xref: /openbmc/linux/kernel/kcsan/report.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/debug_locks.h>
4 #include <linux/delay.h>
5 #include <linux/jiffies.h>
6 #include <linux/kernel.h>
7 #include <linux/lockdep.h>
8 #include <linux/preempt.h>
9 #include <linux/printk.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/stacktrace.h>
13 
14 #include "kcsan.h"
15 #include "encoding.h"
16 
17 /*
18  * Max. number of stack entries to show in the report.
19  */
20 #define NUM_STACK_ENTRIES 64
21 
22 /* Common access info. */
23 struct access_info {
24 	const volatile void	*ptr;
25 	size_t			size;
26 	int			access_type;
27 	int			task_pid;
28 	int			cpu_id;
29 };
30 
31 /*
32  * Other thread info: communicated from other racing thread to thread that set
33  * up the watchpoint, which then prints the complete report atomically.
34  */
35 struct other_info {
36 	struct access_info	ai;
37 	unsigned long		stack_entries[NUM_STACK_ENTRIES];
38 	int			num_stack_entries;
39 
40 	/*
41 	 * Optionally pass @current. Typically we do not need to pass @current
42 	 * via @other_info since just @task_pid is sufficient. Passing @current
43 	 * has additional overhead.
44 	 *
45 	 * To safely pass @current, we must either use get_task_struct/
46 	 * put_task_struct, or stall the thread that populated @other_info.
47 	 *
48 	 * We cannot rely on get_task_struct/put_task_struct in case
49 	 * release_report() races with a task being released, and would have to
50 	 * free it in release_report(). This may result in deadlock if we want
51 	 * to use KCSAN on the allocators.
52 	 *
53 	 * Since we also want to reliably print held locks for
54 	 * CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
55 	 * that populated @other_info until it has been consumed.
56 	 */
57 	struct task_struct	*task;
58 };
59 
60 /*
61  * To never block any producers of struct other_info, we need as many elements
62  * as we have watchpoints (upper bound on concurrent races to report).
63  */
64 static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
65 
66 /*
67  * Information about reported races; used to rate limit reporting.
68  */
69 struct report_time {
70 	/*
71 	 * The last time the race was reported.
72 	 */
73 	unsigned long time;
74 
75 	/*
76 	 * The frames of the 2 threads; if only 1 thread is known, one frame
77 	 * will be 0.
78 	 */
79 	unsigned long frame1;
80 	unsigned long frame2;
81 };
82 
83 /*
84  * Since we also want to be able to debug allocators with KCSAN, to avoid
85  * deadlock, report_times cannot be dynamically resized with krealloc in
86  * rate_limit_report.
87  *
88  * Therefore, we use a fixed-size array, which at most will occupy a page. This
89  * still adequately rate limits reports, assuming that a) number of unique data
90  * races is not excessive, and b) occurrence of unique races within the
91  * same time window is limited.
92  */
93 #define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
94 #define REPORT_TIMES_SIZE                                                      \
95 	(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ?                   \
96 		 REPORT_TIMES_MAX :                                            \
97 		 CONFIG_KCSAN_REPORT_ONCE_IN_MS)
98 static struct report_time report_times[REPORT_TIMES_SIZE];
99 
100 /*
101  * Spinlock serializing report generation, and access to @other_infos. Although
102  * it could make sense to have a finer-grained locking story for @other_infos,
103  * report generation needs to be serialized either way, so not much is gained.
104  */
105 static DEFINE_RAW_SPINLOCK(report_lock);
106 
107 /*
108  * Checks if the race identified by thread frames frame1 and frame2 has
109  * been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
110  */
111 static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
112 {
113 	struct report_time *use_entry = &report_times[0];
114 	unsigned long invalid_before;
115 	int i;
116 
117 	BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
118 
119 	if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
120 		return false;
121 
122 	invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
123 
124 	/* Check if a matching race report exists. */
125 	for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
126 		struct report_time *rt = &report_times[i];
127 
128 		/*
129 		 * Must always select an entry for use to store info as we
130 		 * cannot resize report_times; at the end of the scan, use_entry
131 		 * will be the oldest entry, which ideally also happened before
132 		 * KCSAN_REPORT_ONCE_IN_MS ago.
