xref: /openbmc/linux/kernel/kexec.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt)	"kexec: " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50 
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56 
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59 
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66 
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage *image);
69 #endif
70 
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res = {
73 	.name  = "Crash kernel",
74 	.start = 0,
75 	.end   = 0,
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
77 };
78 struct resource crashk_low_res = {
79 	.name  = "Crash kernel",
80 	.start = 0,
81 	.end   = 0,
82 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 };
84 
85 int kexec_should_crash(struct task_struct *p)
86 {
87 	/*
88 	 * If crash_kexec_post_notifiers is enabled, don't run
89 	 * crash_kexec() here yet, which must be run after panic
90 	 * notifiers in panic().
91 	 */
92 	if (crash_kexec_post_notifiers)
93 		return 0;
94 	/*
95 	 * There are 4 panic() calls in do_exit() path, each of which
96 	 * corresponds to each of these 4 conditions.
97 	 */
98 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
99 		return 1;
100 	return 0;
101 }
102 
103 /*
104  * When kexec transitions to the new kernel there is a one-to-one
105  * mapping between physical and virtual addresses.  On processors
106  * where you can disable the MMU this is trivial, and easy.  For
107  * others it is still a simple predictable page table to setup.
108  *
109  * In that environment kexec copies the new kernel to its final
110  * resting place.  This means I can only support memory whose
111  * physical address can fit in an unsigned long.  In particular
112  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
113  * If the assembly stub has more restrictive requirements
114  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
115  * defined more restrictively in <asm/kexec.h>.
116  *
117  * The code for the transition from the current kernel to the
118  * the new kernel is placed in the control_code_buffer, whose size
119  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
120  * page of memory is necessary, but some architectures require more.
121  * Because this memory must be identity mapped in the transition from
122  * virtual to physical addresses it must live in the range
123  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
124  * modifiable.
125  *
126  * The assembly stub in the control code buffer is passed a linked list
127  * of descriptor pages detailing the source pages of the new kernel,
128  * and the destination addresses of those source pages.  As this data
129  * structure is not used in the context of the current OS, it must
130  * be self-contained.
131  *
132  * The code has been made to work with highmem pages and will use a
133  * destination page in its final resting place (if it happens
134  * to allocate it).  The end product of this is that most of the
135  * physical address space, and most of RAM can be used.
136  *
137  * Future directions include:
138  *  - allocating a page table with the control code buffer identity
139  *    mapped, to simplify machine_kexec and make kexec_on_panic more
140  *    reliable.
141  */
142 
143 /*
144  * KIMAGE_NO_DEST is an impossible destination address..., for
145  * allocating pages whose destination address we do not care about.
146  */
147 #define KIMAGE_NO_DEST (-1UL)
148 
149 static int kimage_is_destination_range(struct kimage *image,
150 				       unsigned long start, unsigned long end);
151 static struct page *kimage_alloc_page(struct kimage *image,
152 				       gfp_t gfp_mask,
153 				       unsigned long dest);
154 
155 static int copy_user_segment_list(struct kimage *image,
156 				  unsigned long nr_segments,
157 				  struct kexec_segment __user *segments)
158 {
159 	int ret;
160 	size_t segment_bytes;
161 
162 	/* Read in the segments */
163 	image->nr_segments = nr_segments;
164 	segment_bytes = nr_segments * sizeof(*segments);
165 	ret = copy_from_user(image->segment, segments, segment_bytes);
166 	if (ret)
167 		ret = -EFAULT;
168 
169 	return ret;
170 }
171 
172 static int sanity_check_segment_list(struct kimage *image)
173 {
174 	int result, i;
175 	unsigned long nr_segments = image->nr_segments;
176 
177 	/*
178 	 * Verify we have good destination addresses.  The caller is
179 	 * responsible for making certain we don't attempt to load
180 	 * the new image into invalid or reserved areas of RAM.  This
181 	 * just verifies it is an address we can use.
182 	 *
183 	 * Since the kernel does everything in page size chunks ensure
184 	 * the destination addresses are page aligned.  Too many
185 	 * special cases crop of when we don't do this.  The most
186 	 * insidious is getting overlapping destination addresses
187 	 * simply because addresses are changed to page size
188 	 * granularity.
189 	 */
190 	result = -EADDRNOTAVAIL;
191 	for (i = 0; i < nr_segments; i++) {
192 		unsigned long mstart, mend;
193 
194 		mstart = image->segment[i].mem;
195 		mend   = mstart + image->segment[i].memsz;
196 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
197 			return result;
198 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
199 			return result;
200 	}
201 
202 	/* Verify our destination addresses do not overlap.
203 	 * If we alloed overlapping destination addresses
204 	 * through very weird things can happen with no
205 	 * easy explanation as one segment stops on another.
206 	 */
207 	result = -EINVAL;
208 	for (i = 0; i < nr_segments; i++) {
209 		unsigned long mstart, mend;
210 		unsigned long j;
211 
212 		mstart = image->segment[i].mem;
213 		mend   = mstart + image->segment[i].memsz;
214 		for (j = 0; j < i; j++) {
215 			unsigned long pstart, pend;
216 			pstart = image->segment[j].mem;
217 			pend   = pstart + image->segment[j].memsz;
218 			/* Do the segments overlap ? */
219 			if ((mend > pstart) && (mstart < pend))
220 				return result;
221 		}
222 	}
223 
224 	/* Ensure our buffer sizes are strictly less than
225 	 * our memory sizes.  This should always be the case,
226 	 * and it is easier to check up front than to be surprised
227 	 * later on.
228 	 */
229 	result = -EINVAL;
230 	for (i = 0; i < nr_segments; i++) {
231 		if (image->segment[i].bufsz > image->segment[i].memsz)
232 			return result;
233 	}
234 
235 	/*
236 	 * Verify we have good destination addresses.  Normally
237 	 * the caller is responsible for making certain we don't
238 	 * attempt to load the new image into invalid or reserved
239 	 * areas of RAM.  But crash kernels are preloaded into a
240 	 * reserved area of ram.  We must ensure the addresses
241 	 * are in the reserved area otherwise preloading the
242 	 * kernel could corrupt things.
243 	 */
244 
245 	if (image->type == KEXEC_TYPE_CRASH) {
246 		result = -EADDRNOTAVAIL;
247 		for (i = 0; i < nr_segments; i++) {
248 			unsigned long mstart, mend;
249 
250 			mstart = image->segment[i].mem;
251 			mend = mstart + image->segment[i].memsz - 1;
252 			/* Ensure we are within the crash kernel limits */
253 			if ((mstart < crashk_res.start) ||
254 			    (mend > crashk_res.end))
255 				return result;
256 		}
257 	}
258 
259 	return 0;
260 }
261 
262 static struct kimage *do_kimage_alloc_init(void)
263 {
264 	struct kimage *image;
265 
266 	/* Allocate a controlling structure */
267 	image = kzalloc(sizeof(*image), GFP_KERNEL);
268 	if (!image)
269 		return NULL;
270 
271 	image->head = 0;
272 	image->entry = &image->head;
273 	image->last_entry = &image->head;
274 	image->control_page = ~0; /* By default this does not apply */
275 	image->type = KEXEC_TYPE_DEFAULT;
276 
277 	/* Initialize the list of control pages */
278 	INIT_LIST_HEAD(&image->control_pages);
279 
280 	/* Initialize the list of destination pages */
281 	INIT_LIST_HEAD(&image->dest_pages);
282 
283 	/* Initialize the list of unusable pages */
284 	INIT_LIST_HEAD(&image->unusable_pages);
285 
286 	return image;
287 }
288 
289 static void kimage_free_page_list(struct list_head *list);
290 
291 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
292 			     unsigned long nr_segments,
293 			     struct kexec_segment __user *segments,
294 			     unsigned long flags)
295 {
296 	int ret;
297 	struct kimage *image;
298 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
299 
300 	if (kexec_on_panic) {
301 		/* Verify we have a valid entry point */
302 		if ((entry < crashk_res.start) || (entry > crashk_res.end))
303 			return -EADDRNOTAVAIL;
304 	}
305 
306 	/* Allocate and initialize a controlling structure */
307 	image = do_kimage_alloc_init();
308 	if (!image)
309 		return -ENOMEM;
310 
311 	image->start = entry;
312 
313 	ret = copy_user_segment_list(image, nr_segments, segments);
314 	if (ret)
315 		goto out_free_image;
316 
317 	ret = sanity_check_segment_list(image);
318 	if (ret)
319 		goto out_free_image;
320 
321 	 /* Enable the special crash kernel control page allocation policy. */
322 	if (kexec_on_panic) {
323 		image->control_page = crashk_res.start;
324 		image->type = KEXEC_TYPE_CRASH;
325 	}
326 
327 	/*
328 	 * Find a location for the control code buffer, and add it
329 	 * the vector of segments so that it's pages will also be
330 	 * counted as destination pages.
331 	 */
332 	ret = -ENOMEM;
333 	image->control_code_page = kimage_alloc_control_pages(image,
334 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
335 	if (!image->control_code_page) {
336 		pr_err("Could not allocate control_code_buffer\n");
337 		goto out_free_image;
338 	}
339 
340 	if (!kexec_on_panic) {
341 		image->swap_page = kimage_alloc_control_pages(image, 0);
342 		if (!image->swap_page) {
343 			pr_err("Could not allocate swap buffer\n");
344 			goto out_free_control_pages;
345 		}
346 	}
347 
348 	*rimage = image;
349 	return 0;
350 out_free_control_pages:
351 	kimage_free_page_list(&image->control_pages);
352 out_free_image:
353 	kfree(image);
354 	return ret;
355 }
356 
357 #ifdef CONFIG_KEXEC_FILE
358 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
359 {
360 	struct fd f = fdget(fd);
361 	int ret;
362 	struct kstat stat;
363 	loff_t pos;
364 	ssize_t bytes = 0;
365 
366 	if (!f.file)
367 		return -EBADF;
368 
369 	ret = vfs_getattr(&f.file->f_path, &stat);
370 	if (ret)
371 		goto out;
372 
373 	if (stat.size > INT_MAX) {
374 		ret = -EFBIG;
375 		goto out;
376 	}
377 
378 	/* Don't hand 0 to vmalloc, it whines. */
379 	if (stat.size == 0) {
380 		ret = -EINVAL;
381 		goto out;
382 	}
383 
384 	*buf = vmalloc(stat.size);
385 	if (!*buf) {
386 		ret = -ENOMEM;
387 		goto out;
388 	}
389 
390 	pos = 0;
391 	while (pos < stat.size) {
392 		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
393 				    stat.size - pos);
394 		if (bytes < 0) {
395 			vfree(*buf);
396 			ret = bytes;
397 			goto out;
398 		}
399 
400 		if (bytes == 0)
401 			break;
402 		pos += bytes;
403 	}
404 
405 	if (pos != stat.size) {
406 		ret = -EBADF;
407 		vfree(*buf);
408 		goto out;
409 	}
410 
411 	*buf_len = pos;
412 out:
413 	fdput(f);
414 	return ret;
415 }
416 
417 /* Architectures can provide this probe function */
418 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
419 					 unsigned long buf_len)
420 {
421 	return -ENOEXEC;
422 }
423 
424 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
425 {
426 	return ERR_PTR(-ENOEXEC);
427 }
428 
429 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
430 {
431 }
432 
433 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
434 					unsigned long buf_len)
435 {
436 	return -EKEYREJECTED;
437 }
438 
439 /* Apply relocations of type RELA */
440 int __weak
441 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
442 				 unsigned int relsec)
443 {
444 	pr_err("RELA relocation unsupported.\n");
445 	return -ENOEXEC;
446 }
447 
448 /* Apply relocations of type REL */
449 int __weak
450 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
451 			     unsigned int relsec)
452 {
453 	pr_err("REL relocation unsupported.\n");
454 	return -ENOEXEC;
455 }
456 
457 /*
458  * Free up memory used by kernel, initrd, and command line. This is temporary
459  * memory allocation which is not needed any more after these buffers have
460  * been loaded into separate segments and have been copied elsewhere.
