xref: /openbmc/linux/kernel/kcsan/core.c (revision 32daa5d7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt) "kcsan: " fmt
4 
5 #include <linux/atomic.h>
6 #include <linux/bug.h>
7 #include <linux/delay.h>
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/moduleparam.h>
13 #include <linux/percpu.h>
14 #include <linux/preempt.h>
15 #include <linux/sched.h>
16 #include <linux/uaccess.h>
17 
18 #include "atomic.h"
19 #include "encoding.h"
20 #include "kcsan.h"
21 
22 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
23 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
24 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
25 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
26 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
27 
28 #ifdef MODULE_PARAM_PREFIX
29 #undef MODULE_PARAM_PREFIX
30 #endif
31 #define MODULE_PARAM_PREFIX "kcsan."
32 module_param_named(early_enable, kcsan_early_enable, bool, 0);
33 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
34 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
35 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
36 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
37 
38 bool kcsan_enabled;
39 
40 /* Per-CPU kcsan_ctx for interrupts */
41 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
42 	.disable_count		= 0,
43 	.atomic_next		= 0,
44 	.atomic_nest_count	= 0,
45 	.in_flat_atomic		= false,
46 	.access_mask		= 0,
47 	.scoped_accesses	= {LIST_POISON1, NULL},
48 };
49 
50 /*
51  * Helper macros to index into adjacent slots, starting from address slot
52  * itself, followed by the right and left slots.
53  *
54  * The purpose is 2-fold:
55  *
56  *	1. if during insertion the address slot is already occupied, check if
57  *	   any adjacent slots are free;
58  *	2. accesses that straddle a slot boundary due to size that exceeds a
59  *	   slot's range may check adjacent slots if any watchpoint matches.
60  *
61  * Note that accesses with very large size may still miss a watchpoint; however,
62  * given this should be rare, this is a reasonable trade-off to make, since this
63  * will avoid:
64  *
65  *	1. excessive contention between watchpoint checks and setup;
66  *	2. larger number of simultaneous watchpoints without sacrificing
67  *	   performance.
68  *
69  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
70  *
71  *   slot=0:  [ 1,  2,  0]
72  *   slot=9:  [10, 11,  9]
73  *   slot=63: [64, 65, 63]
74  */
75 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
76 
77 /*
78  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
79  * slot (middle) is fine if we assume that races occur rarely. The set of
80  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
81  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
82  */
83 #define SLOT_IDX_FAST(slot, i) (slot + i)
84 
85 /*
86  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
87  * able to safely update and access a watchpoint without introducing locking
88  * overhead, we encode each watchpoint as a single atomic long. The initial
89  * zero-initialized state matches INVALID_WATCHPOINT.
90  *
91  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
92  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
93  */
94 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
95 
96 /*
97  * Instructions to skip watching counter, used in should_watch(). We use a
98  * per-CPU counter to avoid excessive contention.
99  */
100 static DEFINE_PER_CPU(long, kcsan_skip);
101 
102 /* For kcsan_prandom_u32_max(). */
103 static DEFINE_PER_CPU(u32, kcsan_rand_state);
104 
105 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
106 						      size_t size,
107 						      bool expect_write,
108 						      long *encoded_watchpoint)
109 {
110 	const int slot = watchpoint_slot(addr);
111 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
112 	atomic_long_t *watchpoint;
113 	unsigned long wp_addr_masked;
114 	size_t wp_size;
115 	bool is_write;
116 	int i;
117 
118 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
119 
120 	for (i = 0; i < NUM_SLOTS; ++i) {
121 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
122 		*encoded_watchpoint = atomic_long_read(watchpoint);
123 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
124 				       &wp_size, &is_write))
125 			continue;
126 
127 		if (expect_write && !is_write)
128 			continue;
129 
130 		/* Check if the watchpoint matches the access. */
131 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
132 			return watchpoint;
133 	}
134 
135 	return NULL;
136 }
137 
138 static inline atomic_long_t *
139 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
140 {
141 	const int slot = watchpoint_slot(addr);
142 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
143 	atomic_long_t *watchpoint;
144 	int i;
145 
146 	/* Check slot index logic, ensuring we stay within array bounds. */
147 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
148 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
149 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
150 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
151 
152 	for (i = 0; i < NUM_SLOTS; ++i) {
153 		long expect_val = INVALID_WATCHPOINT;
154 
155 		/* Try to acquire this slot. */
156 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
157 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
158 			return watchpoint;
159 	}
160 
161 	return NULL;
162 }
163 
164 /*
165  * Return true if watchpoint was successfully consumed, false otherwise.
