xref: /openbmc/linux/kernel/kexec.c (revision 3a0d89d3)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/compiler.h>
36 
37 #include <asm/page.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/sections.h>
41 
42 /* Per cpu memory for storing cpu states in case of system crash. */
43 note_buf_t __percpu *crash_notes;
44 
45 /* vmcoreinfo stuff */
46 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
47 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
48 size_t vmcoreinfo_size;
49 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
50 
51 /* Flag to indicate we are going to kexec a new kernel */
52 bool kexec_in_progress = false;
53 
54 /* Location of the reserved area for the crash kernel */
55 struct resource crashk_res = {
56 	.name  = "Crash kernel",
57 	.start = 0,
58 	.end   = 0,
59 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
60 };
61 struct resource crashk_low_res = {
62 	.name  = "Crash kernel",
63 	.start = 0,
64 	.end   = 0,
65 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
66 };
67 
68 int kexec_should_crash(struct task_struct *p)
69 {
70 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
71 		return 1;
72 	return 0;
73 }
74 
75 /*
76  * When kexec transitions to the new kernel there is a one-to-one
77  * mapping between physical and virtual addresses.  On processors
78  * where you can disable the MMU this is trivial, and easy.  For
79  * others it is still a simple predictable page table to setup.
80  *
81  * In that environment kexec copies the new kernel to its final
82  * resting place.  This means I can only support memory whose
83  * physical address can fit in an unsigned long.  In particular
84  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
85  * If the assembly stub has more restrictive requirements
86  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
87  * defined more restrictively in <asm/kexec.h>.
88  *
89  * The code for the transition from the current kernel to the
90  * the new kernel is placed in the control_code_buffer, whose size
91  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
92  * page of memory is necessary, but some architectures require more.
93  * Because this memory must be identity mapped in the transition from
94  * virtual to physical addresses it must live in the range
95  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
96  * modifiable.
97  *
98  * The assembly stub in the control code buffer is passed a linked list
99  * of descriptor pages detailing the source pages of the new kernel,
100  * and the destination addresses of those source pages.  As this data
101  * structure is not used in the context of the current OS, it must
102  * be self-contained.
103  *
104  * The code has been made to work with highmem pages and will use a
105  * destination page in its final resting place (if it happens
106  * to allocate it).  The end product of this is that most of the
107  * physical address space, and most of RAM can be used.
108  *
109  * Future directions include:
110  *  - allocating a page table with the control code buffer identity
111  *    mapped, to simplify machine_kexec and make kexec_on_panic more
112  *    reliable.
113  */
114 
115 /*
116  * KIMAGE_NO_DEST is an impossible destination address..., for
117  * allocating pages whose destination address we do not care about.
118  */
119 #define KIMAGE_NO_DEST (-1UL)
120 
121 static int kimage_is_destination_range(struct kimage *image,
122 				       unsigned long start, unsigned long end);
123 static struct page *kimage_alloc_page(struct kimage *image,
124 				       gfp_t gfp_mask,
125 				       unsigned long dest);
126 
127 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
128 	                    unsigned long nr_segments,
129                             struct kexec_segment __user *segments)
130 {
131 	size_t segment_bytes;
132 	struct kimage *image;
133 	unsigned long i;
134 	int result;
135 
136 	/* Allocate a controlling structure */
137 	result = -ENOMEM;
138 	image = kzalloc(sizeof(*image), GFP_KERNEL);
139 	if (!image)
140 		goto out;
141 
142 	image->head = 0;
143 	image->entry = &image->head;
144 	image->last_entry = &image->head;
145 	image->control_page = ~0; /* By default this does not apply */
146 	image->start = entry;
147 	image->type = KEXEC_TYPE_DEFAULT;
148 
149 	/* Initialize the list of control pages */
150 	INIT_LIST_HEAD(&image->control_pages);
151 
152 	/* Initialize the list of destination pages */
153 	INIT_LIST_HEAD(&image->dest_pages);
154 
155 	/* Initialize the list of unusable pages */
156 	INIT_LIST_HEAD(&image->unuseable_pages);
157 
158 	/* Read in the segments */
159 	image->nr_segments = nr_segments;
160 	segment_bytes = nr_segments * sizeof(*segments);
161 	result = copy_from_user(image->segment, segments, segment_bytes);
162 	if (result) {
163 		result = -EFAULT;
164 		goto out;
165 	}
166 
167 	/*
168 	 * Verify we have good destination addresses.  The caller is
169 	 * responsible for making certain we don't attempt to load
170 	 * the new image into invalid or reserved areas of RAM.  This
171 	 * just verifies it is an address we can use.
172 	 *
173 	 * Since the kernel does everything in page size chunks ensure
174 	 * the destination addresses are page aligned.  Too many
175 	 * special cases crop of when we don't do this.  The most
176 	 * insidious is getting overlapping destination addresses
177 	 * simply because addresses are changed to page size
178 	 * granularity.
179 	 */
180 	result = -EADDRNOTAVAIL;
181 	for (i = 0; i < nr_segments; i++) {
182 		unsigned long mstart, mend;
183 
184 		mstart = image->segment[i].mem;
185 		mend   = mstart + image->segment[i].memsz;
186 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
187 			goto out;
188 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
189 			goto out;
190 	}
191 
192 	/* Verify our destination addresses do not overlap.
193 	 * If we alloed overlapping destination addresses
194 	 * through very weird things can happen with no
195 	 * easy explanation as one segment stops on another.
196 	 */
197 	result = -EINVAL;
198 	for (i = 0; i < nr_segments; i++) {
199 		unsigned long mstart, mend;
200 		unsigned long j;
201 
202 		mstart = image->segment[i].mem;
203 		mend   = mstart + image->segment[i].memsz;
204 		for (j = 0; j < i; j++) {
205 			unsigned long pstart, pend;
206 			pstart = image->segment[j].mem;
207 			pend   = pstart + image->segment[j].memsz;
208 			/* Do the segments overlap ? */
209 			if ((mend > pstart) && (mstart < pend))
210 				goto out;
211 		}
212 	}
213 
214 	/* Ensure our buffer sizes are strictly less than
215 	 * our memory sizes.  This should always be the case,
216 	 * and it is easier to check up front than to be surprised
217 	 * later on.
218 	 */
219 	result = -EINVAL;
220 	for (i = 0; i < nr_segments; i++) {
221 		if (image->segment[i].bufsz > image->segment[i].memsz)
222 			goto out;
223 	}
224 
225 	result = 0;
226 out:
227 	if (result == 0)
228 		*rimage = image;
229 	else
230 		kfree(image);
231 
232 	return result;
233 
234 }
235 
236 static void kimage_free_page_list(struct list_head *list);
237 
238 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
239 				unsigned long nr_segments,
240 				struct kexec_segment __user *segments)
241 {
242 	int result;
243 	struct kimage *image;
244 
245 	/* Allocate and initialize a controlling structure */
246 	image = NULL;
247 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
248 	if (result)
249 		goto out;
250 
251 	/*
252 	 * Find a location for the control code buffer, and add it
253 	 * the vector of segments so that it's pages will also be
254 	 * counted as destination pages.