461  */
462 static void kimage_file_post_load_cleanup(struct kimage *image)
463 {
464 	struct purgatory_info *pi = &image->purgatory_info;
465 
466 	vfree(image->kernel_buf);
467 	image->kernel_buf = NULL;
468 
469 	vfree(image->initrd_buf);
470 	image->initrd_buf = NULL;
471 
472 	kfree(image->cmdline_buf);
473 	image->cmdline_buf = NULL;
474 
475 	vfree(pi->purgatory_buf);
476 	pi->purgatory_buf = NULL;
477 
478 	vfree(pi->sechdrs);
479 	pi->sechdrs = NULL;
480 
481 	/* See if architecture has anything to cleanup post load */
482 	arch_kimage_file_post_load_cleanup(image);
483 
484 	/*
485 	 * Above call should have called into bootloader to free up
486 	 * any data stored in kimage->image_loader_data. It should
487 	 * be ok now to free it up.
488 	 */
489 	kfree(image->image_loader_data);
490 	image->image_loader_data = NULL;
491 }
492 
493 /*
494  * In file mode list of segments is prepared by kernel. Copy relevant
495  * data from user space, do error checking, prepare segment list
496  */
497 static int
498 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
499 			     const char __user *cmdline_ptr,
500 			     unsigned long cmdline_len, unsigned flags)
501 {
502 	int ret = 0;
503 	void *ldata;
504 
505 	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
506 				&image->kernel_buf_len);
507 	if (ret)
508 		return ret;
509 
510 	/* Call arch image probe handlers */
511 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
512 					    image->kernel_buf_len);
513 
514 	if (ret)
515 		goto out;
516 
517 #ifdef CONFIG_KEXEC_VERIFY_SIG
518 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
519 					   image->kernel_buf_len);
520 	if (ret) {
521 		pr_debug("kernel signature verification failed.\n");
522 		goto out;
523 	}
524 	pr_debug("kernel signature verification successful.\n");
525 #endif
526 	/* It is possible that there no initramfs is being loaded */
527 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
528 		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
529 					&image->initrd_buf_len);
530 		if (ret)
531 			goto out;
532 	}
533 
534 	if (cmdline_len) {
535 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
536 		if (!image->cmdline_buf) {
537 			ret = -ENOMEM;
538 			goto out;
539 		}
540 
541 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
542 				     cmdline_len);
543 		if (ret) {
544 			ret = -EFAULT;
545 			goto out;
546 		}
547 
548 		image->cmdline_buf_len = cmdline_len;
549 
550 		/* command line should be a string with last byte null */
551 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
552 			ret = -EINVAL;
553 			goto out;
554 		}
555 	}
556 
557 	/* Call arch image load handlers */
558 	ldata = arch_kexec_kernel_image_load(image);
559 
560 	if (IS_ERR(ldata)) {
561 		ret = PTR_ERR(ldata);
562 		goto out;
563 	}
564 
565 	image->image_loader_data = ldata;
566 out:
567 	/* In case of error, free up all allocated memory in this function */
568 	if (ret)
569 		kimage_file_post_load_cleanup(image);
570 	return ret;
571 }
572 
573 static int
574 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
575 		       int initrd_fd, const char __user *cmdline_ptr,
576 		       unsigned long cmdline_len, unsigned long flags)
577 {
578 	int ret;
579 	struct kimage *image;
580 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
581 
582 	image = do_kimage_alloc_init();
583 	if (!image)
584 		return -ENOMEM;
585 
586 	image->file_mode = 1;
587 
588 	if (kexec_on_panic) {
589 		/* Enable special crash kernel control page alloc policy. */
590 		image->control_page = crashk_res.start;
591 		image->type = KEXEC_TYPE_CRASH;
592 	}
593 
594 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
595 					   cmdline_ptr, cmdline_len, flags);
596 	if (ret)
597 		goto out_free_image;
598 
599 	ret = sanity_check_segment_list(image);
600 	if (ret)
601 		goto out_free_post_load_bufs;
602 
603 	ret = -ENOMEM;
604 	image->control_code_page = kimage_alloc_control_pages(image,
605 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
606 	if (!image->control_code_page) {
607 		pr_err("Could not allocate control_code_buffer\n");
608 		goto out_free_post_load_bufs;
609 	}
610 
611 	if (!kexec_on_panic) {
612 		image->swap_page = kimage_alloc_control_pages(image, 0);
613 		if (!image->swap_page) {
614 			pr_err("Could not allocate swap buffer\n");
615 			goto out_free_control_pages;
616 		}
617 	}
618 
619 	*rimage = image;
620 	return 0;
621 out_free_control_pages:
622 	kimage_free_page_list(&image->control_pages);
623 out_free_post_load_bufs:
624 	kimage_file_post_load_cleanup(image);
625 out_free_image:
626 	kfree(image);
627 	return ret;
628 }
629 #else /* CONFIG_KEXEC_FILE */
630 static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
631 #endif /* CONFIG_KEXEC_FILE */
632 
633 static int kimage_is_destination_range(struct kimage *image,
634 					unsigned long start,
635 					unsigned long end)
636 {
637 	unsigned long i;
638 
639 	for (i = 0; i < image->nr_segments; i++) {
640 		unsigned long mstart, mend;
641 
642 		mstart = image->segment[i].mem;
643 		mend = mstart + image->segment[i].memsz;
644 		if ((end > mstart) && (start < mend))
645 			return 1;
646 	}
647 
648 	return 0;
649 }
650 
651 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
652 {
653 	struct page *pages;
654 
655 	pages = alloc_pages(gfp_mask, order);
656 	if (pages) {
657 		unsigned int count, i;
658 		pages->mapping = NULL;
659 		set_page_private(pages, order);
660 		count = 1 << order;
661 		for (i = 0; i < count; i++)
662 			SetPageReserved(pages + i);
663 	}
664 
665 	return pages;
666 }
667 
668 static void kimage_free_pages(struct page *page)
669 {
670 	unsigned int order, count, i;
671 
672 	order = page_private(page);
673 	count = 1 << order;
674 	for (i = 0; i < count; i++)
675 		ClearPageReserved(page + i);
676 	__free_pages(page, order);
677 }
678 
679 static void kimage_free_page_list(struct list_head *list)
680 {
681 	struct list_head *pos, *next;
682 
683 	list_for_each_safe(pos, next, list) {
684 		struct page *page;
685 
686 		page = list_entry(pos, struct page, lru);
687 		list_del(&page->lru);
688 		kimage_free_pages(page);
689 	}
690 }
691 
692 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
693 							unsigned int order)
694 {
695 	/* Control pages are special, they are the intermediaries
696 	 * that are needed while we copy the rest of the pages
697 	 * to their final resting place.  As such they must
698 	 * not conflict with either the destination addresses
699 	 * or memory the kernel is already using.
700 	 *
701 	 * The only case where we really need more than one of
702 	 * these are for architectures where we cannot disable
703 	 * the MMU and must instead generate an identity mapped
704 	 * page table for all of the memory.
705 	 *
706 	 * At worst this runs in O(N) of the image size.
707 	 */
708 	struct list_head extra_pages;
709 	struct page *pages;
710 	unsigned int count;
711 
712 	count = 1 << order;
713 	INIT_LIST_HEAD(&extra_pages);
714 
715 	/* Loop while I can allocate a page and the page allocated
716 	 * is a destination page.
717 	 */
718 	do {
719 		unsigned long pfn, epfn, addr, eaddr;
720 
721 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
722 		if (!pages)
723 			break;
724 		pfn   = page_to_pfn(pages);
725 		epfn  = pfn + count;
726 		addr  = pfn << PAGE_SHIFT;
727 		eaddr = epfn << PAGE_SHIFT;
728 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
729 			      kimage_is_destination_range(image, addr, eaddr)) {
730 			list_add(&pages->lru, &extra_pages);
731 			pages = NULL;
732 		}
733 	} while (!pages);
734 
735 	if (pages) {
736 		/* Remember the allocated page... */
737 		list_add(&pages->lru, &image->control_pages);
738 
739 		/* Because the page is already in it's destination
740 		 * location we will never allocate another page at
741 		 * that address.  Therefore kimage_alloc_pages
742 		 * will not return it (again) and we don't need
743 		 * to give it an entry in image->segment[].
744 		 */
745 	}
746 	/* Deal with the destination pages I have inadvertently allocated.
747 	 *
748 	 * Ideally I would convert multi-page allocations into single
749 	 * page allocations, and add everything to image->dest_pages.
750 	 *
751 	 * For now it is simpler to just free the pages.
752 	 */
753 	kimage_free_page_list(&extra_pages);
754 
755 	return pages;
756 }
757 
758 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
759 						      unsigned int order)
760 {
761 	/* Control pages are special, they are the intermediaries
762 	 * that are needed while we copy the rest of the pages
763 	 * to their final resting place.  As such they must
764 	 * not conflict with either the destination addresses
765 	 * or memory the kernel is already using.
766 	 *
767 	 * Control pages are also the only pags we must allocate
768 	 * when loading a crash kernel.  All of the other pages
769 	 * are specified by the segments and we just memcpy
770 	 * into them directly.
771 	 *
772 	 * The only case where we really need more than one of
773 	 * these are for architectures where we cannot disable
774 	 * the MMU and must instead generate an identity mapped
775 	 * page table for all of the memory.
776 	 *
777 	 * Given the low demand this implements a very simple
778 	 * allocator that finds the first hole of the appropriate
779 	 * size in the reserved memory region, and allocates all
780 	 * of the memory up to and including the hole.
