xref: /openbmc/linux/kernel/kcsan/core.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/atomic.h>
4 #include <linux/bug.h>
5 #include <linux/delay.h>
6 #include <linux/export.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/list.h>
10 #include <linux/moduleparam.h>
11 #include <linux/percpu.h>
12 #include <linux/preempt.h>
13 #include <linux/random.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 
17 #include "atomic.h"
18 #include "encoding.h"
19 #include "kcsan.h"
20 
21 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
22 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
23 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
24 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
25 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
26 
27 #ifdef MODULE_PARAM_PREFIX
28 #undef MODULE_PARAM_PREFIX
29 #endif
30 #define MODULE_PARAM_PREFIX "kcsan."
31 module_param_named(early_enable, kcsan_early_enable, bool, 0);
32 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
33 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
34 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
35 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
36 
37 bool kcsan_enabled;
38 
39 /* Per-CPU kcsan_ctx for interrupts */
40 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
41 	.disable_count		= 0,
42 	.atomic_next		= 0,
43 	.atomic_nest_count	= 0,
44 	.in_flat_atomic		= false,
45 	.access_mask		= 0,
46 	.scoped_accesses	= {LIST_POISON1, NULL},
47 };
48 
49 /*
50  * Helper macros to index into adjacent slots, starting from address slot
51  * itself, followed by the right and left slots.
52  *
53  * The purpose is 2-fold:
54  *
55  *	1. if during insertion the address slot is already occupied, check if
56  *	   any adjacent slots are free;
57  *	2. accesses that straddle a slot boundary due to size that exceeds a
58  *	   slot's range may check adjacent slots if any watchpoint matches.
59  *
60  * Note that accesses with very large size may still miss a watchpoint; however,
61  * given this should be rare, this is a reasonable trade-off to make, since this
62  * will avoid:
63  *
64  *	1. excessive contention between watchpoint checks and setup;
65  *	2. larger number of simultaneous watchpoints without sacrificing
66  *	   performance.
67  *
68  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
69  *
70  *   slot=0:  [ 1,  2,  0]
71  *   slot=9:  [10, 11,  9]
72  *   slot=63: [64, 65, 63]
73  */
74 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
75 
76 /*
77  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
78  * slot (middle) is fine if we assume that races occur rarely. The set of
79  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
80  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
81  */
82 #define SLOT_IDX_FAST(slot, i) (slot + i)
83 
84 /*
85  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
86  * able to safely update and access a watchpoint without introducing locking
87  * overhead, we encode each watchpoint as a single atomic long. The initial
88  * zero-initialized state matches INVALID_WATCHPOINT.
89  *
90  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
91  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
92  */
93 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
94 
95 /*
96  * Instructions to skip watching counter, used in should_watch(). We use a
97  * per-CPU counter to avoid excessive contention.
98  */
99 static DEFINE_PER_CPU(long, kcsan_skip);
100 
101 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
102 						      size_t size,
103 						      bool expect_write,
104 						      long *encoded_watchpoint)
105 {
106 	const int slot = watchpoint_slot(addr);
107 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
108 	atomic_long_t *watchpoint;
109 	unsigned long wp_addr_masked;
110 	size_t wp_size;
111 	bool is_write;
112 	int i;
113 
114 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
115 
116 	for (i = 0; i < NUM_SLOTS; ++i) {
117 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
118 		*encoded_watchpoint = atomic_long_read(watchpoint);
119 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
120 				       &wp_size, &is_write))
121 			continue;
122 
123 		if (expect_write && !is_write)
124 			continue;
125 
126 		/* Check if the watchpoint matches the access. */
127 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
128 			return watchpoint;
129 	}
130 
131 	return NULL;
132 }
133 
134 static inline atomic_long_t *
135 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
136 {
137 	const int slot = watchpoint_slot(addr);
138 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
139 	atomic_long_t *watchpoint;
140 	int i;
141 
142 	/* Check slot index logic, ensuring we stay within array bounds. */
143 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
144 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
145 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
146 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
147 
148 	for (i = 0; i < NUM_SLOTS; ++i) {
149 		long expect_val = INVALID_WATCHPOINT;
150 
151 		/* Try to acquire this slot. */
152 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
153 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
154 			return watchpoint;
155 	}
156 
157 	return NULL;
158 }
159 
160 /*
161  * Return true if watchpoint was successfully consumed, false otherwise.