133 		 */
134 		if (time_before(rt->time, use_entry->time))
135 			use_entry = rt;
136 
137 		/*
138 		 * Initially, no need to check any further as this entry as well
139 		 * as following entries have never been used.
140 		 */
141 		if (rt->time == 0)
142 			break;
143 
144 		/* Check if entry expired. */
145 		if (time_before(rt->time, invalid_before))
146 			continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
147 
148 		/* Reported recently, check if race matches. */
149 		if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
150 		    (rt->frame1 == frame2 && rt->frame2 == frame1))
151 			return true;
152 	}
153 
154 	use_entry->time = jiffies;
155 	use_entry->frame1 = frame1;
156 	use_entry->frame2 = frame2;
157 	return false;
158 }
159 
160 /*
161  * Special rules to skip reporting.
162  */
163 static bool
164 skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
165 {
166 	/* Should never get here if value_change==FALSE. */
167 	WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
168 
169 	/*
170 	 * The first call to skip_report always has value_change==TRUE, since we
171 	 * cannot know the value written of an instrumented access. For the 2nd
172 	 * call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
173 	 *
174 	 * 1. read watchpoint, conflicting write (value_change==TRUE): report;
175 	 * 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
176 	 * 3. write watchpoint, conflicting write (value_change==TRUE): report;
177 	 * 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
178 	 * 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
179 	 * 6. write watchpoint, conflicting read (value_change==TRUE): report;
180 	 *
181 	 * Cases 1-4 are intuitive and expected; case 5 ensures we do not report
182 	 * data races where the write may have rewritten the same value; case 6
183 	 * is possible either if the size is larger than what we check value
184 	 * changes for or the access type is KCSAN_ACCESS_ASSERT.
185 	 */
186 	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
187 	    value_change == KCSAN_VALUE_CHANGE_MAYBE) {
188 		/*
189 		 * The access is a write, but the data value did not change.
190 		 *
191 		 * We opt-out of this filter for certain functions at request of
192 		 * maintainers.
193 		 */
194 		char buf[64];
195 		int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
196 
197 		if (!strnstr(buf, "rcu_", len) &&
198 		    !strnstr(buf, "_rcu", len) &&
199 		    !strnstr(buf, "_srcu", len))
200 			return true;
201 	}
202 
203 	return kcsan_skip_report_debugfs(top_frame);
204 }
205 
206 static const char *get_access_type(int type)
207 {
208 	if (type & KCSAN_ACCESS_ASSERT) {
209 		if (type & KCSAN_ACCESS_SCOPED) {
210 			if (type & KCSAN_ACCESS_WRITE)
211 				return "assert no accesses (scoped)";
212 			else
213 				return "assert no writes (scoped)";
214 		} else {
215 			if (type & KCSAN_ACCESS_WRITE)
216 				return "assert no accesses";
217 			else
218 				return "assert no writes";
219 		}
220 	}
221 
222 	switch (type) {
223 	case 0:
224 		return "read";
225 	case KCSAN_ACCESS_ATOMIC:
226 		return "read (marked)";
227 	case KCSAN_ACCESS_WRITE:
228 		return "write";
229 	case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
230 		return "write (marked)";
231 	case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
232 		return "read-write";
233 	case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
234 		return "read-write (marked)";
235 	case KCSAN_ACCESS_SCOPED:
236 		return "read (scoped)";
237 	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
238 		return "read (marked, scoped)";
239 	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
240 		return "write (scoped)";
241 	case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
242 		return "write (marked, scoped)";
243 	default:
244 		BUG();
245 	}
246 }
247 
248 static const char *get_bug_type(int type)
249 {
250 	return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
251 }
252 
253 /* Return thread description: in task or interrupt. */
254 static const char *get_thread_desc(int task_id)
255 {
256 	if (task_id != -1) {
257 		static char buf[32]; /* safe: protected by report_lock */
258 
259 		snprintf(buf, sizeof(buf), "task %i", task_id);
260 		return buf;
261 	}
262 	return "interrupt";
263 }
264 
265 /* Helper to skip KCSAN-related functions in stack-trace. */
266 static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
267 {
268 	char buf[64];
269 	char *cur;
270 	int len, skip;
271 
272 	for (skip = 0; skip < num_entries; ++skip) {
273 		len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
274 
275 		/* Never show tsan_* or {read,write}_once_size. */
276 		if (strnstr(buf, "tsan_", len) ||
277 		    strnstr(buf, "_once_size", len))
278 			continue;
279 
280 		cur = strnstr(buf, "kcsan_", len);
281 		if (cur) {
282 			cur += strlen("kcsan_");
283 			if (!str_has_prefix(cur, "test"))
284 				continue; /* KCSAN runtime function. */
285 			/* KCSAN related test. */
286 		}
287 
288 		/*
289 		 * No match for runtime functions -- @skip entries to skip to
290 		 * get to first frame of interest.