166  *
167  * This may return false if:
168  *
169  *	1. another thread already consumed the watchpoint;
170  *	2. the thread that set up the watchpoint already removed it;
171  *	3. the watchpoint was removed and then re-used.
172  */
173 static __always_inline bool
174 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
175 {
176 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
177 }
178 
179 /* Return true if watchpoint was not touched, false if already consumed. */
180 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
181 {
182 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
183 }
184 
185 /* Remove the watchpoint -- its slot may be reused after. */
186 static inline void remove_watchpoint(atomic_long_t *watchpoint)
187 {
188 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
189 }
190 
191 static __always_inline struct kcsan_ctx *get_ctx(void)
192 {
193 	/*
194 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
195 	 * also result in calls that generate warnings in uaccess regions.
196 	 */
197 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
198 }
199 
200 /* Check scoped accesses; never inline because this is a slow-path! */
201 static noinline void kcsan_check_scoped_accesses(void)
202 {
203 	struct kcsan_ctx *ctx = get_ctx();
204 	struct list_head *prev_save = ctx->scoped_accesses.prev;
205 	struct kcsan_scoped_access *scoped_access;
206 
207 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
208 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
209 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
210 	ctx->scoped_accesses.prev = prev_save;
211 }
212 
213 /* Rules for generic atomic accesses. Called from fast-path. */
214 static __always_inline bool
215 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
216 {
217 	if (type & KCSAN_ACCESS_ATOMIC)
218 		return true;
219 
220 	/*
221 	 * Unless explicitly declared atomic, never consider an assertion access
222 	 * as atomic. This allows using them also in atomic regions, such as
223 	 * seqlocks, without implicitly changing their semantics.
224 	 */
225 	if (type & KCSAN_ACCESS_ASSERT)
226 		return false;
227 
228 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
229 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
230 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
231 		return true; /* Assume aligned writes up to word size are atomic. */
232 
233 	if (ctx->atomic_next > 0) {
234 		/*
235 		 * Because we do not have separate contexts for nested
236 		 * interrupts, in case atomic_next is set, we simply assume that
237 		 * the outer interrupt set atomic_next. In the worst case, we
238 		 * will conservatively consider operations as atomic. This is a
239 		 * reasonable trade-off to make, since this case should be
240 		 * extremely rare; however, even if extremely rare, it could
241 		 * lead to false positives otherwise.
242 		 */
243 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
244 			--ctx->atomic_next; /* in task, or outer interrupt */
245 		return true;
246 	}
247 
248 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
249 }
250 
251 static __always_inline bool
252 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
253 {
254 	/*
255 	 * Never set up watchpoints when memory operations are atomic.
256 	 *
257 	 * Need to check this first, before kcsan_skip check below: (1) atomics
258 	 * should not count towards skipped instructions, and (2) to actually
259 	 * decrement kcsan_atomic_next for consecutive instruction stream.
260 	 */
261 	if (is_atomic(ptr, size, type, ctx))
262 		return false;
263 
264 	if (this_cpu_dec_return(kcsan_skip) >= 0)
265 		return false;
266 
267 	/*
268 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
269 	 * via reset_kcsan_skip() to avoid underflow.
270 	 */
271 
272 	/* this operation should be watched */
273 	return true;
274 }
275 
276 /*
277  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
278  * congruential generator, using constants from "Numerical Recipes".
279  */
280 static u32 kcsan_prandom_u32_max(u32 ep_ro)
281 {
282 	u32 state = this_cpu_read(kcsan_rand_state);
283 
284 	state = 1664525 * state + 1013904223;
285 	this_cpu_write(kcsan_rand_state, state);
286 
287 	return state % ep_ro;
288 }
289 
290 static inline void reset_kcsan_skip(void)
291 {
292 	long skip_count = kcsan_skip_watch -
293 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
294 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
295 				   0);
296 	this_cpu_write(kcsan_skip, skip_count);
297 }
298 
299 static __always_inline bool kcsan_is_enabled(void)
300 {
301 	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
302 }
303 
304 /* Introduce delay depending on context and configuration. */
305 static void delay_access(int type)
306 {
307 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
308 	/* For certain access types, skew the random delay to be longer. */
309 	unsigned int skew_delay_order =
310 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
311 
312 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
313 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
314 			       0;
315 	udelay(delay);
316 }
317 
318 void kcsan_save_irqtrace(struct task_struct *task)
319 {
320 #ifdef CONFIG_TRACE_IRQFLAGS
321 	task->kcsan_save_irqtrace = task->irqtrace;
322 #endif
323 }
324 
325 void kcsan_restore_irqtrace(struct task_struct *task)
326 {
327 #ifdef CONFIG_TRACE_IRQFLAGS
328 	task->irqtrace = task->kcsan_save_irqtrace;
329 #endif
330 }
331 
332 /*
333  * Pull everything together: check_access() below contains the performance
334  * critical operations; the fast-path (including check_access) functions should
335  * all be inlinable by the instrumentation functions.