162  *
163  * This may return false if:
164  *
165  *	1. another thread already consumed the watchpoint;
166  *	2. the thread that set up the watchpoint already removed it;
167  *	3. the watchpoint was removed and then re-used.
168  */
169 static __always_inline bool
170 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
171 {
172 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
173 }
174 
175 /* Return true if watchpoint was not touched, false if already consumed. */
176 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
177 {
178 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
179 }
180 
181 /* Remove the watchpoint -- its slot may be reused after. */
182 static inline void remove_watchpoint(atomic_long_t *watchpoint)
183 {
184 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
185 }
186 
187 static __always_inline struct kcsan_ctx *get_ctx(void)
188 {
189 	/*
190 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
191 	 * also result in calls that generate warnings in uaccess regions.
192 	 */
193 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
194 }
195 
196 /* Check scoped accesses; never inline because this is a slow-path! */
197 static noinline void kcsan_check_scoped_accesses(void)
198 {
199 	struct kcsan_ctx *ctx = get_ctx();
200 	struct list_head *prev_save = ctx->scoped_accesses.prev;
201 	struct kcsan_scoped_access *scoped_access;
202 
203 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
204 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
205 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
206 	ctx->scoped_accesses.prev = prev_save;
207 }
208 
209 /* Rules for generic atomic accesses. Called from fast-path. */
210 static __always_inline bool
211 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
212 {
213 	if (type & KCSAN_ACCESS_ATOMIC)
214 		return true;
215 
216 	/*
217 	 * Unless explicitly declared atomic, never consider an assertion access
218 	 * as atomic. This allows using them also in atomic regions, such as
219 	 * seqlocks, without implicitly changing their semantics.
220 	 */
221 	if (type & KCSAN_ACCESS_ASSERT)
222 		return false;
223 
224 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
225 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
226 	    IS_ALIGNED((unsigned long)ptr, size))
227 		return true; /* Assume aligned writes up to word size are atomic. */
228 
229 	if (ctx->atomic_next > 0) {
230 		/*
231 		 * Because we do not have separate contexts for nested
232 		 * interrupts, in case atomic_next is set, we simply assume that
233 		 * the outer interrupt set atomic_next. In the worst case, we
234 		 * will conservatively consider operations as atomic. This is a
235 		 * reasonable trade-off to make, since this case should be
236 		 * extremely rare; however, even if extremely rare, it could
237 		 * lead to false positives otherwise.
238 		 */
239 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
240 			--ctx->atomic_next; /* in task, or outer interrupt */
241 		return true;
242 	}
243 
244 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
245 }
246 
247 static __always_inline bool
248 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
249 {
250 	/*
251 	 * Never set up watchpoints when memory operations are atomic.
252 	 *
253 	 * Need to check this first, before kcsan_skip check below: (1) atomics
254 	 * should not count towards skipped instructions, and (2) to actually
255 	 * decrement kcsan_atomic_next for consecutive instruction stream.
256 	 */
257 	if (is_atomic(ptr, size, type, ctx))
258 		return false;
259 
260 	if (this_cpu_dec_return(kcsan_skip) >= 0)
261 		return false;
262 
263 	/*
264 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
265 	 * via reset_kcsan_skip() to avoid underflow.
266 	 */
267 
268 	/* this operation should be watched */
269 	return true;
270 }
271 
272 static inline void reset_kcsan_skip(void)
273 {
274 	long skip_count = kcsan_skip_watch -
275 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
276 				   prandom_u32_max(kcsan_skip_watch) :
277 				   0);
278 	this_cpu_write(kcsan_skip, skip_count);
279 }
280 
281 static __always_inline bool kcsan_is_enabled(void)
282 {
283 	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
284 }
285 
286 static inline unsigned int get_delay(void)
287 {
288 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
289 	return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
290 				prandom_u32_max(delay) :
291 				0);
292 }
293 
294 /*
295  * Pull everything together: check_access() below contains the performance
296  * critical operations; the fast-path (including check_access) functions should
297  * all be inlinable by the instrumentation functions.
298  *
299  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
300  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
301  * be filtered from the stacktrace, as well as give them unique names for the
302  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
303  * since they do not access any user memory, but instrumentation is still
304  * emitted in UACCESS regions.