291 		 */
292 		break;
293 	}
294 
295 	return skip;
296 }
297 
298 /* Compares symbolized strings of addr1 and addr2. */
299 static int sym_strcmp(void *addr1, void *addr2)
300 {
301 	char buf1[64];
302 	char buf2[64];
303 
304 	snprintf(buf1, sizeof(buf1), "%pS", addr1);
305 	snprintf(buf2, sizeof(buf2), "%pS", addr2);
306 
307 	return strncmp(buf1, buf2, sizeof(buf1));
308 }
309 
310 static void print_verbose_info(struct task_struct *task)
311 {
312 	if (!task)
313 		return;
314 
315 	/* Restore IRQ state trace for printing. */
316 	kcsan_restore_irqtrace(task);
317 
318 	pr_err("\n");
319 	debug_show_held_locks(task);
320 	print_irqtrace_events(task);
321 }
322 
323 /*
324  * Returns true if a report was generated, false otherwise.
325  */
326 static bool print_report(enum kcsan_value_change value_change,
327 			 enum kcsan_report_type type,
328 			 const struct access_info *ai,
329 			 const struct other_info *other_info)
330 {
331 	unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
332 	int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
333 	int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
334 	unsigned long this_frame = stack_entries[skipnr];
335 	unsigned long other_frame = 0;
336 	int other_skipnr = 0; /* silence uninit warnings */
337 
338 	/*
339 	 * Must check report filter rules before starting to print.
340 	 */
341 	if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
342 		return false;
343 
344 	if (type == KCSAN_REPORT_RACE_SIGNAL) {
345 		other_skipnr = get_stack_skipnr(other_info->stack_entries,
346 						other_info->num_stack_entries);
347 		other_frame = other_info->stack_entries[other_skipnr];
348 
349 		/* @value_change is only known for the other thread */
350 		if (skip_report(value_change, other_frame))
351 			return false;
352 	}
353 
354 	if (rate_limit_report(this_frame, other_frame))
355 		return false;
356 
357 	/* Print report header. */
358 	pr_err("==================================================================\n");
359 	switch (type) {
360 	case KCSAN_REPORT_RACE_SIGNAL: {
361 		int cmp;
362 
363 		/*
364 		 * Order functions lexographically for consistent bug titles.
365 		 * Do not print offset of functions to keep title short.
366 		 */
367 		cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
368 		pr_err("BUG: KCSAN: %s in %ps / %ps\n",
369 		       get_bug_type(ai->access_type | other_info->ai.access_type),
370 		       (void *)(cmp < 0 ? other_frame : this_frame),
371 		       (void *)(cmp < 0 ? this_frame : other_frame));
372 	} break;
373 
374 	case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
375 		pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
376 		       (void *)this_frame);
377 		break;
378 
379 	default:
380 		BUG();
381 	}
382 
383 	pr_err("\n");
384 
385 	/* Print information about the racing accesses. */
386 	switch (type) {
387 	case KCSAN_REPORT_RACE_SIGNAL:
388 		pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
389 		       get_access_type(other_info->ai.access_type), other_info->ai.ptr,
390 		       other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
391 		       other_info->ai.cpu_id);
392 
393 		/* Print the other thread's stack trace. */
394 		stack_trace_print(other_info->stack_entries + other_skipnr,
395 				  other_info->num_stack_entries - other_skipnr,
396 				  0);
397 
398 		if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
399 			print_verbose_info(other_info->task);
400 
401 		pr_err("\n");
402 		pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
403 		       get_access_type(ai->access_type), ai->ptr, ai->size,
404 		       get_thread_desc(ai->task_pid), ai->cpu_id);
405 		break;
406 
407 	case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
408 		pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
409 		       get_access_type(ai->access_type), ai->ptr, ai->size,
410 		       get_thread_desc(ai->task_pid), ai->cpu_id);
411 		break;
412 
413 	default:
414 		BUG();
415 	}
416 	/* Print stack trace of this thread. */
417 	stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
418 			  0);
419 
420 	if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
421 		print_verbose_info(current);
422 
423 	/* Print report footer. */
424 	pr_err("\n");
425 	pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
426 	dump_stack_print_info(KERN_DEFAULT);
427 	pr_err("==================================================================\n");
428 
429 	return true;
430 }
431 
432 static void release_report(unsigned long *flags, struct other_info *other_info)
433 {
434 	if (other_info)
435 		/*
436 		 * Use size to denote valid/invalid, since KCSAN entirely
437 		 * ignores 0-sized accesses.