781 	 */
782 	unsigned long hole_start, hole_end, size;
783 	struct page *pages;
784 
785 	pages = NULL;
786 	size = (1 << order) << PAGE_SHIFT;
787 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
788 	hole_end   = hole_start + size - 1;
789 	while (hole_end <= crashk_res.end) {
790 		unsigned long i;
791 
792 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
793 			break;
794 		/* See if I overlap any of the segments */
795 		for (i = 0; i < image->nr_segments; i++) {
796 			unsigned long mstart, mend;
797 
798 			mstart = image->segment[i].mem;
799 			mend   = mstart + image->segment[i].memsz - 1;
800 			if ((hole_end >= mstart) && (hole_start <= mend)) {
801 				/* Advance the hole to the end of the segment */
802 				hole_start = (mend + (size - 1)) & ~(size - 1);
803 				hole_end   = hole_start + size - 1;
804 				break;
805 			}
806 		}
807 		/* If I don't overlap any segments I have found my hole! */
808 		if (i == image->nr_segments) {
809 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
810 			break;
811 		}
812 	}
813 	if (pages)
814 		image->control_page = hole_end;
815 
816 	return pages;
817 }
818 
819 
820 struct page *kimage_alloc_control_pages(struct kimage *image,
821 					 unsigned int order)
822 {
823 	struct page *pages = NULL;
824 
825 	switch (image->type) {
826 	case KEXEC_TYPE_DEFAULT:
827 		pages = kimage_alloc_normal_control_pages(image, order);
828 		break;
829 	case KEXEC_TYPE_CRASH:
830 		pages = kimage_alloc_crash_control_pages(image, order);
831 		break;
832 	}
833 
834 	return pages;
835 }
836 
837 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
838 {
839 	if (*image->entry != 0)
840 		image->entry++;
841 
842 	if (image->entry == image->last_entry) {
843 		kimage_entry_t *ind_page;
844 		struct page *page;
845 
846 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
847 		if (!page)
848 			return -ENOMEM;
849 
850 		ind_page = page_address(page);
851 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
852 		image->entry = ind_page;
853 		image->last_entry = ind_page +
854 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
855 	}
856 	*image->entry = entry;
857 	image->entry++;
858 	*image->entry = 0;
859 
860 	return 0;
861 }
862 
863 static int kimage_set_destination(struct kimage *image,
864 				   unsigned long destination)
865 {
866 	int result;
867 
868 	destination &= PAGE_MASK;
869 	result = kimage_add_entry(image, destination | IND_DESTINATION);
870 
871 	return result;
872 }
873 
874 
875 static int kimage_add_page(struct kimage *image, unsigned long page)
876 {
877 	int result;
878 
879 	page &= PAGE_MASK;
880 	result = kimage_add_entry(image, page | IND_SOURCE);
881 
882 	return result;
883 }
884 
885 
886 static void kimage_free_extra_pages(struct kimage *image)
887 {
888 	/* Walk through and free any extra destination pages I may have */
889 	kimage_free_page_list(&image->dest_pages);
890 
891 	/* Walk through and free any unusable pages I have cached */
892 	kimage_free_page_list(&image->unusable_pages);
893 
894 }
895 static void kimage_terminate(struct kimage *image)
896 {
897 	if (*image->entry != 0)
898 		image->entry++;
899 
900 	*image->entry = IND_DONE;
901 }
902 
903 #define for_each_kimage_entry(image, ptr, entry) \
904 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
905 		ptr = (entry & IND_INDIRECTION) ? \
906 			phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
907 
908 static void kimage_free_entry(kimage_entry_t entry)
909 {
910 	struct page *page;
911 
912 	page = pfn_to_page(entry >> PAGE_SHIFT);
913 	kimage_free_pages(page);
914 }
915 
916 static void kimage_free(struct kimage *image)
917 {
918 	kimage_entry_t *ptr, entry;
919 	kimage_entry_t ind = 0;
920 
921 	if (!image)
922 		return;
923 
924 	kimage_free_extra_pages(image);
925 	for_each_kimage_entry(image, ptr, entry) {
926 		if (entry & IND_INDIRECTION) {
927 			/* Free the previous indirection page */
928 			if (ind & IND_INDIRECTION)
929 				kimage_free_entry(ind);
930 			/* Save this indirection page until we are
931 			 * done with it.
932 			 */
933 			ind = entry;
934 		} else if (entry & IND_SOURCE)
935 			kimage_free_entry(entry);
936 	}
937 	/* Free the final indirection page */
938 	if (ind & IND_INDIRECTION)
939 		kimage_free_entry(ind);
940 
941 	/* Handle any machine specific cleanup */
942 	machine_kexec_cleanup(image);
943 
944 	/* Free the kexec control pages... */
945 	kimage_free_page_list(&image->control_pages);
946 
947 	/*
948 	 * Free up any temporary buffers allocated. This might hit if
949 	 * error occurred much later after buffer allocation.
950 	 */
951 	if (image->file_mode)
952 		kimage_file_post_load_cleanup(image);
953 
954 	kfree(image);
955 }
956 
957 static kimage_entry_t *kimage_dst_used(struct kimage *image,
958 					unsigned long page)
959 {
960 	kimage_entry_t *ptr, entry;
961 	unsigned long destination = 0;
962 
963 	for_each_kimage_entry(image, ptr, entry) {
964 		if (entry & IND_DESTINATION)
965 			destination = entry & PAGE_MASK;
966 		else if (entry & IND_SOURCE) {
967 			if (page == destination)
968 				return ptr;
969 			destination += PAGE_SIZE;
970 		}
971 	}
972 
973 	return NULL;
974 }
975 
976 static struct page *kimage_alloc_page(struct kimage *image,
977 					gfp_t gfp_mask,
978 					unsigned long destination)
979 {
980 	/*
981 	 * Here we implement safeguards to ensure that a source page
982 	 * is not copied to its destination page before the data on
983 	 * the destination page is no longer useful.
984 	 *
985 	 * To do this we maintain the invariant that a source page is
986 	 * either its own destination page, or it is not a
987 	 * destination page at all.
988 	 *
989 	 * That is slightly stronger than required, but the proof
990 	 * that no problems will not occur is trivial, and the
991 	 * implementation is simply to verify.
992 	 *
993 	 * When allocating all pages normally this algorithm will run
994 	 * in O(N) time, but in the worst case it will run in O(N^2)
995 	 * time.   If the runtime is a problem the data structures can
996 	 * be fixed.
997 	 */
998 	struct page *page;
999 	unsigned long addr;
1000 
1001 	/*
1002 	 * Walk through the list of destination pages, and see if I
1003 	 * have a match.
1004 	 */
1005 	list_for_each_entry(page, &image->dest_pages, lru) {
1006 		addr = page_to_pfn(page) << PAGE_SHIFT;
1007 		if (addr == destination) {
1008 			list_del(&page->lru);
1009 			return page;
1010 		}
1011 	}
1012 	page = NULL;
1013 	while (1) {
1014 		kimage_entry_t *old;
1015 
1016 		/* Allocate a page, if we run out of memory give up */
1017 		page = kimage_alloc_pages(gfp_mask, 0);
1018 		if (!page)
1019 			return NULL;
1020 		/* If the page cannot be used file it away */
1021 		if (page_to_pfn(page) >
1022 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1023 			list_add(&page->lru, &image->unusable_pages);
1024 			continue;
1025 		}
1026 		addr = page_to_pfn(page) << PAGE_SHIFT;
1027 
1028 		/* If it is the destination page we want use it */
1029 		if (addr == destination)
1030 			break;
1031 
1032 		/* If the page is not a destination page use it */
1033 		if (!kimage_is_destination_range(image, addr,
1034 						  addr + PAGE_SIZE))
1035 			break;
1036 
1037 		/*
1038 		 * I know that the page is someones destination page.
1039 		 * See if there is already a source page for this
1040 		 * destination page.  And if so swap the source pages.
1041 		 */
1042 		old = kimage_dst_used(image, addr);
1043 		if (old) {
1044 			/* If so move it */
1045 			unsigned long old_addr;
1046 			struct page *old_page;
1047 
1048 			old_addr = *old & PAGE_MASK;
1049 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1050 			copy_highpage(page, old_page);
1051 			*old = addr | (*old & ~PAGE_MASK);
1052 
1053 			/* The old page I have found cannot be a
1054 			 * destination page, so return it if it's
1055 			 * gfp_flags honor the ones passed in.
1056 			 */
1057 			if (!(gfp_mask & __GFP_HIGHMEM) &&
1058 			    PageHighMem(old_page)) {
1059 				kimage_free_pages(old_page);
1060 				continue;
1061 			}
1062 			addr = old_addr;
1063 			page = old_page;
1064 			break;
1065 		} else {
1066 			/* Place the page on the destination list I
1067 			 * will use it later.
1068 			 */
1069 			list_add(&page->lru, &image->dest_pages);
1070 		}
1071 	}
1072 
1073 	return page;
1074 }
1075 
1076 static int kimage_load_normal_segment(struct kimage *image,
1077 					 struct kexec_segment *segment)
1078 {
1079 	unsigned long maddr;
1080 	size_t ubytes, mbytes;
1081 	int result;
1082 	unsigned char __user *buf = NULL;
1083 	unsigned char *kbuf = NULL;
1084 
1085 	result = 0;
1086 	if (image->file_mode)
1087 		kbuf = segment->kbuf;
1088 	else
1089 		buf = segment->buf;
1090 	ubytes = segment->bufsz;
1091 	mbytes = segment->memsz;
1092 	maddr = segment->mem;
1093 
1094 	result = kimage_set_destination(image, maddr);
1095 	if (result < 0)
1096 		goto out;
1097 
1098 	while (mbytes) {
1099 		struct page *page;
1100 		char *ptr;
1101 		size_t uchunk, mchunk;
1102 
1103 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1104 		if (!page) {
1105 			result  = -ENOMEM;
1106 			goto out;
1107 		}
1108 		result = kimage_add_page(image, page_to_pfn(page)
1109 								<< PAGE_SHIFT);
1110 		if (result < 0)
1111 			goto out;
1112 
1113 		ptr = kmap(page);
1114 		/* Start with a clear page */
1115 		clear_page(ptr);
1116 		ptr += maddr & ~PAGE_MASK;
1117 		mchunk = min_t(size_t, mbytes,
1118 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1119 		uchunk = min(ubytes, mchunk);
1120 
1121 		/* For file based kexec, source pages are in kernel memory */
1122 		if (image->file_mode)
1123 			memcpy(ptr, kbuf, uchunk);
1124 		else
1125 			result = copy_from_user(ptr, buf, uchunk);
1126 		kunmap(page);
1127 		if (result) {
1128 			result = -EFAULT;
1129 			goto out;
1130 		}
1131 		ubytes -= uchunk;
1132 		maddr  += mchunk;
1133 		if (image->file_mode)
1134 			kbuf += mchunk;
1135 		else
1136 			buf += mchunk;
1137 		mbytes -= mchunk;
1138 	}
1139 out:
1140 	return result;
1141 }
1142 
1143 static int kimage_load_crash_segment(struct kimage *image,
1144 					struct kexec_segment *segment)
1145 {
1146 	/* For crash dumps kernels we simply copy the data from
1147 	 * user space to it's destination.