305  */
306 
307 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
308 					    size_t size,
309 					    int type,
310 					    atomic_long_t *watchpoint,
311 					    long encoded_watchpoint)
312 {
313 	unsigned long flags;
314 	bool consumed;
315 
316 	if (!kcsan_is_enabled())
317 		return;
318 
319 	/*
320 	 * The access_mask check relies on value-change comparison. To avoid
321 	 * reporting a race where e.g. the writer set up the watchpoint, but the
322 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
323 	 */
324 	if (get_ctx()->access_mask != 0)
325 		return;
326 
327 	/*
328 	 * Consume the watchpoint as soon as possible, to minimize the chances
329 	 * of !consumed. Consuming the watchpoint must always be guarded by
330 	 * kcsan_is_enabled() check, as otherwise we might erroneously
331 	 * triggering reports when disabled.
332 	 */
333 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
334 
335 	/* keep this after try_consume_watchpoint */
336 	flags = user_access_save();
337 
338 	if (consumed) {
339 		kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
340 			     KCSAN_REPORT_CONSUMED_WATCHPOINT,
341 			     watchpoint - watchpoints);
342 	} else {
343 		/*
344 		 * The other thread may not print any diagnostics, as it has
345 		 * already removed the watchpoint, or another thread consumed
346 		 * the watchpoint before this thread.
347 		 */
348 		kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
349 	}
350 
351 	if ((type & KCSAN_ACCESS_ASSERT) != 0)
352 		kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
353 	else
354 		kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
355 
356 	user_access_restore(flags);
357 }
358 
359 static noinline void
360 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
361 {
362 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
363 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
364 	atomic_long_t *watchpoint;
365 	union {
366 		u8 _1;
367 		u16 _2;
368 		u32 _4;
369 		u64 _8;
370 	} expect_value;
371 	unsigned long access_mask;
372 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
373 	unsigned long ua_flags = user_access_save();
374 	unsigned long irq_flags = 0;
375 
376 	/*
377 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
378 	 * should_watch().
379 	 */
380 	reset_kcsan_skip();
381 
382 	if (!kcsan_is_enabled())
383 		goto out;
384 
385 	/*
386 	 * Special atomic rules: unlikely to be true, so we check them here in
387 	 * the slow-path, and not in the fast-path in is_atomic(). Call after
388 	 * kcsan_is_enabled(), as we may access memory that is not yet
389 	 * initialized during early boot.
390 	 */
391 	if (!is_assert && kcsan_is_atomic_special(ptr))
392 		goto out;
393 
394 	if (!check_encodable((unsigned long)ptr, size)) {
395 		kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
396 		goto out;
397 	}
398 
399 	if (!kcsan_interrupt_watcher)
400 		/* Use raw to avoid lockdep recursion via IRQ flags tracing. */
401 		raw_local_irq_save(irq_flags);
402 
403 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
404 	if (watchpoint == NULL) {
405 		/*
406 		 * Out of capacity: the size of 'watchpoints', and the frequency
407 		 * with which should_watch() returns true should be tweaked so
408 		 * that this case happens very rarely.
409 		 */
410 		kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
411 		goto out_unlock;
412 	}
413 
414 	kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
415 	kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
416 
417 	/*
418 	 * Read the current value, to later check and infer a race if the data
419 	 * was modified via a non-instrumented access, e.g. from a device.
420 	 */
421 	expect_value._8 = 0;
422 	switch (size) {
423 	case 1:
424 		expect_value._1 = READ_ONCE(*(const u8 *)ptr);
425 		break;
426 	case 2:
427 		expect_value._2 = READ_ONCE(*(const u16 *)ptr);
428 		break;
429 	case 4:
430 		expect_value._4 = READ_ONCE(*(const u32 *)ptr);
431 		break;
432 	case 8:
433 		expect_value._8 = READ_ONCE(*(const u64 *)ptr);
434 		break;
435 	default:
436 		break; /* ignore; we do not diff the values */
437 	}
438 
439 	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
440 		kcsan_disable_current();
441 		pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
442 		       is_write ? "write" : "read", size, ptr,
443 		       watchpoint_slot((unsigned long)ptr),
444 		       encode_watchpoint((unsigned long)ptr, size, is_write));
445 		kcsan_enable_current();
446 	}
447 
448 	/*
449 	 * Delay this thread, to increase probability of observing a racy
450 	 * conflicting access.