336  *
337  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
338  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
339  * be filtered from the stacktrace, as well as give them unique names for the
340  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
341  * since they do not access any user memory, but instrumentation is still
342  * emitted in UACCESS regions.
343  */
344 
345 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
346 					    size_t size,
347 					    int type,
348 					    atomic_long_t *watchpoint,
349 					    long encoded_watchpoint)
350 {
351 	unsigned long flags;
352 	bool consumed;
353 
354 	if (!kcsan_is_enabled())
355 		return;
356 
357 	/*
358 	 * The access_mask check relies on value-change comparison. To avoid
359 	 * reporting a race where e.g. the writer set up the watchpoint, but the
360 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
361 	 */
362 	if (get_ctx()->access_mask != 0)
363 		return;
364 
365 	/*
366 	 * Consume the watchpoint as soon as possible, to minimize the chances
367 	 * of !consumed. Consuming the watchpoint must always be guarded by
368 	 * kcsan_is_enabled() check, as otherwise we might erroneously
369 	 * triggering reports when disabled.
370 	 */
371 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
372 
373 	/* keep this after try_consume_watchpoint */
374 	flags = user_access_save();
375 
376 	if (consumed) {
377 		kcsan_save_irqtrace(current);
378 		kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
379 			     KCSAN_REPORT_CONSUMED_WATCHPOINT,
380 			     watchpoint - watchpoints);
381 		kcsan_restore_irqtrace(current);
382 	} else {
383 		/*
384 		 * The other thread may not print any diagnostics, as it has
385 		 * already removed the watchpoint, or another thread consumed
386 		 * the watchpoint before this thread.
387 		 */
388 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
389 	}
390 
391 	if ((type & KCSAN_ACCESS_ASSERT) != 0)
392 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
393 	else
394 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
395 
396 	user_access_restore(flags);
397 }
398 
399 static noinline void
400 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
401 {
402 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
403 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
404 	atomic_long_t *watchpoint;
405 	union {
406 		u8 _1;
407 		u16 _2;
408 		u32 _4;
409 		u64 _8;
410 	} expect_value;
411 	unsigned long access_mask;
412 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
413 	unsigned long ua_flags = user_access_save();
414 	unsigned long irq_flags = 0;
415 
416 	/*
417 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
418 	 * should_watch().
419 	 */
420 	reset_kcsan_skip();
421 
422 	if (!kcsan_is_enabled())
423 		goto out;
424 
425 	/*
426 	 * Special atomic rules: unlikely to be true, so we check them here in
427 	 * the slow-path, and not in the fast-path in is_atomic(). Call after
428 	 * kcsan_is_enabled(), as we may access memory that is not yet
429 	 * initialized during early boot.
430 	 */
431 	if (!is_assert && kcsan_is_atomic_special(ptr))
432 		goto out;
433 
434 	if (!check_encodable((unsigned long)ptr, size)) {
435 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
436 		goto out;
437 	}
438 
439 	/*
440 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
441 	 * runtime is entered for every memory access, and potentially useful
442 	 * information is lost if dirtied by KCSAN.
443 	 */
444 	kcsan_save_irqtrace(current);
445 	if (!kcsan_interrupt_watcher)
446 		local_irq_save(irq_flags);
447 
448 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
449 	if (watchpoint == NULL) {
450 		/*
451 		 * Out of capacity: the size of 'watchpoints', and the frequency
452 		 * with which should_watch() returns true should be tweaked so
453 		 * that this case happens very rarely.
454 		 */
455 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
456 		goto out_unlock;
457 	}
458 
459 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
460 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
461 
462 	/*
463 	 * Read the current value, to later check and infer a race if the data
464 	 * was modified via a non-instrumented access, e.g. from a device.