438 		 */
439 		other_info->ai.size = 0;
440 
441 	raw_spin_unlock_irqrestore(&report_lock, *flags);
442 }
443 
444 /*
445  * Sets @other_info->task and awaits consumption of @other_info.
446  *
447  * Precondition: report_lock is held.
448  * Postcondition: report_lock is held.
449  */
450 static void set_other_info_task_blocking(unsigned long *flags,
451 					 const struct access_info *ai,
452 					 struct other_info *other_info)
453 {
454 	/*
455 	 * We may be instrumenting a code-path where current->state is already
456 	 * something other than TASK_RUNNING.
457 	 */
458 	const bool is_running = current->state == TASK_RUNNING;
459 	/*
460 	 * To avoid deadlock in case we are in an interrupt here and this is a
461 	 * race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
462 	 * timeout to ensure this works in all contexts.
463 	 *
464 	 * Await approximately the worst case delay of the reporting thread (if
465 	 * we are not interrupted).
466 	 */
467 	int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
468 
469 	other_info->task = current;
470 	do {
471 		if (is_running) {
472 			/*
473 			 * Let lockdep know the real task is sleeping, to print
474 			 * the held locks (recall we turned lockdep off, so
475 			 * locking/unlocking @report_lock won't be recorded).
476 			 */
477 			set_current_state(TASK_UNINTERRUPTIBLE);
478 		}
479 		raw_spin_unlock_irqrestore(&report_lock, *flags);
480 		/*
481 		 * We cannot call schedule() since we also cannot reliably
482 		 * determine if sleeping here is permitted -- see in_atomic().
483 		 */
484 
485 		udelay(1);
486 		raw_spin_lock_irqsave(&report_lock, *flags);
487 		if (timeout-- < 0) {
488 			/*
489 			 * Abort. Reset @other_info->task to NULL, since it
490 			 * appears the other thread is still going to consume
491 			 * it. It will result in no verbose info printed for
492 			 * this task.
493 			 */
494 			other_info->task = NULL;
495 			break;
496 		}
497 		/*
498 		 * If invalid, or @ptr nor @current matches, then @other_info
499 		 * has been consumed and we may continue. If not, retry.
500 		 */
501 	} while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
502 		 other_info->task == current);
503 	if (is_running)
504 		set_current_state(TASK_RUNNING);
505 }
506 
507 /* Populate @other_info; requires that the provided @other_info not in use. */
508 static void prepare_report_producer(unsigned long *flags,
509 				    const struct access_info *ai,
510 				    struct other_info *other_info)
511 {
512 	raw_spin_lock_irqsave(&report_lock, *flags);
513 
514 	/*
515 	 * The same @other_infos entry cannot be used concurrently, because
516 	 * there is a one-to-one mapping to watchpoint slots (@watchpoints in
517 	 * core.c), and a watchpoint is only released for reuse after reporting
518 	 * is done by the consumer of @other_info. Therefore, it is impossible
519 	 * for another concurrent prepare_report_producer() to set the same
520 	 * @other_info, and are guaranteed exclusivity for the @other_infos
521 	 * entry pointed to by @other_info.
522 	 *
523 	 * To check this property holds, size should never be non-zero here,
524 	 * because every consumer of struct other_info resets size to 0 in
525 	 * release_report().