451 	 */
452 	udelay(get_delay());
453 
454 	/*
455 	 * Re-read value, and check if it is as expected; if not, we infer a
456 	 * racy access.
457 	 */
458 	access_mask = get_ctx()->access_mask;
459 	switch (size) {
460 	case 1:
461 		expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
462 		if (access_mask)
463 			expect_value._1 &= (u8)access_mask;
464 		break;
465 	case 2:
466 		expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
467 		if (access_mask)
468 			expect_value._2 &= (u16)access_mask;
469 		break;
470 	case 4:
471 		expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
472 		if (access_mask)
473 			expect_value._4 &= (u32)access_mask;
474 		break;
475 	case 8:
476 		expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
477 		if (access_mask)
478 			expect_value._8 &= (u64)access_mask;
479 		break;
480 	default:
481 		break; /* ignore; we do not diff the values */
482 	}
483 
484 	/* Were we able to observe a value-change? */
485 	if (expect_value._8 != 0)
486 		value_change = KCSAN_VALUE_CHANGE_TRUE;
487 
488 	/* Check if this access raced with another. */
489 	if (!consume_watchpoint(watchpoint)) {
490 		/*
491 		 * Depending on the access type, map a value_change of MAYBE to
492 		 * TRUE (always report) or FALSE (never report).
493 		 */
494 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
495 			if (access_mask != 0) {
496 				/*
497 				 * For access with access_mask, we require a
498 				 * value-change, as it is likely that races on
499 				 * ~access_mask bits are expected.
500 				 */
501 				value_change = KCSAN_VALUE_CHANGE_FALSE;
502 			} else if (size > 8 || is_assert) {
503 				/* Always assume a value-change. */
504 				value_change = KCSAN_VALUE_CHANGE_TRUE;
505 			}
506 		}
507 
508 		/*
509 		 * No need to increment 'data_races' counter, as the racing
510 		 * thread already did.
511 		 *
512 		 * Count 'assert_failures' for each failed ASSERT access,
513 		 * therefore both this thread and the racing thread may
514 		 * increment this counter.
515 		 */
516 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
517 			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
518 
519 		kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
520 			     watchpoint - watchpoints);
521 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
522 		/* Inferring a race, since the value should not have changed. */
523 
524 		kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
525 		if (is_assert)
526 			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
527 
528 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
529 			kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
530 				     KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
531 				     watchpoint - watchpoints);
532 	}
533 
534 	/*
535 	 * Remove watchpoint; must be after reporting, since the slot may be
536 	 * reused after this point.
537 	 */
538 	remove_watchpoint(watchpoint);
539 	kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
540 out_unlock:
541 	if (!kcsan_interrupt_watcher)
542 		raw_local_irq_restore(irq_flags);
543 out:
544 	user_access_restore(ua_flags);
545 }
546 
547 static __always_inline void check_access(const volatile void *ptr, size_t size,
548 					 int type)
549 {
550 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
551 	atomic_long_t *watchpoint;
552 	long encoded_watchpoint;
553 
554 	/*
555 	 * Do nothing for 0 sized check; this comparison will be optimized out
556 	 * for constant sized instrumentation (__tsan_{read,write}N).
557 	 */
558 	if (unlikely(size == 0))
559 		return;
560 
561 	/*
562 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
563 	 * user_access_save, as the address that ptr points to is only used to
564 	 * check if a watchpoint exists; ptr is never dereferenced.
565 	 */
566 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
567 				     &encoded_watchpoint);
568 	/*
569 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
570 	 * slow-path, as long as no state changes that cause a race to be
571 	 * detected and reported have occurred until kcsan_is_enabled() is
572 	 * checked.
573 	 */
574 
575 	if (unlikely(watchpoint != NULL))
576 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
577 				       encoded_watchpoint);
578 	else {
579 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
580 
581 		if (unlikely(should_watch(ptr, size, type, ctx)))
582 			kcsan_setup_watchpoint(ptr, size, type);
583 		else if (unlikely(ctx->scoped_accesses.prev))
584 			kcsan_check_scoped_accesses();
585 	}
586 }
587 
588 /* === Public interface ===================================================== */
589 
590 void __init kcsan_init(void)
591 {
592 	BUG_ON(!in_task());
593 
594 	kcsan_debugfs_init();
595 
596 	/*
597 	 * We are in the init task, and no other tasks should be running;
598 	 * WRITE_ONCE without memory barrier is sufficient.