465 	 */
466 	expect_value._8 = 0;
467 	switch (size) {
468 	case 1:
469 		expect_value._1 = READ_ONCE(*(const u8 *)ptr);
470 		break;
471 	case 2:
472 		expect_value._2 = READ_ONCE(*(const u16 *)ptr);
473 		break;
474 	case 4:
475 		expect_value._4 = READ_ONCE(*(const u32 *)ptr);
476 		break;
477 	case 8:
478 		expect_value._8 = READ_ONCE(*(const u64 *)ptr);
479 		break;
480 	default:
481 		break; /* ignore; we do not diff the values */
482 	}
483 
484 	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
485 		kcsan_disable_current();
486 		pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
487 		       is_write ? "write" : "read", size, ptr,
488 		       watchpoint_slot((unsigned long)ptr),
489 		       encode_watchpoint((unsigned long)ptr, size, is_write));
490 		kcsan_enable_current();
491 	}
492 
493 	/*
494 	 * Delay this thread, to increase probability of observing a racy
495 	 * conflicting access.
496 	 */
497 	delay_access(type);
498 
499 	/*
500 	 * Re-read value, and check if it is as expected; if not, we infer a
501 	 * racy access.
502 	 */
503 	access_mask = get_ctx()->access_mask;
504 	switch (size) {
505 	case 1:
506 		expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
507 		if (access_mask)
508 			expect_value._1 &= (u8)access_mask;
509 		break;
510 	case 2:
511 		expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
512 		if (access_mask)
513 			expect_value._2 &= (u16)access_mask;
514 		break;
515 	case 4:
516 		expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
517 		if (access_mask)
518 			expect_value._4 &= (u32)access_mask;
519 		break;
520 	case 8:
521 		expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
522 		if (access_mask)
523 			expect_value._8 &= (u64)access_mask;
524 		break;
525 	default:
526 		break; /* ignore; we do not diff the values */
527 	}
528 
529 	/* Were we able to observe a value-change? */
530 	if (expect_value._8 != 0)
531 		value_change = KCSAN_VALUE_CHANGE_TRUE;
532 
533 	/* Check if this access raced with another. */
534 	if (!consume_watchpoint(watchpoint)) {
535 		/*
536 		 * Depending on the access type, map a value_change of MAYBE to
537 		 * TRUE (always report) or FALSE (never report).
538 		 */
539 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
540 			if (access_mask != 0) {
541 				/*
542 				 * For access with access_mask, we require a
543 				 * value-change, as it is likely that races on
544 				 * ~access_mask bits are expected.
545 				 */
546 				value_change = KCSAN_VALUE_CHANGE_FALSE;
547 			} else if (size > 8 || is_assert) {
548 				/* Always assume a value-change. */
549 				value_change = KCSAN_VALUE_CHANGE_TRUE;
550 			}
551 		}
552 
553 		/*
554 		 * No need to increment 'data_races' counter, as the racing
555 		 * thread already did.
556 		 *
557 		 * Count 'assert_failures' for each failed ASSERT access,
558 		 * therefore both this thread and the racing thread may
559 		 * increment this counter.
560 		 */
561 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
562 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
563 
564 		kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
565 			     watchpoint - watchpoints);
566 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
567 		/* Inferring a race, since the value should not have changed. */
568 
569 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
570 		if (is_assert)
571 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
572 
573 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
574 			kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
575 				     KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
576 				     watchpoint - watchpoints);
577 	}
578 
579 	/*
580 	 * Remove watchpoint; must be after reporting, since the slot may be
581 	 * reused after this point.
582 	 */
583 	remove_watchpoint(watchpoint);
584 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
585 out_unlock:
586 	if (!kcsan_interrupt_watcher)
587 		local_irq_restore(irq_flags);
588 	kcsan_restore_irqtrace(current);
589 out:
590 	user_access_restore(ua_flags);
591 }
592 
593 static __always_inline void check_access(const volatile void *ptr, size_t size,
594 					 int type)
595 {
596 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
597 	atomic_long_t *watchpoint;
598 	long encoded_watchpoint;
599 
600 	/*
601 	 * Do nothing for 0 sized check; this comparison will be optimized out
602 	 * for constant sized instrumentation (__tsan_{read,write}N).
603 	 */
604 	if (unlikely(size == 0))
605 		return;
606 
607 	/*
608 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
609 	 * user_access_save, as the address that ptr points to is only used to
610 	 * check if a watchpoint exists; ptr is never dereferenced.
611 	 */
612 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
613 				     &encoded_watchpoint);
614 	/*
615 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
616 	 * slow-path, as long as no state changes that cause a race to be
617 	 * detected and reported have occurred until kcsan_is_enabled() is
618 	 * checked.