255 	 */
256 	result = -ENOMEM;
257 	image->control_code_page = kimage_alloc_control_pages(image,
258 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
259 	if (!image->control_code_page) {
260 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
261 		goto out_free;
262 	}
263 
264 	image->swap_page = kimage_alloc_control_pages(image, 0);
265 	if (!image->swap_page) {
266 		printk(KERN_ERR "Could not allocate swap buffer\n");
267 		goto out_free;
268 	}
269 
270 	*rimage = image;
271 	return 0;
272 
273 out_free:
274 	kimage_free_page_list(&image->control_pages);
275 	kfree(image);
276 out:
277 	return result;
278 }
279 
280 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
281 				unsigned long nr_segments,
282 				struct kexec_segment __user *segments)
283 {
284 	int result;
285 	struct kimage *image;
286 	unsigned long i;
287 
288 	image = NULL;
289 	/* Verify we have a valid entry point */
290 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
291 		result = -EADDRNOTAVAIL;
292 		goto out;
293 	}
294 
295 	/* Allocate and initialize a controlling structure */
296 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
297 	if (result)
298 		goto out;
299 
300 	/* Enable the special crash kernel control page
301 	 * allocation policy.
302 	 */
303 	image->control_page = crashk_res.start;
304 	image->type = KEXEC_TYPE_CRASH;
305 
306 	/*
307 	 * Verify we have good destination addresses.  Normally
308 	 * the caller is responsible for making certain we don't
309 	 * attempt to load the new image into invalid or reserved
310 	 * areas of RAM.  But crash kernels are preloaded into a
311 	 * reserved area of ram.  We must ensure the addresses
312 	 * are in the reserved area otherwise preloading the
313 	 * kernel could corrupt things.
314 	 */
315 	result = -EADDRNOTAVAIL;
316 	for (i = 0; i < nr_segments; i++) {
317 		unsigned long mstart, mend;
318 
319 		mstart = image->segment[i].mem;
320 		mend = mstart + image->segment[i].memsz - 1;
321 		/* Ensure we are within the crash kernel limits */
322 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
323 			goto out_free;
324 	}
325 
326 	/*
327 	 * Find a location for the control code buffer, and add
328 	 * the vector of segments so that it's pages will also be
329 	 * counted as destination pages.
330 	 */
331 	result = -ENOMEM;
332 	image->control_code_page = kimage_alloc_control_pages(image,
333 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
334 	if (!image->control_code_page) {
335 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
336 		goto out_free;
337 	}
338 
339 	*rimage = image;
340 	return 0;
341 
342 out_free:
343 	kfree(image);
344 out:
345 	return result;
346 }
347 
348 static int kimage_is_destination_range(struct kimage *image,
349 					unsigned long start,
350 					unsigned long end)
351 {
352 	unsigned long i;
353 
354 	for (i = 0; i < image->nr_segments; i++) {
355 		unsigned long mstart, mend;
356 
357 		mstart = image->segment[i].mem;
358 		mend = mstart + image->segment[i].memsz;
359 		if ((end > mstart) && (start < mend))
360 			return 1;
361 	}
362 
363 	return 0;
364 }
365 
366 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
367 {
368 	struct page *pages;
369 
370 	pages = alloc_pages(gfp_mask, order);
371 	if (pages) {
372 		unsigned int count, i;
373 		pages->mapping = NULL;
374 		set_page_private(pages, order);
375 		count = 1 << order;
376 		for (i = 0; i < count; i++)
377 			SetPageReserved(pages + i);
378 	}
379 
380 	return pages;
381 }
382 
383 static void kimage_free_pages(struct page *page)
384 {
385 	unsigned int order, count, i;
386 
387 	order = page_private(page);
388 	count = 1 << order;
389 	for (i = 0; i < count; i++)
390 		ClearPageReserved(page + i);
391 	__free_pages(page, order);
392 }
393 
394 static void kimage_free_page_list(struct list_head *list)
395 {
396 	struct list_head *pos, *next;
397 
398 	list_for_each_safe(pos, next, list) {
399 		struct page *page;
400 
401 		page = list_entry(pos, struct page, lru);
402 		list_del(&page->lru);
403 		kimage_free_pages(page);
404 	}
405 }
406 
407 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
408 							unsigned int order)
409 {
410 	/* Control pages are special, they are the intermediaries
411 	 * that are needed while we copy the rest of the pages
412 	 * to their final resting place.  As such they must
413 	 * not conflict with either the destination addresses
414 	 * or memory the kernel is already using.
415 	 *
416 	 * The only case where we really need more than one of
417 	 * these are for architectures where we cannot disable
418 	 * the MMU and must instead generate an identity mapped
419 	 * page table for all of the memory.
420 	 *
421 	 * At worst this runs in O(N) of the image size.
422 	 */
423 	struct list_head extra_pages;
424 	struct page *pages;
425 	unsigned int count;
426 
427 	count = 1 << order;
428 	INIT_LIST_HEAD(&extra_pages);
429 
430 	/* Loop while I can allocate a page and the page allocated
431 	 * is a destination page.
432 	 */
433 	do {
434 		unsigned long pfn, epfn, addr, eaddr;
435 
436 		pages = kimage_alloc_pages(GFP_KERNEL, order);
437 		if (!pages)
438 			break;
439 		pfn   = page_to_pfn(pages);
440 		epfn  = pfn + count;
441 		addr  = pfn << PAGE_SHIFT;
442 		eaddr = epfn << PAGE_SHIFT;
443 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
444 			      kimage_is_destination_range(image, addr, eaddr)) {
445 			list_add(&pages->lru, &extra_pages);
446 			pages = NULL;
447 		}
448 	} while (!pages);
449 
450 	if (pages) {
451 		/* Remember the allocated page... */
452 		list_add(&pages->lru, &image->control_pages);
453 
454 		/* Because the page is already in it's destination
455 		 * location we will never allocate another page at
456 		 * that address.  Therefore kimage_alloc_pages
457 		 * will not return it (again) and we don't need
458 		 * to give it an entry in image->segment[].
459 		 */
460 	}
461 	/* Deal with the destination pages I have inadvertently allocated.
462 	 *
463 	 * Ideally I would convert multi-page allocations into single
464 	 * page allocations, and add everything to image->dest_pages.
465 	 *
466 	 * For now it is simpler to just free the pages.