526 	 */
527 	WARN_ON(other_info->ai.size);
528 
529 	other_info->ai = *ai;
530 	other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
531 
532 	if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
533 		set_other_info_task_blocking(flags, ai, other_info);
534 
535 	raw_spin_unlock_irqrestore(&report_lock, *flags);
536 }
537 
538 /* Awaits producer to fill @other_info and then returns. */
539 static bool prepare_report_consumer(unsigned long *flags,
540 				    const struct access_info *ai,
541 				    struct other_info *other_info)
542 {
543 
544 	raw_spin_lock_irqsave(&report_lock, *flags);
545 	while (!other_info->ai.size) { /* Await valid @other_info. */
546 		raw_spin_unlock_irqrestore(&report_lock, *flags);
547 		cpu_relax();
548 		raw_spin_lock_irqsave(&report_lock, *flags);
549 	}
550 
551 	/* Should always have a matching access based on watchpoint encoding. */
552 	if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
553 				     (unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
554 		goto discard;
555 
556 	if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
557 			     (unsigned long)ai->ptr, ai->size)) {
558 		/*
559 		 * If the actual accesses to not match, this was a false
560 		 * positive due to watchpoint encoding.
561 		 */
562 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
563 		goto discard;
564 	}
565 
566 	return true;
567 
568 discard:
569 	release_report(flags, other_info);
570 	return false;
571 }
572 
573 /*
574  * Depending on the report type either sets @other_info and returns false, or
575  * awaits @other_info and returns true. If @other_info is not required for the
576  * report type, simply acquires @report_lock and returns true.
577  */
578 static noinline bool prepare_report(unsigned long *flags,
579 				    enum kcsan_report_type type,
580 				    const struct access_info *ai,
581 				    struct other_info *other_info)
582 {
583 	switch (type) {
584 	case KCSAN_REPORT_CONSUMED_WATCHPOINT:
585 		prepare_report_producer(flags, ai, other_info);
586 		return false;
587 	case KCSAN_REPORT_RACE_SIGNAL:
588 		return prepare_report_consumer(flags, ai, other_info);
589 	default:
590 		/* @other_info not required; just acquire @report_lock. */
591 		raw_spin_lock_irqsave(&report_lock, *flags);
592 		return true;
593 	}
594 }
595 
596 void kcsan_report(const volatile void *ptr, size_t size, int access_type,
597 		  enum kcsan_value_change value_change,
598 		  enum kcsan_report_type type, int watchpoint_idx)
599 {
600 	unsigned long flags = 0;
601 	const struct access_info ai = {
602 		.ptr		= ptr,
603 		.size		= size,
604 		.access_type	= access_type,
605 		.task_pid	= in_task() ? task_pid_nr(current) : -1,
606 		.cpu_id		= raw_smp_processor_id()
607 	};
608 	struct other_info *other_info = type == KCSAN_REPORT_RACE_UNKNOWN_ORIGIN
609 					? NULL : &other_infos[watchpoint_idx];
610 
611 	kcsan_disable_current();
612 	if (WARN_ON(watchpoint_idx < 0 || watchpoint_idx >= ARRAY_SIZE(other_infos)))
613 		goto out;
614 
615 	/*
616 	 * Because we may generate reports when we're in scheduler code, the use
617 	 * of printk() could deadlock. Until such time that all printing code
618 	 * called in print_report() is scheduler-safe, accept the risk, and just
619 	 * get our message out. As such, also disable lockdep to hide the
620 	 * warning, and avoid disabling lockdep for the rest of the kernel.
621 	 */
622 	lockdep_off();
623 
624 	if (prepare_report(&flags, type, &ai, other_info)) {
625 		/*
626 		 * Never report if value_change is FALSE, only if we it is
627 		 * either TRUE or MAYBE. In case of MAYBE, further filtering may
628 		 * be done once we know the full stack trace in print_report().
629 		 */
630 		bool reported = value_change != KCSAN_VALUE_CHANGE_FALSE &&
631 				print_report(value_change, type, &ai, other_info);
632 
633 		if (reported && panic_on_warn)
634 			panic("panic_on_warn set ...\n");
635 
636 		release_report(&flags, other_info);
637 	}
638 
639 	lockdep_on();
640 out:
641 	kcsan_enable_current();
642 }
643