599 	 */
600 	if (kcsan_early_enable)
601 		WRITE_ONCE(kcsan_enabled, true);
602 }
603 
604 /* === Exported interface =================================================== */
605 
606 void kcsan_disable_current(void)
607 {
608 	++get_ctx()->disable_count;
609 }
610 EXPORT_SYMBOL(kcsan_disable_current);
611 
612 void kcsan_enable_current(void)
613 {
614 	if (get_ctx()->disable_count-- == 0) {
615 		/*
616 		 * Warn if kcsan_enable_current() calls are unbalanced with
617 		 * kcsan_disable_current() calls, which causes disable_count to
618 		 * become negative and should not happen.
619 		 */
620 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
621 		kcsan_disable_current(); /* disable to generate warning */
622 		WARN(1, "Unbalanced %s()", __func__);
623 		kcsan_enable_current();
624 	}
625 }
626 EXPORT_SYMBOL(kcsan_enable_current);
627 
628 void kcsan_enable_current_nowarn(void)
629 {
630 	if (get_ctx()->disable_count-- == 0)
631 		kcsan_disable_current();
632 }
633 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
634 
635 void kcsan_nestable_atomic_begin(void)
636 {
637 	/*
638 	 * Do *not* check and warn if we are in a flat atomic region: nestable
639 	 * and flat atomic regions are independent from each other.
640 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
641 	 * comments.
642 	 */
643 
644 	++get_ctx()->atomic_nest_count;
645 }
646 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
647 
648 void kcsan_nestable_atomic_end(void)
649 {
650 	if (get_ctx()->atomic_nest_count-- == 0) {
651 		/*
652 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
653 		 * kcsan_nestable_atomic_begin() calls, which causes
654 		 * atomic_nest_count to become negative and should not happen.
655 		 */
656 		kcsan_nestable_atomic_begin(); /* restore to 0 */
657 		kcsan_disable_current(); /* disable to generate warning */
658 		WARN(1, "Unbalanced %s()", __func__);
659 		kcsan_enable_current();
660 	}
661 }
662 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
663 
664 void kcsan_flat_atomic_begin(void)
665 {
666 	get_ctx()->in_flat_atomic = true;
667 }
668 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
669 
670 void kcsan_flat_atomic_end(void)
671 {
672 	get_ctx()->in_flat_atomic = false;
673 }
674 EXPORT_SYMBOL(kcsan_flat_atomic_end);
675 
676 void kcsan_atomic_next(int n)
677 {
678 	get_ctx()->atomic_next = n;
679 }
680 EXPORT_SYMBOL(kcsan_atomic_next);
681 
682 void kcsan_set_access_mask(unsigned long mask)
683 {
684 	get_ctx()->access_mask = mask;
685 }
686 EXPORT_SYMBOL(kcsan_set_access_mask);
687 
688 struct kcsan_scoped_access *
689 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
690 			  struct kcsan_scoped_access *sa)
691 {
692 	struct kcsan_ctx *ctx = get_ctx();
693 
694 	__kcsan_check_access(ptr, size, type);
695 
696 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
697 
698 	INIT_LIST_HEAD(&sa->list);
699 	sa->ptr = ptr;
700 	sa->size = size;
701 	sa->type = type;
702 
703 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
704 		INIT_LIST_HEAD(&ctx->scoped_accesses);
705 	list_add(&sa->list, &ctx->scoped_accesses);
706 
707 	ctx->disable_count--;
708 	return sa;
709 }
710 EXPORT_SYMBOL(kcsan_begin_scoped_access);
711 
712 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
713 {
714 	struct kcsan_ctx *ctx = get_ctx();
715 
716 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
717 		return;
718 
719 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
720 
721 	list_del(&sa->list);
722 	if (list_empty(&ctx->scoped_accesses))
723 		/*
724 		 * Ensure we do not enter kcsan_check_scoped_accesses()
725 		 * slow-path if unnecessary, and avoids requiring list_empty()
726 		 * in the fast-path (to avoid a READ_ONCE() and potential
727 		 * uaccess warning).