467 	 */
468 	kimage_free_page_list(&extra_pages);
469 
470 	return pages;
471 }
472 
473 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
474 						      unsigned int order)
475 {
476 	/* Control pages are special, they are the intermediaries
477 	 * that are needed while we copy the rest of the pages
478 	 * to their final resting place.  As such they must
479 	 * not conflict with either the destination addresses
480 	 * or memory the kernel is already using.
481 	 *
482 	 * Control pages are also the only pags we must allocate
483 	 * when loading a crash kernel.  All of the other pages
484 	 * are specified by the segments and we just memcpy
485 	 * into them directly.
486 	 *
487 	 * The only case where we really need more than one of
488 	 * these are for architectures where we cannot disable
489 	 * the MMU and must instead generate an identity mapped
490 	 * page table for all of the memory.
491 	 *
492 	 * Given the low demand this implements a very simple
493 	 * allocator that finds the first hole of the appropriate
494 	 * size in the reserved memory region, and allocates all
495 	 * of the memory up to and including the hole.
496 	 */
497 	unsigned long hole_start, hole_end, size;
498 	struct page *pages;
499 
500 	pages = NULL;
501 	size = (1 << order) << PAGE_SHIFT;
502 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
503 	hole_end   = hole_start + size - 1;
504 	while (hole_end <= crashk_res.end) {
505 		unsigned long i;
506 
507 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
508 			break;
509 		/* See if I overlap any of the segments */
510 		for (i = 0; i < image->nr_segments; i++) {
511 			unsigned long mstart, mend;
512 
513 			mstart = image->segment[i].mem;
514 			mend   = mstart + image->segment[i].memsz - 1;
515 			if ((hole_end >= mstart) && (hole_start <= mend)) {
516 				/* Advance the hole to the end of the segment */
517 				hole_start = (mend + (size - 1)) & ~(size - 1);
518 				hole_end   = hole_start + size - 1;
519 				break;
520 			}
521 		}
522 		/* If I don't overlap any segments I have found my hole! */
523 		if (i == image->nr_segments) {
524 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
525 			break;
526 		}
527 	}
528 	if (pages)
529 		image->control_page = hole_end;
530 
531 	return pages;
532 }
533 
534 
535 struct page *kimage_alloc_control_pages(struct kimage *image,
536 					 unsigned int order)
537 {
538 	struct page *pages = NULL;
539 
540 	switch (image->type) {
541 	case KEXEC_TYPE_DEFAULT:
542 		pages = kimage_alloc_normal_control_pages(image, order);
543 		break;
544 	case KEXEC_TYPE_CRASH:
545 		pages = kimage_alloc_crash_control_pages(image, order);
546 		break;
547 	}
548 
549 	return pages;
550 }
551 
552 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
553 {
554 	if (*image->entry != 0)
555 		image->entry++;
556 
557 	if (image->entry == image->last_entry) {
558 		kimage_entry_t *ind_page;
559 		struct page *page;
560 
561 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
562 		if (!page)
563 			return -ENOMEM;
564 
565 		ind_page = page_address(page);
566 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
567 		image->entry = ind_page;
568 		image->last_entry = ind_page +
569 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
570 	}
571 	*image->entry = entry;
572 	image->entry++;
573 	*image->entry = 0;
574 
575 	return 0;
576 }
577 
578 static int kimage_set_destination(struct kimage *image,
579 				   unsigned long destination)
580 {
581 	int result;
582 
583 	destination &= PAGE_MASK;
584 	result = kimage_add_entry(image, destination | IND_DESTINATION);
585 	if (result == 0)
586 		image->destination = destination;
587 
588 	return result;
589 }
590 
591 
592 static int kimage_add_page(struct kimage *image, unsigned long page)
593 {
594 	int result;
595 
596 	page &= PAGE_MASK;
597 	result = kimage_add_entry(image, page | IND_SOURCE);
598 	if (result == 0)
599 		image->destination += PAGE_SIZE;
600 
601 	return result;
602 }
603 
604 
605 static void kimage_free_extra_pages(struct kimage *image)
606 {
607 	/* Walk through and free any extra destination pages I may have */
608 	kimage_free_page_list(&image->dest_pages);
609 
610 	/* Walk through and free any unusable pages I have cached */
611 	kimage_free_page_list(&image->unuseable_pages);
612 
613 }
614 static void kimage_terminate(struct kimage *image)
615 {
616 	if (*image->entry != 0)
617 		image->entry++;
618 
619 	*image->entry = IND_DONE;
620 }
621 
622 #define for_each_kimage_entry(image, ptr, entry) \
623 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
624 		ptr = (entry & IND_INDIRECTION)? \
625 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
626 
627 static void kimage_free_entry(kimage_entry_t entry)
628 {
629 	struct page *page;
630 
631 	page = pfn_to_page(entry >> PAGE_SHIFT);
632 	kimage_free_pages(page);
633 }
634 
635 static void kimage_free(struct kimage *image)
636 {
637 	kimage_entry_t *ptr, entry;
638 	kimage_entry_t ind = 0;
639 
640 	if (!image)
641 		return;
642 
643 	kimage_free_extra_pages(image);
644 	for_each_kimage_entry(image, ptr, entry) {
645 		if (entry & IND_INDIRECTION) {
646 			/* Free the previous indirection page */
647 			if (ind & IND_INDIRECTION)
648 				kimage_free_entry(ind);
649 			/* Save this indirection page until we are
650 			 * done with it.
651 			 */
652 			ind = entry;
653 		}
654 		else if (entry & IND_SOURCE)
655 			kimage_free_entry(entry);
656 	}
657 	/* Free the final indirection page */
658 	if (ind & IND_INDIRECTION)
659 		kimage_free_entry(ind);
660 
661 	/* Handle any machine specific cleanup */
662 	machine_kexec_cleanup(image);
663 
664 	/* Free the kexec control pages... */
665 	kimage_free_page_list(&image->control_pages);
666 	kfree(image);
667 }
668 
669 static kimage_entry_t *kimage_dst_used(struct kimage *image,
670 					unsigned long page)
671 {
672 	kimage_entry_t *ptr, entry;
673 	unsigned long destination = 0;
674 
675 	for_each_kimage_entry(image, ptr, entry) {
676 		if (entry & IND_DESTINATION)
677 			destination = entry & PAGE_MASK;
678 		else if (entry & IND_SOURCE) {
679 			if (page == destination)
680 				return ptr;
681 			destination += PAGE_SIZE;
682 		}
683 	}
684 
685 	return NULL;
686 }
687 
688 static struct page *kimage_alloc_page(struct kimage *image,
689 					gfp_t gfp_mask,
690 					unsigned long destination)
691 {
692 	/*
693 	 * Here we implement safeguards to ensure that a source page
694 	 * is not copied to its destination page before the data on
695 	 * the destination page is no longer useful.