1148 	 * We do things a page at a time for the sake of kmap.
1149 	 */
1150 	unsigned long maddr;
1151 	size_t ubytes, mbytes;
1152 	int result;
1153 	unsigned char __user *buf = NULL;
1154 	unsigned char *kbuf = NULL;
1155 
1156 	result = 0;
1157 	if (image->file_mode)
1158 		kbuf = segment->kbuf;
1159 	else
1160 		buf = segment->buf;
1161 	ubytes = segment->bufsz;
1162 	mbytes = segment->memsz;
1163 	maddr = segment->mem;
1164 	while (mbytes) {
1165 		struct page *page;
1166 		char *ptr;
1167 		size_t uchunk, mchunk;
1168 
1169 		page = pfn_to_page(maddr >> PAGE_SHIFT);
1170 		if (!page) {
1171 			result  = -ENOMEM;
1172 			goto out;
1173 		}
1174 		ptr = kmap(page);
1175 		ptr += maddr & ~PAGE_MASK;
1176 		mchunk = min_t(size_t, mbytes,
1177 				PAGE_SIZE - (maddr & ~PAGE_MASK));
1178 		uchunk = min(ubytes, mchunk);
1179 		if (mchunk > uchunk) {
1180 			/* Zero the trailing part of the page */
1181 			memset(ptr + uchunk, 0, mchunk - uchunk);
1182 		}
1183 
1184 		/* For file based kexec, source pages are in kernel memory */
1185 		if (image->file_mode)
1186 			memcpy(ptr, kbuf, uchunk);
1187 		else
1188 			result = copy_from_user(ptr, buf, uchunk);
1189 		kexec_flush_icache_page(page);
1190 		kunmap(page);
1191 		if (result) {
1192 			result = -EFAULT;
1193 			goto out;
1194 		}
1195 		ubytes -= uchunk;
1196 		maddr  += mchunk;
1197 		if (image->file_mode)
1198 			kbuf += mchunk;
1199 		else
1200 			buf += mchunk;
1201 		mbytes -= mchunk;
1202 	}
1203 out:
1204 	return result;
1205 }
1206 
1207 static int kimage_load_segment(struct kimage *image,
1208 				struct kexec_segment *segment)
1209 {
1210 	int result = -ENOMEM;
1211 
1212 	switch (image->type) {
1213 	case KEXEC_TYPE_DEFAULT:
1214 		result = kimage_load_normal_segment(image, segment);
1215 		break;
1216 	case KEXEC_TYPE_CRASH:
1217 		result = kimage_load_crash_segment(image, segment);
1218 		break;
1219 	}
1220 
1221 	return result;
1222 }
1223 
1224 /*
1225  * Exec Kernel system call: for obvious reasons only root may call it.
1226  *
1227  * This call breaks up into three pieces.
1228  * - A generic part which loads the new kernel from the current
1229  *   address space, and very carefully places the data in the
1230  *   allocated pages.
1231  *
1232  * - A generic part that interacts with the kernel and tells all of
1233  *   the devices to shut down.  Preventing on-going dmas, and placing
1234  *   the devices in a consistent state so a later kernel can
1235  *   reinitialize them.
1236  *
1237  * - A machine specific part that includes the syscall number
1238  *   and then copies the image to it's final destination.  And
1239  *   jumps into the image at entry.
1240  *
1241  * kexec does not sync, or unmount filesystems so if you need
1242  * that to happen you need to do that yourself.
1243  */
1244 struct kimage *kexec_image;
1245 struct kimage *kexec_crash_image;
1246 int kexec_load_disabled;
1247 
1248 static DEFINE_MUTEX(kexec_mutex);
1249 
1250 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1251 		struct kexec_segment __user *, segments, unsigned long, flags)
1252 {
1253 	struct kimage **dest_image, *image;
1254 	int result;
1255 
1256 	/* We only trust the superuser with rebooting the system. */
1257 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1258 		return -EPERM;
1259 
1260 	/*
1261 	 * Verify we have a legal set of flags
1262 	 * This leaves us room for future extensions.
1263 	 */
1264 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1265 		return -EINVAL;
1266 
1267 	/* Verify we are on the appropriate architecture */
1268 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1269 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1270 		return -EINVAL;
1271 
1272 	/* Put an artificial cap on the number
1273 	 * of segments passed to kexec_load.
1274 	 */
1275 	if (nr_segments > KEXEC_SEGMENT_MAX)
1276 		return -EINVAL;
1277 
1278 	image = NULL;
1279 	result = 0;
1280 
1281 	/* Because we write directly to the reserved memory
1282 	 * region when loading crash kernels we need a mutex here to
1283 	 * prevent multiple crash  kernels from attempting to load
1284 	 * simultaneously, and to prevent a crash kernel from loading
1285 	 * over the top of a in use crash kernel.
1286 	 *
1287 	 * KISS: always take the mutex.
1288 	 */
1289 	if (!mutex_trylock(&kexec_mutex))
1290 		return -EBUSY;
1291 
1292 	dest_image = &kexec_image;
1293 	if (flags & KEXEC_ON_CRASH)
1294 		dest_image = &kexec_crash_image;
1295 	if (nr_segments > 0) {
1296 		unsigned long i;
1297 
1298 		if (flags & KEXEC_ON_CRASH) {
1299 			/*
1300 			 * Loading another kernel to switch to if this one
1301 			 * crashes.  Free any current crash dump kernel before
1302 			 * we corrupt it.
1303 			 */
1304 
1305 			kimage_free(xchg(&kexec_crash_image, NULL));
1306 			result = kimage_alloc_init(&image, entry, nr_segments,
1307 						   segments, flags);
1308 			crash_map_reserved_pages();
1309 		} else {
1310 			/* Loading another kernel to reboot into. */
1311 
1312 			result = kimage_alloc_init(&image, entry, nr_segments,
1313 						   segments, flags);
1314 		}
1315 		if (result)
1316 			goto out;
1317 
1318 		if (flags & KEXEC_PRESERVE_CONTEXT)
1319 			image->preserve_context = 1;
1320 		result = machine_kexec_prepare(image);
1321 		if (result)
1322 			goto out;
1323 
1324 		for (i = 0; i < nr_segments; i++) {
1325 			result = kimage_load_segment(image, &image->segment[i]);
1326 			if (result)
1327 				goto out;
1328 		}
1329 		kimage_terminate(image);
1330 		if (flags & KEXEC_ON_CRASH)
1331 			crash_unmap_reserved_pages();
1332 	}
1333 	/* Install the new kernel, and  Uninstall the old */
1334 	image = xchg(dest_image, image);
1335 
1336 out:
1337 	mutex_unlock(&kexec_mutex);
1338 	kimage_free(image);
1339 
1340 	return result;
1341 }
1342 
1343 /*
1344  * Add and remove page tables for crashkernel memory
1345  *
1346  * Provide an empty default implementation here -- architecture
1347  * code may override this
1348  */
1349 void __weak crash_map_reserved_pages(void)
1350 {}
1351 
1352 void __weak crash_unmap_reserved_pages(void)
1353 {}
1354 
1355 #ifdef CONFIG_COMPAT
1356 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1357 		       compat_ulong_t, nr_segments,
1358 		       struct compat_kexec_segment __user *, segments,
1359 		       compat_ulong_t, flags)
1360 {
1361 	struct compat_kexec_segment in;
1362 	struct kexec_segment out, __user *ksegments;
1363 	unsigned long i, result;
1364 
1365 	/* Don't allow clients that don't understand the native
1366 	 * architecture to do anything.
1367 	 */
1368 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1369 		return -EINVAL;
1370 
1371 	if (nr_segments > KEXEC_SEGMENT_MAX)
1372 		return -EINVAL;
1373 
1374 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1375 	for (i = 0; i < nr_segments; i++) {
1376 		result = copy_from_user(&in, &segments[i], sizeof(in));
1377 		if (result)
1378 			return -EFAULT;
1379 
1380 		out.buf   = compat_ptr(in.buf);
1381 		out.bufsz = in.bufsz;
1382 		out.mem   = in.mem;
1383 		out.memsz = in.memsz;
1384 
1385 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1386 		if (result)
1387 			return -EFAULT;
1388 	}
1389 
1390 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1391 }
1392 #endif
1393 
1394 #ifdef CONFIG_KEXEC_FILE
1395 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1396 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1397 		unsigned long, flags)
1398 {
1399 	int ret = 0, i;
1400 	struct kimage **dest_image, *image;
1401 
1402 	/* We only trust the superuser with rebooting the system. */
1403 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1404 		return -EPERM;
1405 
1406 	/* Make sure we have a legal set of flags */
1407 	if (flags != (flags & KEXEC_FILE_FLAGS))
1408 		return -EINVAL;
1409 
1410 	image = NULL;
1411 
1412 	if (!mutex_trylock(&kexec_mutex))
1413 		return -EBUSY;
1414 
1415 	dest_image = &kexec_image;
1416 	if (flags & KEXEC_FILE_ON_CRASH)
1417 		dest_image = &kexec_crash_image;
1418 
1419 	if (flags & KEXEC_FILE_UNLOAD)
1420 		goto exchange;
1421 
1422 	/*
1423 	 * In case of crash, new kernel gets loaded in reserved region. It is
1424 	 * same memory where old crash kernel might be loaded. Free any
1425 	 * current crash dump kernel before we corrupt it.
1426 	 */
1427 	if (flags & KEXEC_FILE_ON_CRASH)
1428 		kimage_free(xchg(&kexec_crash_image, NULL));
1429 
1430 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1431 				     cmdline_len, flags);
1432 	if (ret)
1433 		goto out;
1434 
1435 	ret = machine_kexec_prepare(image);
1436 	if (ret)
1437 		goto out;
1438 
1439 	ret = kexec_calculate_store_digests(image);
1440 	if (ret)
1441 		goto out;
1442 
1443 	for (i = 0; i < image->nr_segments; i++) {
1444 		struct kexec_segment *ksegment;
1445 
1446 		ksegment = &image->segment[i];
1447 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1448 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1449 			 ksegment->memsz);
1450 
1451 		ret = kimage_load_segment(image, &image->segment[i]);
1452 		if (ret)
1453 			goto out;
1454 	}
1455 
1456 	kimage_terminate(image);
1457 
1458 	/*
1459 	 * Free up any temporary buffers allocated which are not needed
1460 	 * after image has been loaded
1461 	 */
1462 	kimage_file_post_load_cleanup(image);
1463 exchange:
1464 	image = xchg(dest_image, image);
1465 out:
1466 	mutex_unlock(&kexec_mutex);
1467 	kimage_free(image);
1468 	return ret;
1469 }
1470 
1471 #endif /* CONFIG_KEXEC_FILE */
1472 
1473 void crash_kexec(struct pt_regs *regs)
1474 {
1475 	/* Take the kexec_mutex here to prevent sys_kexec_load
1476 	 * running on one cpu from replacing the crash kernel
1477 	 * we are using after a panic on a different cpu.