619 	 */
620 
621 	if (unlikely(watchpoint != NULL))
622 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
623 				       encoded_watchpoint);
624 	else {
625 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
626 
627 		if (unlikely(should_watch(ptr, size, type, ctx)))
628 			kcsan_setup_watchpoint(ptr, size, type);
629 		else if (unlikely(ctx->scoped_accesses.prev))
630 			kcsan_check_scoped_accesses();
631 	}
632 }
633 
634 /* === Public interface ===================================================== */
635 
636 void __init kcsan_init(void)
637 {
638 	int cpu;
639 
640 	BUG_ON(!in_task());
641 
642 	kcsan_debugfs_init();
643 
644 	for_each_possible_cpu(cpu)
645 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
646 
647 	/*
648 	 * We are in the init task, and no other tasks should be running;
649 	 * WRITE_ONCE without memory barrier is sufficient.
650 	 */
651 	if (kcsan_early_enable) {
652 		pr_info("enabled early\n");
653 		WRITE_ONCE(kcsan_enabled, true);
654 	}
655 }
656 
657 /* === Exported interface =================================================== */
658 
659 void kcsan_disable_current(void)
660 {
661 	++get_ctx()->disable_count;
662 }
663 EXPORT_SYMBOL(kcsan_disable_current);
664 
665 void kcsan_enable_current(void)
666 {
667 	if (get_ctx()->disable_count-- == 0) {
668 		/*
669 		 * Warn if kcsan_enable_current() calls are unbalanced with
670 		 * kcsan_disable_current() calls, which causes disable_count to
671 		 * become negative and should not happen.
672 		 */
673 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
674 		kcsan_disable_current(); /* disable to generate warning */
675 		WARN(1, "Unbalanced %s()", __func__);
676 		kcsan_enable_current();
677 	}
678 }
679 EXPORT_SYMBOL(kcsan_enable_current);
680 
681 void kcsan_enable_current_nowarn(void)
682 {
683 	if (get_ctx()->disable_count-- == 0)
684 		kcsan_disable_current();
685 }
686 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
687 
688 void kcsan_nestable_atomic_begin(void)
689 {
690 	/*
691 	 * Do *not* check and warn if we are in a flat atomic region: nestable
692 	 * and flat atomic regions are independent from each other.
693 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
694 	 * comments.
695 	 */
696 
697 	++get_ctx()->atomic_nest_count;
698 }
699 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
700 
701 void kcsan_nestable_atomic_end(void)
702 {
703 	if (get_ctx()->atomic_nest_count-- == 0) {
704 		/*
705 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
706 		 * kcsan_nestable_atomic_begin() calls, which causes
707 		 * atomic_nest_count to become negative and should not happen.
708 		 */
709 		kcsan_nestable_atomic_begin(); /* restore to 0 */
710 		kcsan_disable_current(); /* disable to generate warning */
711 		WARN(1, "Unbalanced %s()", __func__);
712 		kcsan_enable_current();
713 	}
714 }
715 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
716 
717 void kcsan_flat_atomic_begin(void)
718 {
719 	get_ctx()->in_flat_atomic = true;
720 }
721 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
722 
723 void kcsan_flat_atomic_end(void)
724 {
725 	get_ctx()->in_flat_atomic = false;
726 }
727 EXPORT_SYMBOL(kcsan_flat_atomic_end);
728 
729 void kcsan_atomic_next(int n)
730 {
731 	get_ctx()->atomic_next = n;
732 }
733 EXPORT_SYMBOL(kcsan_atomic_next);
734 
735 void kcsan_set_access_mask(unsigned long mask)
736 {
737 	get_ctx()->access_mask = mask;
738 }
739 EXPORT_SYMBOL(kcsan_set_access_mask);
740 
741 struct kcsan_scoped_access *
742 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
743 			  struct kcsan_scoped_access *sa)
744 {
745 	struct kcsan_ctx *ctx = get_ctx();
746 
747 	__kcsan_check_access(ptr, size, type);
748 
749 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
750 
751 	INIT_LIST_HEAD(&sa->list);
752 	sa->ptr = ptr;
753 	sa->size = size;
754 	sa->type = type;
755 
756 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
757 		INIT_LIST_HEAD(&ctx->scoped_accesses);
758 	list_add(&sa->list, &ctx->scoped_accesses);
759 
760 	ctx->disable_count--;
761 	return sa;
762 }
763 EXPORT_SYMBOL(kcsan_begin_scoped_access);
764 
765 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
766 {
767 	struct kcsan_ctx *ctx = get_ctx();
768 
769 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
770 		return;
771 
772 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
773 
774 	list_del(&sa->list);
775 	if (list_empty(&ctx->scoped_accesses))
776 		/*
777 		 * Ensure we do not enter kcsan_check_scoped_accesses()
778 		 * slow-path if unnecessary, and avoids requiring list_empty()
779 		 * in the fast-path (to avoid a READ_ONCE() and potential
780 		 * uaccess warning).