696 	 *
697 	 * To do this we maintain the invariant that a source page is
698 	 * either its own destination page, or it is not a
699 	 * destination page at all.
700 	 *
701 	 * That is slightly stronger than required, but the proof
702 	 * that no problems will not occur is trivial, and the
703 	 * implementation is simply to verify.
704 	 *
705 	 * When allocating all pages normally this algorithm will run
706 	 * in O(N) time, but in the worst case it will run in O(N^2)
707 	 * time.   If the runtime is a problem the data structures can
708 	 * be fixed.
709 	 */
710 	struct page *page;
711 	unsigned long addr;
712 
713 	/*
714 	 * Walk through the list of destination pages, and see if I
715 	 * have a match.
716 	 */
717 	list_for_each_entry(page, &image->dest_pages, lru) {
718 		addr = page_to_pfn(page) << PAGE_SHIFT;
719 		if (addr == destination) {
720 			list_del(&page->lru);
721 			return page;
722 		}
723 	}
724 	page = NULL;
725 	while (1) {
726 		kimage_entry_t *old;
727 
728 		/* Allocate a page, if we run out of memory give up */
729 		page = kimage_alloc_pages(gfp_mask, 0);
730 		if (!page)
731 			return NULL;
732 		/* If the page cannot be used file it away */
733 		if (page_to_pfn(page) >
734 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
735 			list_add(&page->lru, &image->unuseable_pages);
736 			continue;
737 		}
738 		addr = page_to_pfn(page) << PAGE_SHIFT;
739 
740 		/* If it is the destination page we want use it */
741 		if (addr == destination)
742 			break;
743 
744 		/* If the page is not a destination page use it */
745 		if (!kimage_is_destination_range(image, addr,
746 						  addr + PAGE_SIZE))
747 			break;
748 
749 		/*
750 		 * I know that the page is someones destination page.
751 		 * See if there is already a source page for this
752 		 * destination page.  And if so swap the source pages.
753 		 */
754 		old = kimage_dst_used(image, addr);
755 		if (old) {
756 			/* If so move it */
757 			unsigned long old_addr;
758 			struct page *old_page;
759 
760 			old_addr = *old & PAGE_MASK;
761 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
762 			copy_highpage(page, old_page);
763 			*old = addr | (*old & ~PAGE_MASK);
764 
765 			/* The old page I have found cannot be a
766 			 * destination page, so return it if it's
767 			 * gfp_flags honor the ones passed in.
768 			 */
769 			if (!(gfp_mask & __GFP_HIGHMEM) &&
770 			    PageHighMem(old_page)) {
771 				kimage_free_pages(old_page);
772 				continue;
773 			}
774 			addr = old_addr;
775 			page = old_page;
776 			break;
777 		}
778 		else {
779 			/* Place the page on the destination list I
780 			 * will use it later.
781 			 */
782 			list_add(&page->lru, &image->dest_pages);
783 		}
784 	}
785 
786 	return page;
787 }
788 
789 static int kimage_load_normal_segment(struct kimage *image,
790 					 struct kexec_segment *segment)
791 {
792 	unsigned long maddr;
793 	size_t ubytes, mbytes;
794 	int result;
795 	unsigned char __user *buf;
796 
797 	result = 0;
798 	buf = segment->buf;
799 	ubytes = segment->bufsz;
800 	mbytes = segment->memsz;
801 	maddr = segment->mem;
802 
803 	result = kimage_set_destination(image, maddr);
804 	if (result < 0)
805 		goto out;
806 
807 	while (mbytes) {
808 		struct page *page;
809 		char *ptr;
810 		size_t uchunk, mchunk;
811 
812 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
813 		if (!page) {
814 			result  = -ENOMEM;
815 			goto out;
816 		}
817 		result = kimage_add_page(image, page_to_pfn(page)
818 								<< PAGE_SHIFT);
819 		if (result < 0)
820 			goto out;
821 
822 		ptr = kmap(page);
823 		/* Start with a clear page */
824 		clear_page(ptr);
825 		ptr += maddr & ~PAGE_MASK;
826 		mchunk = min_t(size_t, mbytes,
827 				PAGE_SIZE - (maddr & ~PAGE_MASK));
828 		uchunk = min(ubytes, mchunk);
829 
830 		result = copy_from_user(ptr, buf, uchunk);
831 		kunmap(page);
832 		if (result) {
833 			result = -EFAULT;
834 			goto out;
835 		}
836 		ubytes -= uchunk;
837 		maddr  += mchunk;
838 		buf    += mchunk;
839 		mbytes -= mchunk;
840 	}
841 out:
842 	return result;
843 }
844 
845 static int kimage_load_crash_segment(struct kimage *image,
846 					struct kexec_segment *segment)
847 {
848 	/* For crash dumps kernels we simply copy the data from
849 	 * user space to it's destination.
850 	 * We do things a page at a time for the sake of kmap.
851 	 */
852 	unsigned long maddr;
853 	size_t ubytes, mbytes;
854 	int result;
855 	unsigned char __user *buf;
856 
857 	result = 0;
858 	buf = segment->buf;
859 	ubytes = segment->bufsz;
860 	mbytes = segment->memsz;
861 	maddr = segment->mem;
862 	while (mbytes) {
863 		struct page *page;
864 		char *ptr;
865 		size_t uchunk, mchunk;
866 
867 		page = pfn_to_page(maddr >> PAGE_SHIFT);
868 		if (!page) {
869 			result  = -ENOMEM;
870 			goto out;
871 		}
872 		ptr = kmap(page);
873 		ptr += maddr & ~PAGE_MASK;
874 		mchunk = min_t(size_t, mbytes,
875 				PAGE_SIZE - (maddr & ~PAGE_MASK));
876 		uchunk = min(ubytes, mchunk);
877 		if (mchunk > uchunk) {
878 			/* Zero the trailing part of the page */
879 			memset(ptr + uchunk, 0, mchunk - uchunk);
880 		}
881 		result = copy_from_user(ptr, buf, uchunk);
882 		kexec_flush_icache_page(page);
883 		kunmap(page);
884 		if (result) {
885 			result = -EFAULT;
886 			goto out;
887 		}
888 		ubytes -= uchunk;
889 		maddr  += mchunk;
890 		buf    += mchunk;
891 		mbytes -= mchunk;
892 	}
893 out:
894 	return result;
895 }
896 
897 static int kimage_load_segment(struct kimage *image,
898 				struct kexec_segment *segment)
899 {
900 	int result = -ENOMEM;
901 
902 	switch (image->type) {
903 	case KEXEC_TYPE_DEFAULT:
904 		result = kimage_load_normal_segment(image, segment);
905 		break;
906 	case KEXEC_TYPE_CRASH:
907 		result = kimage_load_crash_segment(image, segment);
908 		break;
909 	}
910 
911 	return result;
912 }
913 
914 /*
915  * Exec Kernel system call: for obvious reasons only root may call it.
