2647 	Elf_Sym *sym;
2648 	Elf_Shdr *sechdrs;
2649 	struct purgatory_info *pi = &image->purgatory_info;
2650 	char *sym_buf;
2651 
2652 	sym = kexec_purgatory_find_symbol(pi, name);
2653 	if (!sym)
2654 		return -EINVAL;
2655 
2656 	if (sym->st_size != size) {
2657 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2658 		       name, (unsigned long)sym->st_size, size);
2659 		return -EINVAL;
2660 	}
2661 
2662 	sechdrs = pi->sechdrs;
2663 
2664 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2665 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2666 		       get_value ? "get" : "set");
2667 		return -EINVAL;
2668 	}
2669 
2670 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2671 					sym->st_value;
2672 
2673 	if (get_value)
2674 		memcpy((void *)buf, sym_buf, size);
2675 	else
2676 		memcpy((void *)sym_buf, buf, size);
2677 
2678 	return 0;
2679 }
2680 #endif /* CONFIG_KEXEC_FILE */
2681 
2682 /*
2683  * Move into place and start executing a preloaded standalone
2684  * executable.  If nothing was preloaded return an error.
2685  */
2686 int kernel_kexec(void)
2687 {
2688 	int error = 0;
2689 
2690 	if (!mutex_trylock(&kexec_mutex))
2691 		return -EBUSY;
2692 	if (!kexec_image) {
2693 		error = -EINVAL;
2694 		goto Unlock;
2695 	}
2696 
2697 #ifdef CONFIG_KEXEC_JUMP
2698 	if (kexec_image->preserve_context) {
2699 		lock_system_sleep();
2700 		pm_prepare_console();
2701 		error = freeze_processes();
2702 		if (error) {
2703 			error = -EBUSY;
2704 			goto Restore_console;
2705 		}
2706 		suspend_console();
2707 		error = dpm_suspend_start(PMSG_FREEZE);
2708 		if (error)
2709 			goto Resume_console;
2710 		/* At this point, dpm_suspend_start() has been called,
2711 		 * but *not* dpm_suspend_end(). We *must* call
2712 		 * dpm_suspend_end() now.  Otherwise, drivers for
2713 		 * some devices (e.g. interrupt controllers) become
2714 		 * desynchronized with the actual state of the
2715 		 * hardware at resume time, and evil weirdness ensues.
2716 		 */
2717 		error = dpm_suspend_end(PMSG_FREEZE);
2718 		if (error)
2719 			goto Resume_devices;
2720 		error = disable_nonboot_cpus();
2721 		if (error)
2722 			goto Enable_cpus;
2723 		local_irq_disable();
2724 		error = syscore_suspend();
2725 		if (error)
2726 			goto Enable_irqs;
2727 	} else
2728 #endif
2729 	{
2730 		kexec_in_progress = true;
2731 		kernel_restart_prepare(NULL);
2732 		migrate_to_reboot_cpu();
2733 
2734 		/*
2735 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2736 		 * no further code needs to use CPU hotplug (which is true in
2737 		 * the reboot case). However, the kexec path depends on using
2738 		 * CPU hotplug again; so re-enable it here.
2739 		 */
2740 		cpu_hotplug_enable();
2741 		pr_emerg("Starting new kernel\n");
2742 		machine_shutdown();
2743 	}
2744 
2745 	machine_kexec(kexec_image);
2746 
2747 #ifdef CONFIG_KEXEC_JUMP
2748 	if (kexec_image->preserve_context) {
2749 		syscore_resume();
2750  Enable_irqs:
2751 		local_irq_enable();
2752  Enable_cpus:
2753 		enable_nonboot_cpus();
2754 		dpm_resume_start(PMSG_RESTORE);
2755  Resume_devices:
2756 		dpm_resume_end(PMSG_RESTORE);
2757  Resume_console:
2758 		resume_console();
2759 		thaw_processes();
2760  Restore_console:
2761 		pm_restore_console();
2762 		unlock_system_sleep();
2763 	}
2764 #endif
2765 
2766  Unlock:
2767 	mutex_unlock(&kexec_mutex);
2768 	return error;
2769 }
2770