1478 	 *
1479 	 * If the crash kernel was not located in a fixed area
1480 	 * of memory the xchg(&kexec_crash_image) would be
1481 	 * sufficient.  But since I reuse the memory...
1482 	 */
1483 	if (mutex_trylock(&kexec_mutex)) {
1484 		if (kexec_crash_image) {
1485 			struct pt_regs fixed_regs;
1486 
1487 			crash_setup_regs(&fixed_regs, regs);
1488 			crash_save_vmcoreinfo();
1489 			machine_crash_shutdown(&fixed_regs);
1490 			machine_kexec(kexec_crash_image);
1491 		}
1492 		mutex_unlock(&kexec_mutex);
1493 	}
1494 }
1495 
1496 size_t crash_get_memory_size(void)
1497 {
1498 	size_t size = 0;
1499 	mutex_lock(&kexec_mutex);
1500 	if (crashk_res.end != crashk_res.start)
1501 		size = resource_size(&crashk_res);
1502 	mutex_unlock(&kexec_mutex);
1503 	return size;
1504 }
1505 
1506 void __weak crash_free_reserved_phys_range(unsigned long begin,
1507 					   unsigned long end)
1508 {
1509 	unsigned long addr;
1510 
1511 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1512 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1513 }
1514 
1515 int crash_shrink_memory(unsigned long new_size)
1516 {
1517 	int ret = 0;
1518 	unsigned long start, end;
1519 	unsigned long old_size;
1520 	struct resource *ram_res;
1521 
1522 	mutex_lock(&kexec_mutex);
1523 
1524 	if (kexec_crash_image) {
1525 		ret = -ENOENT;
1526 		goto unlock;
1527 	}
1528 	start = crashk_res.start;
1529 	end = crashk_res.end;
1530 	old_size = (end == 0) ? 0 : end - start + 1;
1531 	if (new_size >= old_size) {
1532 		ret = (new_size == old_size) ? 0 : -EINVAL;
1533 		goto unlock;
1534 	}
1535 
1536 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1537 	if (!ram_res) {
1538 		ret = -ENOMEM;
1539 		goto unlock;
1540 	}
1541 
1542 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1543 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1544 
1545 	crash_map_reserved_pages();
1546 	crash_free_reserved_phys_range(end, crashk_res.end);
1547 
1548 	if ((start == end) && (crashk_res.parent != NULL))
1549 		release_resource(&crashk_res);
1550 
1551 	ram_res->start = end;
1552 	ram_res->end = crashk_res.end;
1553 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1554 	ram_res->name = "System RAM";
1555 
1556 	crashk_res.end = end - 1;
1557 
1558 	insert_resource(&iomem_resource, ram_res);
1559 	crash_unmap_reserved_pages();
1560 
1561 unlock:
1562 	mutex_unlock(&kexec_mutex);
1563 	return ret;
1564 }
1565 
1566 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1567 			    size_t data_len)
1568 {
1569 	struct elf_note note;
1570 
1571 	note.n_namesz = strlen(name) + 1;
1572 	note.n_descsz = data_len;
1573 	note.n_type   = type;
1574 	memcpy(buf, &note, sizeof(note));
1575 	buf += (sizeof(note) + 3)/4;
1576 	memcpy(buf, name, note.n_namesz);
1577 	buf += (note.n_namesz + 3)/4;
1578 	memcpy(buf, data, note.n_descsz);
1579 	buf += (note.n_descsz + 3)/4;
1580 
1581 	return buf;
1582 }
1583 
1584 static void final_note(u32 *buf)
1585 {
1586 	struct elf_note note;
1587 
1588 	note.n_namesz = 0;
1589 	note.n_descsz = 0;
1590 	note.n_type   = 0;
1591 	memcpy(buf, &note, sizeof(note));
1592 }
1593 
1594 void crash_save_cpu(struct pt_regs *regs, int cpu)
1595 {
1596 	struct elf_prstatus prstatus;
1597 	u32 *buf;
1598 
1599 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1600 		return;
1601 
1602 	/* Using ELF notes here is opportunistic.
1603 	 * I need a well defined structure format
1604 	 * for the data I pass, and I need tags
1605 	 * on the data to indicate what information I have
1606 	 * squirrelled away.  ELF notes happen to provide
1607 	 * all of that, so there is no need to invent something new.
1608 	 */
1609 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1610 	if (!buf)
1611 		return;
1612 	memset(&prstatus, 0, sizeof(prstatus));
1613 	prstatus.pr_pid = current->pid;
1614 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1615 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1616 			      &prstatus, sizeof(prstatus));
1617 	final_note(buf);
1618 }
1619 
1620 static int __init crash_notes_memory_init(void)
1621 {
1622 	/* Allocate memory for saving cpu registers. */
1623 	crash_notes = alloc_percpu(note_buf_t);
1624 	if (!crash_notes) {
1625 		pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1626 		return -ENOMEM;
1627 	}
1628 	return 0;
1629 }
1630 subsys_initcall(crash_notes_memory_init);
1631 
1632 
1633 /*
1634  * parsing the "crashkernel" commandline
1635  *
1636  * this code is intended to be called from architecture specific code
1637  */
1638 
1639 
1640 /*
1641  * This function parses command lines in the format
1642  *
1643  *   crashkernel=ramsize-range:size[,...][@offset]
1644  *
1645  * The function returns 0 on success and -EINVAL on failure.
1646  */
1647 static int __init parse_crashkernel_mem(char *cmdline,
1648 					unsigned long long system_ram,
1649 					unsigned long long *crash_size,
1650 					unsigned long long *crash_base)
1651 {
1652 	char *cur = cmdline, *tmp;
1653 
1654 	/* for each entry of the comma-separated list */
1655 	do {
1656 		unsigned long long start, end = ULLONG_MAX, size;
1657 
1658 		/* get the start of the range */
1659 		start = memparse(cur, &tmp);
1660 		if (cur == tmp) {
1661 			pr_warn("crashkernel: Memory value expected\n");
1662 			return -EINVAL;
1663 		}
1664 		cur = tmp;
1665 		if (*cur != '-') {
1666 			pr_warn("crashkernel: '-' expected\n");
1667 			return -EINVAL;
1668 		}
1669 		cur++;
1670 
1671 		/* if no ':' is here, than we read the end */
1672 		if (*cur != ':') {
1673 			end = memparse(cur, &tmp);
1674 			if (cur == tmp) {
1675 				pr_warn("crashkernel: Memory value expected\n");
1676 				return -EINVAL;
1677 			}
1678 			cur = tmp;
1679 			if (end <= start) {
1680 				pr_warn("crashkernel: end <= start\n");
1681 				return -EINVAL;
1682 			}
1683 		}
1684 
1685 		if (*cur != ':') {
1686 			pr_warn("crashkernel: ':' expected\n");
1687 			return -EINVAL;
1688 		}
1689 		cur++;
1690 
1691 		size = memparse(cur, &tmp);
1692 		if (cur == tmp) {
1693 			pr_warn("Memory value expected\n");
1694 			return -EINVAL;
1695 		}
1696 		cur = tmp;
1697 		if (size >= system_ram) {
1698 			pr_warn("crashkernel: invalid size\n");
1699 			return -EINVAL;
1700 		}
1701 
1702 		/* match ? */
1703 		if (system_ram >= start && system_ram < end) {
1704 			*crash_size = size;
1705 			break;
1706 		}
1707 	} while (*cur++ == ',');
1708 
1709 	if (*crash_size > 0) {
1710 		while (*cur && *cur != ' ' && *cur != '@')
1711 			cur++;
1712 		if (*cur == '@') {
1713 			cur++;
1714 			*crash_base = memparse(cur, &tmp);
1715 			if (cur == tmp) {
1716 				pr_warn("Memory value expected after '@'\n");
1717 				return -EINVAL;
1718 			}
1719 		}
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * That function parses "simple" (old) crashkernel command lines like
1727  *
1728  *	crashkernel=size[@offset]
1729  *
1730  * It returns 0 on success and -EINVAL on failure.
1731  */
1732 static int __init parse_crashkernel_simple(char *cmdline,
1733 					   unsigned long long *crash_size,
1734 					   unsigned long long *crash_base)
1735 {
1736 	char *cur = cmdline;
1737 
1738 	*crash_size = memparse(cmdline, &cur);
1739 	if (cmdline == cur) {
1740 		pr_warn("crashkernel: memory value expected\n");
1741 		return -EINVAL;
1742 	}
1743 
1744 	if (*cur == '@')
1745 		*crash_base = memparse(cur+1, &cur);
1746 	else if (*cur != ' ' && *cur != '\0') {
1747 		pr_warn("crashkernel: unrecognized char\n");
1748 		return -EINVAL;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 #define SUFFIX_HIGH 0
1755 #define SUFFIX_LOW  1
1756 #define SUFFIX_NULL 2
1757 static __initdata char *suffix_tbl[] = {
1758 	[SUFFIX_HIGH] = ",high",
1759 	[SUFFIX_LOW]  = ",low",
1760 	[SUFFIX_NULL] = NULL,
1761 };
1762 
1763 /*
1764  * That function parses "suffix"  crashkernel command lines like
1765  *
1766  *	crashkernel=size,[high|low]
1767  *
1768  * It returns 0 on success and -EINVAL on failure.