916  *
917  * This call breaks up into three pieces.
918  * - A generic part which loads the new kernel from the current
919  *   address space, and very carefully places the data in the
920  *   allocated pages.
921  *
922  * - A generic part that interacts with the kernel and tells all of
923  *   the devices to shut down.  Preventing on-going dmas, and placing
924  *   the devices in a consistent state so a later kernel can
925  *   reinitialize them.
926  *
927  * - A machine specific part that includes the syscall number
928  *   and then copies the image to it's final destination.  And
929  *   jumps into the image at entry.
930  *
931  * kexec does not sync, or unmount filesystems so if you need
932  * that to happen you need to do that yourself.
933  */
934 struct kimage *kexec_image;
935 struct kimage *kexec_crash_image;
936 int kexec_load_disabled;
937 
938 static DEFINE_MUTEX(kexec_mutex);
939 
940 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
941 		struct kexec_segment __user *, segments, unsigned long, flags)
942 {
943 	struct kimage **dest_image, *image;
944 	int result;
945 
946 	/* We only trust the superuser with rebooting the system. */
947 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
948 		return -EPERM;
949 
950 	/*
951 	 * Verify we have a legal set of flags
952 	 * This leaves us room for future extensions.
953 	 */
954 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
955 		return -EINVAL;
956 
957 	/* Verify we are on the appropriate architecture */
958 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
959 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
960 		return -EINVAL;
961 
962 	/* Put an artificial cap on the number
963 	 * of segments passed to kexec_load.
964 	 */
965 	if (nr_segments > KEXEC_SEGMENT_MAX)
966 		return -EINVAL;
967 
968 	image = NULL;
969 	result = 0;
970 
971 	/* Because we write directly to the reserved memory
972 	 * region when loading crash kernels we need a mutex here to
973 	 * prevent multiple crash  kernels from attempting to load
974 	 * simultaneously, and to prevent a crash kernel from loading
975 	 * over the top of a in use crash kernel.
976 	 *
977 	 * KISS: always take the mutex.
978 	 */
979 	if (!mutex_trylock(&kexec_mutex))
980 		return -EBUSY;
981 
982 	dest_image = &kexec_image;
983 	if (flags & KEXEC_ON_CRASH)
984 		dest_image = &kexec_crash_image;
985 	if (nr_segments > 0) {
986 		unsigned long i;
987 
988 		/* Loading another kernel to reboot into */
989 		if ((flags & KEXEC_ON_CRASH) == 0)
990 			result = kimage_normal_alloc(&image, entry,
991 							nr_segments, segments);
992 		/* Loading another kernel to switch to if this one crashes */
993 		else if (flags & KEXEC_ON_CRASH) {
994 			/* Free any current crash dump kernel before
995 			 * we corrupt it.
996 			 */
997 			kimage_free(xchg(&kexec_crash_image, NULL));
998 			result = kimage_crash_alloc(&image, entry,
999 						     nr_segments, segments);
1000 			crash_map_reserved_pages();
1001 		}
1002 		if (result)
1003 			goto out;
1004 
1005 		if (flags & KEXEC_PRESERVE_CONTEXT)
1006 			image->preserve_context = 1;
1007 		result = machine_kexec_prepare(image);
1008 		if (result)
1009 			goto out;
1010 
1011 		for (i = 0; i < nr_segments; i++) {
1012 			result = kimage_load_segment(image, &image->segment[i]);
1013 			if (result)
1014 				goto out;
1015 		}
1016 		kimage_terminate(image);
1017 		if (flags & KEXEC_ON_CRASH)
1018 			crash_unmap_reserved_pages();
1019 	}
1020 	/* Install the new kernel, and  Uninstall the old */
1021 	image = xchg(dest_image, image);
1022 
1023 out:
1024 	mutex_unlock(&kexec_mutex);
1025 	kimage_free(image);
1026 
1027 	return result;
1028 }
1029 
1030 /*
1031  * Add and remove page tables for crashkernel memory
1032  *
1033  * Provide an empty default implementation here -- architecture
1034  * code may override this
1035  */
1036 void __weak crash_map_reserved_pages(void)
1037 {}
1038 
1039 void __weak crash_unmap_reserved_pages(void)
1040 {}
1041 
1042 #ifdef CONFIG_COMPAT
1043 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1044 		       compat_ulong_t, nr_segments,
1045 		       struct compat_kexec_segment __user *, segments,
1046 		       compat_ulong_t, flags)
1047 {
1048 	struct compat_kexec_segment in;
1049 	struct kexec_segment out, __user *ksegments;
1050 	unsigned long i, result;
1051 
1052 	/* Don't allow clients that don't understand the native
1053 	 * architecture to do anything.
1054 	 */
1055 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1056 		return -EINVAL;
1057 
1058 	if (nr_segments > KEXEC_SEGMENT_MAX)
1059 		return -EINVAL;
1060 
1061 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1062 	for (i=0; i < nr_segments; i++) {
1063 		result = copy_from_user(&in, &segments[i], sizeof(in));
1064 		if (result)
1065 			return -EFAULT;
1066 
1067 		out.buf   = compat_ptr(in.buf);
1068 		out.bufsz = in.bufsz;
1069 		out.mem   = in.mem;
1070 		out.memsz = in.memsz;
1071 
1072 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1073 		if (result)
1074 			return -EFAULT;
1075 	}
1076 
1077 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1078 }
1079 #endif
1080 
1081 void crash_kexec(struct pt_regs *regs)
1082 {
1083 	/* Take the kexec_mutex here to prevent sys_kexec_load
1084 	 * running on one cpu from replacing the crash kernel
1085 	 * we are using after a panic on a different cpu.
1086 	 *
1087 	 * If the crash kernel was not located in a fixed area
1088 	 * of memory the xchg(&kexec_crash_image) would be
1089 	 * sufficient.  But since I reuse the memory...