728 		 */
729 		ctx->scoped_accesses.prev = NULL;
730 
731 	ctx->disable_count--;
732 
733 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
734 }
735 EXPORT_SYMBOL(kcsan_end_scoped_access);
736 
737 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
738 {
739 	check_access(ptr, size, type);
740 }
741 EXPORT_SYMBOL(__kcsan_check_access);
742 
743 /*
744  * KCSAN uses the same instrumentation that is emitted by supported compilers
745  * for ThreadSanitizer (TSAN).
746  *
747  * When enabled, the compiler emits instrumentation calls (the functions
748  * prefixed with "__tsan" below) for all loads and stores that it generated;
749  * inline asm is not instrumented.
750  *
751  * Note that, not all supported compiler versions distinguish aligned/unaligned
752  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
753  * version to the generic version, which can handle both.
754  */
755 
756 #define DEFINE_TSAN_READ_WRITE(size)                                           \
757 	void __tsan_read##size(void *ptr)                                      \
758 	{                                                                      \
759 		check_access(ptr, size, 0);                                    \
760 	}                                                                      \
761 	EXPORT_SYMBOL(__tsan_read##size);                                      \
762 	void __tsan_unaligned_read##size(void *ptr)                            \
763 		__alias(__tsan_read##size);                                    \
764 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
765 	void __tsan_write##size(void *ptr)                                     \
766 	{                                                                      \
767 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
768 	}                                                                      \
769 	EXPORT_SYMBOL(__tsan_write##size);                                     \
770 	void __tsan_unaligned_write##size(void *ptr)                           \
771 		__alias(__tsan_write##size);                                   \
772 	EXPORT_SYMBOL(__tsan_unaligned_write##size)
773 
774 DEFINE_TSAN_READ_WRITE(1);
775 DEFINE_TSAN_READ_WRITE(2);
776 DEFINE_TSAN_READ_WRITE(4);
777 DEFINE_TSAN_READ_WRITE(8);
778 DEFINE_TSAN_READ_WRITE(16);
779 
780 void __tsan_read_range(void *ptr, size_t size)
781 {
782 	check_access(ptr, size, 0);
783 }
784 EXPORT_SYMBOL(__tsan_read_range);
785 
786 void __tsan_write_range(void *ptr, size_t size)
787 {
788 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
789 }
790 EXPORT_SYMBOL(__tsan_write_range);
791 
792 /*
793  * Use of explicit volatile is generally disallowed [1], however, volatile is
794  * still used in various concurrent context, whether in low-level
795  * synchronization primitives or for legacy reasons.
796  * [1] https://lwn.net/Articles/233479/
797  *
798  * We only consider volatile accesses atomic if they are aligned and would pass
799  * the size-check of compiletime_assert_rwonce_type().
800  */
801 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
802 	void __tsan_volatile_read##size(void *ptr)                             \
803 	{                                                                      \
804 		const bool is_atomic = size <= sizeof(long long) &&            \
805 				       IS_ALIGNED((unsigned long)ptr, size);   \
806 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
807 			return;                                                \
808 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
809 	}                                                                      \
810 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
811 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
812 		__alias(__tsan_volatile_read##size);                           \
813 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
814 	void __tsan_volatile_write##size(void *ptr)                            \
815 	{                                                                      \
816 		const bool is_atomic = size <= sizeof(long long) &&            \
817 				       IS_ALIGNED((unsigned long)ptr, size);   \
818 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
819 			return;                                                \
820 		check_access(ptr, size,                                        \
821 			     KCSAN_ACCESS_WRITE |                              \
822 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
823 	}                                                                      \
824 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
825 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
826 		__alias(__tsan_volatile_write##size);                          \
827 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
828 
829 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
830 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
831 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
832 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
833 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
834 
835 /*
836  * The below are not required by KCSAN, but can still be emitted by the
837  * compiler.
838  */
839 void __tsan_func_entry(void *call_pc)
840 {
841 }
842 EXPORT_SYMBOL(__tsan_func_entry);
843 void __tsan_func_exit(void)
844 {
845 }
846 EXPORT_SYMBOL(__tsan_func_exit);
847 void __tsan_init(void)
848 {
849 }
850 EXPORT_SYMBOL(__tsan_init);
851