1769  */
1770 static int __init parse_crashkernel_suffix(char *cmdline,
1771 					   unsigned long long	*crash_size,
1772 					   const char *suffix)
1773 {
1774 	char *cur = cmdline;
1775 
1776 	*crash_size = memparse(cmdline, &cur);
1777 	if (cmdline == cur) {
1778 		pr_warn("crashkernel: memory value expected\n");
1779 		return -EINVAL;
1780 	}
1781 
1782 	/* check with suffix */
1783 	if (strncmp(cur, suffix, strlen(suffix))) {
1784 		pr_warn("crashkernel: unrecognized char\n");
1785 		return -EINVAL;
1786 	}
1787 	cur += strlen(suffix);
1788 	if (*cur != ' ' && *cur != '\0') {
1789 		pr_warn("crashkernel: unrecognized char\n");
1790 		return -EINVAL;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static __init char *get_last_crashkernel(char *cmdline,
1797 			     const char *name,
1798 			     const char *suffix)
1799 {
1800 	char *p = cmdline, *ck_cmdline = NULL;
1801 
1802 	/* find crashkernel and use the last one if there are more */
1803 	p = strstr(p, name);
1804 	while (p) {
1805 		char *end_p = strchr(p, ' ');
1806 		char *q;
1807 
1808 		if (!end_p)
1809 			end_p = p + strlen(p);
1810 
1811 		if (!suffix) {
1812 			int i;
1813 
1814 			/* skip the one with any known suffix */
1815 			for (i = 0; suffix_tbl[i]; i++) {
1816 				q = end_p - strlen(suffix_tbl[i]);
1817 				if (!strncmp(q, suffix_tbl[i],
1818 					     strlen(suffix_tbl[i])))
1819 					goto next;
1820 			}
1821 			ck_cmdline = p;
1822 		} else {
1823 			q = end_p - strlen(suffix);
1824 			if (!strncmp(q, suffix, strlen(suffix)))
1825 				ck_cmdline = p;
1826 		}
1827 next:
1828 		p = strstr(p+1, name);
1829 	}
1830 
1831 	if (!ck_cmdline)
1832 		return NULL;
1833 
1834 	return ck_cmdline;
1835 }
1836 
1837 static int __init __parse_crashkernel(char *cmdline,
1838 			     unsigned long long system_ram,
1839 			     unsigned long long *crash_size,
1840 			     unsigned long long *crash_base,
1841 			     const char *name,
1842 			     const char *suffix)
1843 {
1844 	char	*first_colon, *first_space;
1845 	char	*ck_cmdline;
1846 
1847 	BUG_ON(!crash_size || !crash_base);
1848 	*crash_size = 0;
1849 	*crash_base = 0;
1850 
1851 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1852 
1853 	if (!ck_cmdline)
1854 		return -EINVAL;
1855 
1856 	ck_cmdline += strlen(name);
1857 
1858 	if (suffix)
1859 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1860 				suffix);
1861 	/*
1862 	 * if the commandline contains a ':', then that's the extended
1863 	 * syntax -- if not, it must be the classic syntax
1864 	 */
1865 	first_colon = strchr(ck_cmdline, ':');
1866 	first_space = strchr(ck_cmdline, ' ');
1867 	if (first_colon && (!first_space || first_colon < first_space))
1868 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1869 				crash_size, crash_base);
1870 
1871 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1872 }
1873 
1874 /*
1875  * That function is the entry point for command line parsing and should be
1876  * called from the arch-specific code.
1877  */
1878 int __init parse_crashkernel(char *cmdline,
1879 			     unsigned long long system_ram,
1880 			     unsigned long long *crash_size,
1881 			     unsigned long long *crash_base)
1882 {
1883 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1884 					"crashkernel=", NULL);
1885 }
1886 
1887 int __init parse_crashkernel_high(char *cmdline,
1888 			     unsigned long long system_ram,
1889 			     unsigned long long *crash_size,
1890 			     unsigned long long *crash_base)
1891 {
1892 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1893 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1894 }
1895 
1896 int __init parse_crashkernel_low(char *cmdline,
1897 			     unsigned long long system_ram,
1898 			     unsigned long long *crash_size,
1899 			     unsigned long long *crash_base)
1900 {
1901 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1902 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1903 }
1904 
1905 static void update_vmcoreinfo_note(void)
1906 {
1907 	u32 *buf = vmcoreinfo_note;
1908 
1909 	if (!vmcoreinfo_size)
1910 		return;
1911 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1912 			      vmcoreinfo_size);
1913 	final_note(buf);
1914 }
1915 
1916 void crash_save_vmcoreinfo(void)
1917 {
1918 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1919 	update_vmcoreinfo_note();
1920 }
1921 
1922 void vmcoreinfo_append_str(const char *fmt, ...)
1923 {
1924 	va_list args;
1925 	char buf[0x50];
1926 	size_t r;
1927 
1928 	va_start(args, fmt);
1929 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1930 	va_end(args);
1931 
1932 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1933 
1934 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1935 
1936 	vmcoreinfo_size += r;
1937 }
1938 
1939 /*
1940  * provide an empty default implementation here -- architecture
1941  * code may override this
1942  */
1943 void __weak arch_crash_save_vmcoreinfo(void)
1944 {}
1945 
1946 unsigned long __weak paddr_vmcoreinfo_note(void)
1947 {
1948 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1949 }
1950 
1951 static int __init crash_save_vmcoreinfo_init(void)
1952 {
1953 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1954 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1955 
1956 	VMCOREINFO_SYMBOL(init_uts_ns);
1957 	VMCOREINFO_SYMBOL(node_online_map);
1958 #ifdef CONFIG_MMU
1959 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1960 #endif
1961 	VMCOREINFO_SYMBOL(_stext);
1962 	VMCOREINFO_SYMBOL(vmap_area_list);
1963 
1964 #ifndef CONFIG_NEED_MULTIPLE_NODES
1965 	VMCOREINFO_SYMBOL(mem_map);
1966 	VMCOREINFO_SYMBOL(contig_page_data);
1967 #endif
1968 #ifdef CONFIG_SPARSEMEM
1969 	VMCOREINFO_SYMBOL(mem_section);
1970 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1971 	VMCOREINFO_STRUCT_SIZE(mem_section);
1972 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1973 #endif
1974 	VMCOREINFO_STRUCT_SIZE(page);
1975 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1976 	VMCOREINFO_STRUCT_SIZE(zone);
1977 	VMCOREINFO_STRUCT_SIZE(free_area);
1978 	VMCOREINFO_STRUCT_SIZE(list_head);
1979 	VMCOREINFO_SIZE(nodemask_t);
1980 	VMCOREINFO_OFFSET(page, flags);
1981 	VMCOREINFO_OFFSET(page, _count);
1982 	VMCOREINFO_OFFSET(page, mapping);
1983 	VMCOREINFO_OFFSET(page, lru);
1984 	VMCOREINFO_OFFSET(page, _mapcount);
1985 	VMCOREINFO_OFFSET(page, private);
1986 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1987 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1988 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1989 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1990 #endif
1991 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1992 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1993 	VMCOREINFO_OFFSET(pglist_data, node_id);
1994 	VMCOREINFO_OFFSET(zone, free_area);
1995 	VMCOREINFO_OFFSET(zone, vm_stat);
1996 	VMCOREINFO_OFFSET(zone, spanned_pages);
1997 	VMCOREINFO_OFFSET(free_area, free_list);
1998 	VMCOREINFO_OFFSET(list_head, next);
1999 	VMCOREINFO_OFFSET(list_head, prev);
2000 	VMCOREINFO_OFFSET(vmap_area, va_start);
2001 	VMCOREINFO_OFFSET(vmap_area, list);
2002 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
2003 	log_buf_kexec_setup();
2004 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
2005 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
2006 	VMCOREINFO_NUMBER(PG_lru);
2007 	VMCOREINFO_NUMBER(PG_private);
2008 	VMCOREINFO_NUMBER(PG_swapcache);
2009 	VMCOREINFO_NUMBER(PG_slab);
2010 #ifdef CONFIG_MEMORY_FAILURE
2011 	VMCOREINFO_NUMBER(PG_hwpoison);
2012 #endif
2013 	VMCOREINFO_NUMBER(PG_head_mask);
2014 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2015 #ifdef CONFIG_HUGETLBFS
2016 	VMCOREINFO_SYMBOL(free_huge_page);
2017 #endif
2018 
2019 	arch_crash_save_vmcoreinfo();
2020 	update_vmcoreinfo_note();
2021 
2022 	return 0;
2023 }
2024 
2025 subsys_initcall(crash_save_vmcoreinfo_init);
2026 
2027 #ifdef CONFIG_KEXEC_FILE
2028 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2029 				    struct kexec_buf *kbuf)
2030 {
2031 	struct kimage *image = kbuf->image;
2032 	unsigned long temp_start, temp_end;
2033 
2034 	temp_end = min(end, kbuf->buf_max);
2035 	temp_start = temp_end - kbuf->memsz;
2036 
2037 	do {
2038 		/* align down start */
2039 		temp_start = temp_start & (~(kbuf->buf_align - 1));
2040 
2041 		if (temp_start < start || temp_start < kbuf->buf_min)
2042 			return 0;
2043 
2044 		temp_end = temp_start + kbuf->memsz - 1;
2045 
2046 		/*
2047 		 * Make sure this does not conflict with any of existing
2048 		 * segments
2049 		 */
2050 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2051 			temp_start = temp_start - PAGE_SIZE;
2052 			continue;
2053 		}
2054 
2055 		/* We found a suitable memory range */
2056 		break;
2057 	} while (1);
2058 
2059 	/* If we are here, we found a suitable memory range */
2060 	kbuf->mem = temp_start;
2061 
2062 	/* Success, stop navigating through remaining System RAM ranges */
2063 	return 1;
2064 }
2065 
2066 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2067 				     struct kexec_buf *kbuf)
2068 {
2069 	struct kimage *image = kbuf->image;
2070 	unsigned long temp_start, temp_end;
2071 
2072 	temp_start = max(start, kbuf->buf_min);
2073 
2074 	do {
2075 		temp_start = ALIGN(temp_start, kbuf->buf_align);
2076 		temp_end = temp_start + kbuf->memsz - 1;
2077 
2078 		if (temp_end > end || temp_end > kbuf->buf_max)
2079 			return 0;
2080 		/*
2081 		 * Make sure this does not conflict with any of existing
2082 		 * segments
2083 		 */
2084 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
2085 			temp_start = temp_start + PAGE_SIZE;
2086 			continue;
2087 		}
2088 
2089 		/* We found a suitable memory range */
2090 		break;
2091 	} while (1);
2092 
2093 	/* If we are here, we found a suitable memory range */
2094 	kbuf->mem = temp_start;
2095 
2096 	/* Success, stop navigating through remaining System RAM ranges */
2097 	return 1;
2098 }
2099 
2100 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2101 {
2102 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2103 	unsigned long sz = end - start + 1;
2104 
2105 	/* Returning 0 will take to next memory range */
2106 	if (sz < kbuf->memsz)
2107 		return 0;
2108 
2109 	if (end < kbuf->buf_min || start > kbuf->buf_max)
2110 		return 0;
2111 
2112 	/*
2113 	 * Allocate memory top down with-in ram range. Otherwise bottom up
2114 	 * allocation.
2115 	 */
2116 	if (kbuf->top_down)
2117 		return locate_mem_hole_top_down(start, end, kbuf);
2118 	return locate_mem_hole_bottom_up(start, end, kbuf);
2119 }
2120 
2121 /*
2122  * Helper function for placing a buffer in a kexec segment. This assumes
2123  * that kexec_mutex is held.