1090 	 */
1091 	if (mutex_trylock(&kexec_mutex)) {
1092 		if (kexec_crash_image) {
1093 			struct pt_regs fixed_regs;
1094 
1095 			crash_setup_regs(&fixed_regs, regs);
1096 			crash_save_vmcoreinfo();
1097 			machine_crash_shutdown(&fixed_regs);
1098 			machine_kexec(kexec_crash_image);
1099 		}
1100 		mutex_unlock(&kexec_mutex);
1101 	}
1102 }
1103 
1104 size_t crash_get_memory_size(void)
1105 {
1106 	size_t size = 0;
1107 	mutex_lock(&kexec_mutex);
1108 	if (crashk_res.end != crashk_res.start)
1109 		size = resource_size(&crashk_res);
1110 	mutex_unlock(&kexec_mutex);
1111 	return size;
1112 }
1113 
1114 void __weak crash_free_reserved_phys_range(unsigned long begin,
1115 					   unsigned long end)
1116 {
1117 	unsigned long addr;
1118 
1119 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1120 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1121 }
1122 
1123 int crash_shrink_memory(unsigned long new_size)
1124 {
1125 	int ret = 0;
1126 	unsigned long start, end;
1127 	unsigned long old_size;
1128 	struct resource *ram_res;
1129 
1130 	mutex_lock(&kexec_mutex);
1131 
1132 	if (kexec_crash_image) {
1133 		ret = -ENOENT;
1134 		goto unlock;
1135 	}
1136 	start = crashk_res.start;
1137 	end = crashk_res.end;
1138 	old_size = (end == 0) ? 0 : end - start + 1;
1139 	if (new_size >= old_size) {
1140 		ret = (new_size == old_size) ? 0 : -EINVAL;
1141 		goto unlock;
1142 	}
1143 
1144 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1145 	if (!ram_res) {
1146 		ret = -ENOMEM;
1147 		goto unlock;
1148 	}
1149 
1150 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1151 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1152 
1153 	crash_map_reserved_pages();
1154 	crash_free_reserved_phys_range(end, crashk_res.end);
1155 
1156 	if ((start == end) && (crashk_res.parent != NULL))
1157 		release_resource(&crashk_res);
1158 
1159 	ram_res->start = end;
1160 	ram_res->end = crashk_res.end;
1161 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1162 	ram_res->name = "System RAM";
1163 
1164 	crashk_res.end = end - 1;
1165 
1166 	insert_resource(&iomem_resource, ram_res);
1167 	crash_unmap_reserved_pages();
1168 
1169 unlock:
1170 	mutex_unlock(&kexec_mutex);
1171 	return ret;
1172 }
1173 
1174 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1175 			    size_t data_len)
1176 {
1177 	struct elf_note note;
1178 
1179 	note.n_namesz = strlen(name) + 1;
1180 	note.n_descsz = data_len;
1181 	note.n_type   = type;
1182 	memcpy(buf, &note, sizeof(note));
1183 	buf += (sizeof(note) + 3)/4;
1184 	memcpy(buf, name, note.n_namesz);
1185 	buf += (note.n_namesz + 3)/4;
1186 	memcpy(buf, data, note.n_descsz);
1187 	buf += (note.n_descsz + 3)/4;
1188 
1189 	return buf;
1190 }
1191 
1192 static void final_note(u32 *buf)
1193 {
1194 	struct elf_note note;
1195 
1196 	note.n_namesz = 0;
1197 	note.n_descsz = 0;
1198 	note.n_type   = 0;
1199 	memcpy(buf, &note, sizeof(note));
1200 }
1201 
1202 void crash_save_cpu(struct pt_regs *regs, int cpu)
1203 {
1204 	struct elf_prstatus prstatus;
1205 	u32 *buf;
1206 
1207 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1208 		return;
1209 
1210 	/* Using ELF notes here is opportunistic.
1211 	 * I need a well defined structure format
1212 	 * for the data I pass, and I need tags
1213 	 * on the data to indicate what information I have
1214 	 * squirrelled away.  ELF notes happen to provide
1215 	 * all of that, so there is no need to invent something new.
1216 	 */
1217 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1218 	if (!buf)
1219 		return;
1220 	memset(&prstatus, 0, sizeof(prstatus));
1221 	prstatus.pr_pid = current->pid;
1222 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1223 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1224 		      	      &prstatus, sizeof(prstatus));
1225 	final_note(buf);
1226 }
1227 
1228 static int __init crash_notes_memory_init(void)
1229 {
1230 	/* Allocate memory for saving cpu registers. */
1231 	crash_notes = alloc_percpu(note_buf_t);
1232 	if (!crash_notes) {
1233 		printk("Kexec: Memory allocation for saving cpu register"
1234 		" states failed\n");
1235 		return -ENOMEM;
1236 	}
1237 	return 0;
1238 }
1239 subsys_initcall(crash_notes_memory_init);
1240 
1241 
1242 /*
1243  * parsing the "crashkernel" commandline
1244  *
1245  * this code is intended to be called from architecture specific code
1246  */
1247 
1248 
1249 /*
1250  * This function parses command lines in the format
1251  *
1252  *   crashkernel=ramsize-range:size[,...][@offset]
1253  *
1254  * The function returns 0 on success and -EINVAL on failure.
1255  */
1256 static int __init parse_crashkernel_mem(char 			*cmdline,
1257 					unsigned long long	system_ram,
1258 					unsigned long long	*crash_size,
1259 					unsigned long long	*crash_base)
1260 {
1261 	char *cur = cmdline, *tmp;
1262 
1263 	/* for each entry of the comma-separated list */
1264 	do {
1265 		unsigned long long start, end = ULLONG_MAX, size;
1266 
1267 		/* get the start of the range */
1268 		start = memparse(cur, &tmp);
1269 		if (cur == tmp) {
1270 			pr_warning("crashkernel: Memory value expected\n");
1271 			return -EINVAL;
1272 		}
1273 		cur = tmp;
1274 		if (*cur != '-') {
1275 			pr_warning("crashkernel: '-' expected\n");
1276 			return -EINVAL;
1277 		}
1278 		cur++;
1279 
1280 		/* if no ':' is here, than we read the end */
1281 		if (*cur != ':') {
1282 			end = memparse(cur, &tmp);
1283 			if (cur == tmp) {
1284 				pr_warning("crashkernel: Memory "
1285 						"value expected\n");
1286 				return -EINVAL;
1287 			}
1288 			cur = tmp;
1289 			if (end <= start) {
1290 				pr_warning("crashkernel: end <= start\n");
1291 				return -EINVAL;
1292 			}
1293 		}
1294 
1295 		if (*cur != ':') {
1296 			pr_warning("crashkernel: ':' expected\n");
1297 			return -EINVAL;
1298 		}
1299 		cur++;
1300 
1301 		size = memparse(cur, &tmp);
1302 		if (cur == tmp) {
1303 			pr_warning("Memory value expected\n");
1304 			return -EINVAL;
1305 		}
1306 		cur = tmp;
1307 		if (size >= system_ram) {
1308 			pr_warning("crashkernel: invalid size\n");
1309 			return -EINVAL;
1310 		}
1311 
1312 		/* match ? */
1313 		if (system_ram >= start && system_ram < end) {
1314 			*crash_size = size;
1315 			break;
1316 		}
1317 	} while (*cur++ == ',');
1318 
1319 	if (*crash_size > 0) {
1320 		while (*cur && *cur != ' ' && *cur != '@')
1321 			cur++;
1322 		if (*cur == '@') {
1323 			cur++;
1324 			*crash_base = memparse(cur, &tmp);
1325 			if (cur == tmp) {
1326 				pr_warning("Memory value expected "
1327 						"after '@'\n");
1328 				return -EINVAL;
1329 			}
1330 		}
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 /*
1337  * That function parses "simple" (old) crashkernel command lines like
1338  *
1339  * 	crashkernel=size[@offset]
1340  *
1341  * It returns 0 on success and -EINVAL on failure.
1342  */
1343 static int __init parse_crashkernel_simple(char 		*cmdline,
1344 					   unsigned long long 	*crash_size,
1345 					   unsigned long long 	*crash_base)
1346 {
1347 	char *cur = cmdline;
1348 
1349 	*crash_size = memparse(cmdline, &cur);
1350 	if (cmdline == cur) {
1351 		pr_warning("crashkernel: memory value expected\n");
1352 		return -EINVAL;
1353 	}
1354 
1355 	if (*cur == '@')
1356 		*crash_base = memparse(cur+1, &cur);
1357 	else if (*cur != ' ' && *cur != '\0') {
1358 		pr_warning("crashkernel: unrecognized char\n");
1359 		return -EINVAL;
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 #define SUFFIX_HIGH 0
1366 #define SUFFIX_LOW  1
1367 #define SUFFIX_NULL 2
1368 static __initdata char *suffix_tbl[] = {
1369 	[SUFFIX_HIGH] = ",high",
1370 	[SUFFIX_LOW]  = ",low",
1371 	[SUFFIX_NULL] = NULL,
1372 };
1373 
1374 /*
1375  * That function parses "suffix"  crashkernel command lines like
1376  *
1377  *	crashkernel=size,[high|low]
1378  *
1379  * It returns 0 on success and -EINVAL on failure.
1380  */
1381 static int __init parse_crashkernel_suffix(char *cmdline,
1382 					   unsigned long long	*crash_size,
1383 					   unsigned long long	*crash_base,
1384 					   const char *suffix)
1385 {
1386 	char *cur = cmdline;
1387 
1388 	*crash_size = memparse(cmdline, &cur);
1389 	if (cmdline == cur) {
1390 		pr_warn("crashkernel: memory value expected\n");
1391 		return -EINVAL;
1392 	}
1393 
1394 	/* check with suffix */
1395 	if (strncmp(cur, suffix, strlen(suffix))) {
1396 		pr_warn("crashkernel: unrecognized char\n");
1397 		return -EINVAL;
1398 	}
1399 	cur += strlen(suffix);
1400 	if (*cur != ' ' && *cur != '\0') {
1401 		pr_warn("crashkernel: unrecognized char\n");
1402 		return -EINVAL;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static __init char *get_last_crashkernel(char *cmdline,
1409 			     const char *name,
1410 			     const char *suffix)
1411 {
1412 	char *p = cmdline, *ck_cmdline = NULL;
1413 
1414 	/* find crashkernel and use the last one if there are more */
1415 	p = strstr(p, name);
1416 	while (p) {
1417 		char *end_p = strchr(p, ' ');
1418 		char *q;
1419 
1420 		if (!end_p)
1421 			end_p = p + strlen(p);
1422 
1423 		if (!suffix) {
1424 			int i;
1425 
1426 			/* skip the one with any known suffix */
1427 			for (i = 0; suffix_tbl[i]; i++) {
1428 				q = end_p - strlen(suffix_tbl[i]);
1429 				if (!strncmp(q, suffix_tbl[i],
1430 					     strlen(suffix_tbl[i])))
1431 					goto next;
1432 			}
1433 			ck_cmdline = p;
1434 		} else {
1435 			q = end_p - strlen(suffix);
1436 			if (!strncmp(q, suffix, strlen(suffix)))
1437 				ck_cmdline = p;
1438 		}
1439 next:
1440 		p = strstr(p+1, name);
1441 	}
1442 
1443 	if (!ck_cmdline)
1444 		return NULL;
1445 
1446 	return ck_cmdline;
1447 }
1448 
1449 static int __init __parse_crashkernel(char *cmdline,
1450 			     unsigned long long system_ram,
1451 			     unsigned long long *crash_size,
1452 			     unsigned long long *crash_base,
1453 			     const char *name,
1454 			     const char *suffix)
1455 {
1456 	char	*first_colon, *first_space;
1457 	char	*ck_cmdline;
1458 
1459 	BUG_ON(!crash_size || !crash_base);
1460 	*crash_size = 0;
1461 	*crash_base = 0;
1462 
1463 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1464 
1465 	if (!ck_cmdline)
1466 		return -EINVAL;
1467 
1468 	ck_cmdline += strlen(name);
1469 
1470 	if (suffix)
1471 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1472 				crash_base, suffix);
1473 	/*
1474 	 * if the commandline contains a ':', then that's the extended
1475 	 * syntax -- if not, it must be the classic syntax
1476 	 */
1477 	first_colon = strchr(ck_cmdline, ':');
1478 	first_space = strchr(ck_cmdline, ' ');
1479 	if (first_colon && (!first_space || first_colon < first_space))
1480 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1481 				crash_size, crash_base);
1482 
1483 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1484 }
1485 
1486 /*
1487  * That function is the entry point for command line parsing and should be
1488  * called from the arch-specific code.
1489  */
1490 int __init parse_crashkernel(char *cmdline,
1491 			     unsigned long long system_ram,
1492 			     unsigned long long *crash_size,
1493 			     unsigned long long *crash_base)
1494 {
1495 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1496 					"crashkernel=", NULL);
1497 }
1498 
1499 int __init parse_crashkernel_high(char *cmdline,
1500 			     unsigned long long system_ram,
1501 			     unsigned long long *crash_size,
1502 			     unsigned long long *crash_base)
1503 {
1504 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1505 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1506 }
1507 
1508 int __init parse_crashkernel_low(char *cmdline,
1509 			     unsigned long long system_ram,
1510 			     unsigned long long *crash_size,
1511 			     unsigned long long *crash_base)
1512 {
1513 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1514 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1515 }
1516 
1517 static void update_vmcoreinfo_note(void)
1518 {
1519 	u32 *buf = vmcoreinfo_note;
1520 
1521 	if (!vmcoreinfo_size)
1522 		return;
1523 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1524 			      vmcoreinfo_size);
1525 	final_note(buf);
1526 }
1527 
1528 void crash_save_vmcoreinfo(void)
1529 {
1530 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1531 	update_vmcoreinfo_note();
1532 }
1533 
1534 void vmcoreinfo_append_str(const char *fmt, ...)