2124  */
2125 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2126 		     unsigned long memsz, unsigned long buf_align,
2127 		     unsigned long buf_min, unsigned long buf_max,
2128 		     bool top_down, unsigned long *load_addr)
2129 {
2130 
2131 	struct kexec_segment *ksegment;
2132 	struct kexec_buf buf, *kbuf;
2133 	int ret;
2134 
2135 	/* Currently adding segment this way is allowed only in file mode */
2136 	if (!image->file_mode)
2137 		return -EINVAL;
2138 
2139 	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2140 		return -EINVAL;
2141 
2142 	/*
2143 	 * Make sure we are not trying to add buffer after allocating
2144 	 * control pages. All segments need to be placed first before
2145 	 * any control pages are allocated. As control page allocation
2146 	 * logic goes through list of segments to make sure there are
2147 	 * no destination overlaps.
2148 	 */
2149 	if (!list_empty(&image->control_pages)) {
2150 		WARN_ON(1);
2151 		return -EINVAL;
2152 	}
2153 
2154 	memset(&buf, 0, sizeof(struct kexec_buf));
2155 	kbuf = &buf;
2156 	kbuf->image = image;
2157 	kbuf->buffer = buffer;
2158 	kbuf->bufsz = bufsz;
2159 
2160 	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2161 	kbuf->buf_align = max(buf_align, PAGE_SIZE);
2162 	kbuf->buf_min = buf_min;
2163 	kbuf->buf_max = buf_max;
2164 	kbuf->top_down = top_down;
2165 
2166 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
2167 	if (image->type == KEXEC_TYPE_CRASH)
2168 		ret = walk_iomem_res("Crash kernel",
2169 				     IORESOURCE_MEM | IORESOURCE_BUSY,
2170 				     crashk_res.start, crashk_res.end, kbuf,
2171 				     locate_mem_hole_callback);
2172 	else
2173 		ret = walk_system_ram_res(0, -1, kbuf,
2174 					  locate_mem_hole_callback);
2175 	if (ret != 1) {
2176 		/* A suitable memory range could not be found for buffer */
2177 		return -EADDRNOTAVAIL;
2178 	}
2179 
2180 	/* Found a suitable memory range */
2181 	ksegment = &image->segment[image->nr_segments];
2182 	ksegment->kbuf = kbuf->buffer;
2183 	ksegment->bufsz = kbuf->bufsz;
2184 	ksegment->mem = kbuf->mem;
2185 	ksegment->memsz = kbuf->memsz;
2186 	image->nr_segments++;
2187 	*load_addr = ksegment->mem;
2188 	return 0;
2189 }
2190 
2191 /* Calculate and store the digest of segments */
2192 static int kexec_calculate_store_digests(struct kimage *image)
2193 {
2194 	struct crypto_shash *tfm;
2195 	struct shash_desc *desc;
2196 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2197 	size_t desc_size, nullsz;
2198 	char *digest;
2199 	void *zero_buf;
2200 	struct kexec_sha_region *sha_regions;
2201 	struct purgatory_info *pi = &image->purgatory_info;
2202 
2203 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2204 	zero_buf_sz = PAGE_SIZE;
2205 
2206 	tfm = crypto_alloc_shash("sha256", 0, 0);
2207 	if (IS_ERR(tfm)) {
2208 		ret = PTR_ERR(tfm);
2209 		goto out;
2210 	}
2211 
2212 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2213 	desc = kzalloc(desc_size, GFP_KERNEL);
2214 	if (!desc) {
2215 		ret = -ENOMEM;
2216 		goto out_free_tfm;
2217 	}
2218 
2219 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2220 	sha_regions = vzalloc(sha_region_sz);
2221 	if (!sha_regions)
2222 		goto out_free_desc;
2223 
2224 	desc->tfm   = tfm;
2225 	desc->flags = 0;
2226 
2227 	ret = crypto_shash_init(desc);
2228 	if (ret < 0)
2229 		goto out_free_sha_regions;
2230 
2231 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2232 	if (!digest) {
2233 		ret = -ENOMEM;
2234 		goto out_free_sha_regions;
2235 	}
2236 
2237 	for (j = i = 0; i < image->nr_segments; i++) {
2238 		struct kexec_segment *ksegment;
2239 
2240 		ksegment = &image->segment[i];
2241 		/*
2242 		 * Skip purgatory as it will be modified once we put digest
2243 		 * info in purgatory.
2244 		 */
2245 		if (ksegment->kbuf == pi->purgatory_buf)
2246 			continue;
2247 
2248 		ret = crypto_shash_update(desc, ksegment->kbuf,
2249 					  ksegment->bufsz);
2250 		if (ret)
2251 			break;
2252 
2253 		/*
2254 		 * Assume rest of the buffer is filled with zero and
2255 		 * update digest accordingly.
2256 		 */
2257 		nullsz = ksegment->memsz - ksegment->bufsz;
2258 		while (nullsz) {
2259 			unsigned long bytes = nullsz;
2260 
2261 			if (bytes > zero_buf_sz)
2262 				bytes = zero_buf_sz;
2263 			ret = crypto_shash_update(desc, zero_buf, bytes);
2264 			if (ret)
2265 				break;
2266 			nullsz -= bytes;
2267 		}
2268 
2269 		if (ret)
2270 			break;
2271 
2272 		sha_regions[j].start = ksegment->mem;
2273 		sha_regions[j].len = ksegment->memsz;
2274 		j++;
2275 	}
2276 
2277 	if (!ret) {
2278 		ret = crypto_shash_final(desc, digest);
2279 		if (ret)
2280 			goto out_free_digest;
2281 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2282 						sha_regions, sha_region_sz, 0);
2283 		if (ret)
2284 			goto out_free_digest;
2285 
2286 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2287 						digest, SHA256_DIGEST_SIZE, 0);
2288 		if (ret)
2289 			goto out_free_digest;
2290 	}
2291 
2292 out_free_digest:
2293 	kfree(digest);
2294 out_free_sha_regions:
2295 	vfree(sha_regions);
2296 out_free_desc:
2297 	kfree(desc);
2298 out_free_tfm:
2299 	kfree(tfm);
2300 out:
2301 	return ret;
2302 }
2303 
2304 /* Actually load purgatory. Lot of code taken from kexec-tools */
2305 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2306 				  unsigned long max, int top_down)
2307 {
2308 	struct purgatory_info *pi = &image->purgatory_info;
2309 	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2310 	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2311 	unsigned char *buf_addr, *src;
2312 	int i, ret = 0, entry_sidx = -1;
2313 	const Elf_Shdr *sechdrs_c;
2314 	Elf_Shdr *sechdrs = NULL;
2315 	void *purgatory_buf = NULL;
2316 
2317 	/*
2318 	 * sechdrs_c points to section headers in purgatory and are read
2319 	 * only. No modifications allowed.
2320 	 */
2321 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2322 
2323 	/*
2324 	 * We can not modify sechdrs_c[] and its fields. It is read only.
2325 	 * Copy it over to a local copy where one can store some temporary
2326 	 * data and free it at the end. We need to modify ->sh_addr and
2327 	 * ->sh_offset fields to keep track of permanent and temporary
2328 	 * locations of sections.
2329 	 */
2330 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2331 	if (!sechdrs)
2332 		return -ENOMEM;
2333 
2334 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2335 
2336 	/*
2337 	 * We seem to have multiple copies of sections. First copy is which
2338 	 * is embedded in kernel in read only section. Some of these sections
2339 	 * will be copied to a temporary buffer and relocated. And these
2340 	 * sections will finally be copied to their final destination at
2341 	 * segment load time.
2342 	 *
2343 	 * Use ->sh_offset to reflect section address in memory. It will
2344 	 * point to original read only copy if section is not allocatable.
2345 	 * Otherwise it will point to temporary copy which will be relocated.
2346 	 *
2347 	 * Use ->sh_addr to contain final address of the section where it
2348 	 * will go during execution time.
2349 	 */
2350 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2351 		if (sechdrs[i].sh_type == SHT_NOBITS)
2352 			continue;
2353 
2354 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2355 						sechdrs[i].sh_offset;
2356 	}
2357 
2358 	/*
2359 	 * Identify entry point section and make entry relative to section
2360 	 * start.
2361 	 */
2362 	entry = pi->ehdr->e_entry;
2363 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2364 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2365 			continue;
2366 
2367 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2368 			continue;
2369 
2370 		/* Make entry section relative */
2371 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2372 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2373 		     pi->ehdr->e_entry)) {
2374 			entry_sidx = i;
2375 			entry -= sechdrs[i].sh_addr;
2376 			break;
2377 		}
2378 	}
2379 
2380 	/* Determine how much memory is needed to load relocatable object. */
2381 	buf_align = 1;
2382 	bss_align = 1;
2383 	buf_sz = 0;
2384 	bss_sz = 0;
2385 
2386 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2387 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2388 			continue;
2389 
2390 		align = sechdrs[i].sh_addralign;
2391 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2392 			if (buf_align < align)
2393 				buf_align = align;
2394 			buf_sz = ALIGN(buf_sz, align);
2395 			buf_sz += sechdrs[i].sh_size;
2396 		} else {
2397 			/* bss section */
2398 			if (bss_align < align)
2399 				bss_align = align;
2400 			bss_sz = ALIGN(bss_sz, align);
2401 			bss_sz += sechdrs[i].sh_size;
2402 		}
2403 	}
2404 
2405 	/* Determine the bss padding required to align bss properly */
2406 	bss_pad = 0;
2407 	if (buf_sz & (bss_align - 1))
2408 		bss_pad = bss_align - (buf_sz & (bss_align - 1));
2409 
2410 	memsz = buf_sz + bss_pad + bss_sz;
2411 
2412 	/* Allocate buffer for purgatory */
2413 	purgatory_buf = vzalloc(buf_sz);
2414 	if (!purgatory_buf) {
2415 		ret = -ENOMEM;
2416 		goto out;
2417 	}
2418 
2419 	if (buf_align < bss_align)
2420 		buf_align = bss_align;
2421 
2422 	/* Add buffer to segment list */
2423 	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2424 				buf_align, min, max, top_down,
2425 				&pi->purgatory_load_addr);
2426 	if (ret)
2427 		goto out;
2428 
2429 	/* Load SHF_ALLOC sections */
2430 	buf_addr = purgatory_buf;
2431 	load_addr = curr_load_addr = pi->purgatory_load_addr;
2432 	bss_addr = load_addr + buf_sz + bss_pad;
2433 
2434 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2435 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2436 			continue;
2437 
2438 		align = sechdrs[i].sh_addralign;
2439 		if (sechdrs[i].sh_type != SHT_NOBITS) {
2440 			curr_load_addr = ALIGN(curr_load_addr, align);
2441 			offset = curr_load_addr - load_addr;
2442 			/* We already modifed ->sh_offset to keep src addr */
2443 			src = (char *) sechdrs[i].sh_offset;
2444 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2445 
2446 			/* Store load address and source address of section */
2447 			sechdrs[i].sh_addr = curr_load_addr;
2448 
2449 			/*
2450 			 * This section got copied to temporary buffer. Update
2451 			 * ->sh_offset accordingly.
2452 			 */
2453 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2454 
2455 			/* Advance to the next address */
2456 			curr_load_addr += sechdrs[i].sh_size;
2457 		} else {
2458 			bss_addr = ALIGN(bss_addr, align);
2459 			sechdrs[i].sh_addr = bss_addr;
2460 			bss_addr += sechdrs[i].sh_size;
2461 		}
2462 	}
2463 
2464 	/* Update entry point based on load address of text section */
2465 	if (entry_sidx >= 0)
2466 		entry += sechdrs[entry_sidx].sh_addr;
2467 
2468 	/* Make kernel jump to purgatory after shutdown */
2469 	image->start = entry;
2470 
2471 	/* Used later to get/set symbol values */
2472 	pi->sechdrs = sechdrs;
2473 
2474 	/*
2475 	 * Used later to identify which section is purgatory and skip it
2476 	 * from checksumming.
2477 	 */
2478 	pi->purgatory_buf = purgatory_buf;
2479 	return ret;
2480 out:
2481 	vfree(sechdrs);
2482 	vfree(purgatory_buf);
2483 	return ret;
2484 }
2485 
2486 static int kexec_apply_relocations(struct kimage *image)
2487 {
2488 	int i, ret;
2489 	struct purgatory_info *pi = &image->purgatory_info;
2490 	Elf_Shdr *sechdrs = pi->sechdrs;
2491 
2492 	/* Apply relocations */
2493 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
2494 		Elf_Shdr *section, *symtab;
2495 
2496 		if (sechdrs[i].sh_type != SHT_RELA &&
2497 		    sechdrs[i].sh_type != SHT_REL)
2498 			continue;
2499 
2500 		/*
2501 		 * For section of type SHT_RELA/SHT_REL,
2502 		 * ->sh_link contains section header index of associated
2503 		 * symbol table. And ->sh_info contains section header
2504 		 * index of section to which relocations apply.
2505 		 */
2506 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2507 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2508 			return -ENOEXEC;
2509 
2510 		section = &sechdrs[sechdrs[i].sh_info];
2511 		symtab = &sechdrs[sechdrs[i].sh_link];
2512 
2513 		if (!(section->sh_flags & SHF_ALLOC))
2514 			continue;
2515 
2516 		/*
2517 		 * symtab->sh_link contain section header index of associated
2518 		 * string table.
2519 		 */
2520 		if (symtab->sh_link >= pi->ehdr->e_shnum)
2521 			/* Invalid section number? */
2522 			continue;
2523 
2524 		/*
2525 		 * Respective architecture needs to provide support for applying
2526 		 * relocations of type SHT_RELA/SHT_REL.
2527 		 */
2528 		if (sechdrs[i].sh_type == SHT_RELA)
2529 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
2530 							       sechdrs, i);
2531 		else if (sechdrs[i].sh_type == SHT_REL)
2532 			ret = arch_kexec_apply_relocations(pi->ehdr,
2533 							   sechdrs, i);
2534 		if (ret)
2535 			return ret;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /* Load relocatable purgatory object and relocate it appropriately */
2542 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2543 			 unsigned long max, int top_down,
2544 			 unsigned long *load_addr)
2545 {
2546 	struct purgatory_info *pi = &image->purgatory_info;
2547 	int ret;
2548 
2549 	if (kexec_purgatory_size <= 0)
2550 		return -EINVAL;
2551 
2552 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2553 		return -ENOEXEC;
2554 
2555 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2556 
2557 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2558 	    || pi->ehdr->e_type != ET_REL
2559 	    || !elf_check_arch(pi->ehdr)
2560 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2561 		return -ENOEXEC;
2562 
2563 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
2564 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2565 	    kexec_purgatory_size - pi->ehdr->e_shoff))
2566 		return -ENOEXEC;
2567 
2568 	ret = __kexec_load_purgatory(image, min, max, top_down);
2569 	if (ret)
2570 		return ret;
2571 
2572 	ret = kexec_apply_relocations(image);
2573 	if (ret)
2574 		goto out;
2575 
2576 	*load_addr = pi->purgatory_load_addr;
2577 	return 0;
2578 out:
2579 	vfree(pi->sechdrs);
2580 	vfree(pi->purgatory_buf);
2581 	return ret;
2582 }
2583 
2584 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2585 					    const char *name)
2586 {
2587 	Elf_Sym *syms;
2588 	Elf_Shdr *sechdrs;
2589 	Elf_Ehdr *ehdr;
2590 	int i, k;
2591 	const char *strtab;
2592 
2593 	if (!pi->sechdrs || !pi->ehdr)
2594 		return NULL;
2595 
2596 	sechdrs = pi->sechdrs;
2597 	ehdr = pi->ehdr;
2598 
2599 	for (i = 0; i < ehdr->e_shnum; i++) {
2600 		if (sechdrs[i].sh_type != SHT_SYMTAB)
2601 			continue;
2602 
2603 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
2604 			/* Invalid strtab section number */
2605 			continue;
2606 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2607 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
2608 
2609 		/* Go through symbols for a match */
2610 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2611 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2612 				continue;
2613 
2614 			if (strcmp(strtab + syms[k].st_name, name) != 0)
2615 				continue;
2616 
2617 			if (syms[k].st_shndx == SHN_UNDEF ||
2618 			    syms[k].st_shndx >= ehdr->e_shnum) {
2619 				pr_debug("Symbol: %s has bad section index %d.\n",
2620 						name, syms[k].st_shndx);
2621 				return NULL;
2622 			}
2623 
2624 			/* Found the symbol we are looking for */
2625 			return &syms[k];
2626 		}
2627 	}
2628 
2629 	return NULL;
2630 }
2631 
2632 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2633 {
2634 	struct purgatory_info *pi = &image->purgatory_info;
2635 	Elf_Sym *sym;
2636 	Elf_Shdr *sechdr;
2637 
2638 	sym = kexec_purgatory_find_symbol(pi, name);
2639 	if (!sym)
2640 		return ERR_PTR(-EINVAL);
2641 
2642 	sechdr = &pi->sechdrs[sym->st_shndx];
2643 
2644 	/*
2645 	 * Returns the address where symbol will finally be loaded after
2646 	 * kexec_load_segment()
2647 	 */
2648 	return (void *)(sechdr->sh_addr + sym->st_value);
2649 }
2650 
2651 /*
2652  * Get or set value of a symbol. If "get_value" is true, symbol value is
2653  * returned in buf otherwise symbol value is set based on value in buf.
2654  */
2655 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2656 				   void *buf, unsigned int size, bool get_value)
2657 {
2658 	Elf_Sym *sym;
2659 	Elf_Shdr *sechdrs;
2660 	struct purgatory_info *pi = &image->purgatory_info;
2661 	char *sym_buf;
2662 
2663 	sym = kexec_purgatory_find_symbol(pi, name);
2664 	if (!sym)
2665 		return -EINVAL;
2666 
2667 	if (sym->st_size != size) {
2668 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2669 		       name, (unsigned long)sym->st_size, size);
2670 		return -EINVAL;
2671 	}
2672 
2673 	sechdrs = pi->sechdrs;
2674 
2675 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2676 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2677 		       get_value ? "get" : "set");
2678 		return -EINVAL;
2679 	}
2680 
2681 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2682 					sym->st_value;
2683 
2684 	if (get_value)
2685 		memcpy((void *)buf, sym_buf, size);
2686 	else
2687 		memcpy((void *)sym_buf, buf, size);
2688 
2689 	return 0;
2690 }
2691 #endif /* CONFIG_KEXEC_FILE */
2692 
2693 /*
2694  * Move into place and start executing a preloaded standalone
2695  * executable.  If nothing was preloaded return an error.
2696  */
2697 int kernel_kexec(void)
2698 {
2699 	int error = 0;
2700 
2701 	if (!mutex_trylock(&kexec_mutex))
2702 		return -EBUSY;
2703 	if (!kexec_image) {
2704 		error = -EINVAL;
2705 		goto Unlock;
2706 	}
2707 
2708 #ifdef CONFIG_KEXEC_JUMP
2709 	if (kexec_image->preserve_context) {
2710 		lock_system_sleep();
2711 		pm_prepare_console();
2712 		error = freeze_processes();
2713 		if (error) {
2714 			error = -EBUSY;
2715 			goto Restore_console;
2716 		}
2717 		suspend_console();
2718 		error = dpm_suspend_start(PMSG_FREEZE);
2719 		if (error)
2720 			goto Resume_console;
2721 		/* At this point, dpm_suspend_start() has been called,
2722 		 * but *not* dpm_suspend_end(). We *must* call
2723 		 * dpm_suspend_end() now.  Otherwise, drivers for
2724 		 * some devices (e.g. interrupt controllers) become
2725 		 * desynchronized with the actual state of the
2726 		 * hardware at resume time, and evil weirdness ensues.
2727 		 */
2728 		error = dpm_suspend_end(PMSG_FREEZE);
2729 		if (error)
2730 			goto Resume_devices;
2731 		error = disable_nonboot_cpus();
2732 		if (error)
2733 			goto Enable_cpus;
2734 		local_irq_disable();
2735 		error = syscore_suspend();
2736 		if (error)
2737 			goto Enable_irqs;
2738 	} else
2739 #endif
2740 	{
2741 		kexec_in_progress = true;
2742 		kernel_restart_prepare(NULL);
2743 		migrate_to_reboot_cpu();
2744 
2745 		/*
2746 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2747 		 * no further code needs to use CPU hotplug (which is true in
2748 		 * the reboot case). However, the kexec path depends on using
2749 		 * CPU hotplug again; so re-enable it here.
2750 		 */
2751 		cpu_hotplug_enable();
2752 		pr_emerg("Starting new kernel\n");
2753 		machine_shutdown();
2754 	}
2755 
2756 	machine_kexec(kexec_image);
2757 
2758 #ifdef CONFIG_KEXEC_JUMP
2759 	if (kexec_image->preserve_context) {
2760 		syscore_resume();
2761  Enable_irqs:
2762 		local_irq_enable();
2763  Enable_cpus:
2764 		enable_nonboot_cpus();
2765 		dpm_resume_start(PMSG_RESTORE);
2766  Resume_devices:
2767 		dpm_resume_end(PMSG_RESTORE);
2768  Resume_console:
2769 		resume_console();
2770 		thaw_processes();
2771  Restore_console:
2772 		pm_restore_console();
2773 		unlock_system_sleep();
2774 	}
2775 #endif
2776 
2777  Unlock:
2778 	mutex_unlock(&kexec_mutex);
2779 	return error;
2780 }
2781