1535 {
1536 	va_list args;
1537 	char buf[0x50];
1538 	size_t r;
1539 
1540 	va_start(args, fmt);
1541 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1542 	va_end(args);
1543 
1544 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1545 
1546 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1547 
1548 	vmcoreinfo_size += r;
1549 }
1550 
1551 /*
1552  * provide an empty default implementation here -- architecture
1553  * code may override this
1554  */
1555 void __weak arch_crash_save_vmcoreinfo(void)
1556 {}
1557 
1558 unsigned long __weak paddr_vmcoreinfo_note(void)
1559 {
1560 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1561 }
1562 
1563 static int __init crash_save_vmcoreinfo_init(void)
1564 {
1565 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1566 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1567 
1568 	VMCOREINFO_SYMBOL(init_uts_ns);
1569 	VMCOREINFO_SYMBOL(node_online_map);
1570 #ifdef CONFIG_MMU
1571 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1572 #endif
1573 	VMCOREINFO_SYMBOL(_stext);
1574 	VMCOREINFO_SYMBOL(vmap_area_list);
1575 
1576 #ifndef CONFIG_NEED_MULTIPLE_NODES
1577 	VMCOREINFO_SYMBOL(mem_map);
1578 	VMCOREINFO_SYMBOL(contig_page_data);
1579 #endif
1580 #ifdef CONFIG_SPARSEMEM
1581 	VMCOREINFO_SYMBOL(mem_section);
1582 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1583 	VMCOREINFO_STRUCT_SIZE(mem_section);
1584 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1585 #endif
1586 	VMCOREINFO_STRUCT_SIZE(page);
1587 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1588 	VMCOREINFO_STRUCT_SIZE(zone);
1589 	VMCOREINFO_STRUCT_SIZE(free_area);
1590 	VMCOREINFO_STRUCT_SIZE(list_head);
1591 	VMCOREINFO_SIZE(nodemask_t);
1592 	VMCOREINFO_OFFSET(page, flags);
1593 	VMCOREINFO_OFFSET(page, _count);
1594 	VMCOREINFO_OFFSET(page, mapping);
1595 	VMCOREINFO_OFFSET(page, lru);
1596 	VMCOREINFO_OFFSET(page, _mapcount);
1597 	VMCOREINFO_OFFSET(page, private);
1598 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1599 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1600 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1601 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1602 #endif
1603 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1604 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1605 	VMCOREINFO_OFFSET(pglist_data, node_id);
1606 	VMCOREINFO_OFFSET(zone, free_area);
1607 	VMCOREINFO_OFFSET(zone, vm_stat);
1608 	VMCOREINFO_OFFSET(zone, spanned_pages);
1609 	VMCOREINFO_OFFSET(free_area, free_list);
1610 	VMCOREINFO_OFFSET(list_head, next);
1611 	VMCOREINFO_OFFSET(list_head, prev);
1612 	VMCOREINFO_OFFSET(vmap_area, va_start);
1613 	VMCOREINFO_OFFSET(vmap_area, list);
1614 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1615 	log_buf_kexec_setup();
1616 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1617 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1618 	VMCOREINFO_NUMBER(PG_lru);
1619 	VMCOREINFO_NUMBER(PG_private);
1620 	VMCOREINFO_NUMBER(PG_swapcache);
1621 	VMCOREINFO_NUMBER(PG_slab);
1622 #ifdef CONFIG_MEMORY_FAILURE
1623 	VMCOREINFO_NUMBER(PG_hwpoison);
1624 #endif
1625 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1626 
1627 	arch_crash_save_vmcoreinfo();
1628 	update_vmcoreinfo_note();
1629 
1630 	return 0;
1631 }
1632 
1633 subsys_initcall(crash_save_vmcoreinfo_init);
1634 
1635 /*
1636  * Move into place and start executing a preloaded standalone
1637  * executable.  If nothing was preloaded return an error.
1638  */
1639 int kernel_kexec(void)
1640 {
1641 	int error = 0;
1642 
1643 	if (!mutex_trylock(&kexec_mutex))
1644 		return -EBUSY;
1645 	if (!kexec_image) {
1646 		error = -EINVAL;
1647 		goto Unlock;
1648 	}
1649 
1650 #ifdef CONFIG_KEXEC_JUMP
1651 	if (kexec_image->preserve_context) {
1652 		lock_system_sleep();
1653 		pm_prepare_console();
1654 		error = freeze_processes();
1655 		if (error) {
1656 			error = -EBUSY;
1657 			goto Restore_console;
1658 		}
1659 		suspend_console();
1660 		error = dpm_suspend_start(PMSG_FREEZE);
1661 		if (error)
1662 			goto Resume_console;
1663 		/* At this point, dpm_suspend_start() has been called,
1664 		 * but *not* dpm_suspend_end(). We *must* call
1665 		 * dpm_suspend_end() now.  Otherwise, drivers for
1666 		 * some devices (e.g. interrupt controllers) become
1667 		 * desynchronized with the actual state of the
1668 		 * hardware at resume time, and evil weirdness ensues.
1669 		 */
1670 		error = dpm_suspend_end(PMSG_FREEZE);
1671 		if (error)
1672 			goto Resume_devices;
1673 		error = disable_nonboot_cpus();
1674 		if (error)
1675 			goto Enable_cpus;
1676 		local_irq_disable();
1677 		error = syscore_suspend();
1678 		if (error)
1679 			goto Enable_irqs;
1680 	} else
1681 #endif
1682 	{
1683 		kexec_in_progress = true;
1684 		kernel_restart_prepare(NULL);
1685 		migrate_to_reboot_cpu();
1686 		printk(KERN_EMERG "Starting new kernel\n");
1687 		machine_shutdown();
1688 	}
1689 
1690 	machine_kexec(kexec_image);
1691 
1692 #ifdef CONFIG_KEXEC_JUMP
1693 	if (kexec_image->preserve_context) {
1694 		syscore_resume();
1695  Enable_irqs:
1696 		local_irq_enable();
1697  Enable_cpus:
1698 		enable_nonboot_cpus();
1699 		dpm_resume_start(PMSG_RESTORE);
1700  Resume_devices:
1701 		dpm_resume_end(PMSG_RESTORE);
1702  Resume_console:
1703 		resume_console();
1704 		thaw_processes();
1705  Restore_console:
1706 		pm_restore_console();
1707 		unlock_system_sleep();
1708 	}
1709 #endif
1710 
1711  Unlock:
1712 	mutex_unlock(&kexec_mutex);
1713 	return error;
1714 }
1715