781 		 */
782 		ctx->scoped_accesses.prev = NULL;
783 
784 	ctx->disable_count--;
785 
786 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
787 }
788 EXPORT_SYMBOL(kcsan_end_scoped_access);
789 
790 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
791 {
792 	check_access(ptr, size, type);
793 }
794 EXPORT_SYMBOL(__kcsan_check_access);
795 
796 /*
797  * KCSAN uses the same instrumentation that is emitted by supported compilers
798  * for ThreadSanitizer (TSAN).
799  *
800  * When enabled, the compiler emits instrumentation calls (the functions
801  * prefixed with "__tsan" below) for all loads and stores that it generated;
802  * inline asm is not instrumented.
803  *
804  * Note that, not all supported compiler versions distinguish aligned/unaligned
805  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
806  * version to the generic version, which can handle both.
807  */
808 
809 #define DEFINE_TSAN_READ_WRITE(size)                                           \
810 	void __tsan_read##size(void *ptr);                                     \
811 	void __tsan_read##size(void *ptr)                                      \
812 	{                                                                      \
813 		check_access(ptr, size, 0);                                    \
814 	}                                                                      \
815 	EXPORT_SYMBOL(__tsan_read##size);                                      \
816 	void __tsan_unaligned_read##size(void *ptr)                            \
817 		__alias(__tsan_read##size);                                    \
818 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
819 	void __tsan_write##size(void *ptr);                                    \
820 	void __tsan_write##size(void *ptr)                                     \
821 	{                                                                      \
822 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
823 	}                                                                      \
824 	EXPORT_SYMBOL(__tsan_write##size);                                     \
825 	void __tsan_unaligned_write##size(void *ptr)                           \
826 		__alias(__tsan_write##size);                                   \
827 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
828 	void __tsan_read_write##size(void *ptr);                               \
829 	void __tsan_read_write##size(void *ptr)                                \
830 	{                                                                      \
831 		check_access(ptr, size,                                        \
832 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
833 	}                                                                      \
834 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
835 	void __tsan_unaligned_read_write##size(void *ptr)                      \
836 		__alias(__tsan_read_write##size);                              \
837 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
838 
839 DEFINE_TSAN_READ_WRITE(1);
840 DEFINE_TSAN_READ_WRITE(2);
841 DEFINE_TSAN_READ_WRITE(4);
842 DEFINE_TSAN_READ_WRITE(8);
843 DEFINE_TSAN_READ_WRITE(16);
844 
845 void __tsan_read_range(void *ptr, size_t size);
846 void __tsan_read_range(void *ptr, size_t size)
847 {
848 	check_access(ptr, size, 0);
849 }
850 EXPORT_SYMBOL(__tsan_read_range);
851 
852 void __tsan_write_range(void *ptr, size_t size);
853 void __tsan_write_range(void *ptr, size_t size)
854 {
855 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
856 }
857 EXPORT_SYMBOL(__tsan_write_range);
858 
859 /*
860  * Use of explicit volatile is generally disallowed [1], however, volatile is
861  * still used in various concurrent context, whether in low-level
862  * synchronization primitives or for legacy reasons.
863  * [1] https://lwn.net/Articles/233479/
864  *
865  * We only consider volatile accesses atomic if they are aligned and would pass
866  * the size-check of compiletime_assert_rwonce_type().
867  */
868 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
869 	void __tsan_volatile_read##size(void *ptr);                            \
870 	void __tsan_volatile_read##size(void *ptr)                             \
871 	{                                                                      \
872 		const bool is_atomic = size <= sizeof(long long) &&            \
873 				       IS_ALIGNED((unsigned long)ptr, size);   \
874 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
875 			return;                                                \
876 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
877 	}                                                                      \
878 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
879 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
880 		__alias(__tsan_volatile_read##size);                           \
881 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
882 	void __tsan_volatile_write##size(void *ptr);                           \
883 	void __tsan_volatile_write##size(void *ptr)                            \
884 	{                                                                      \
885 		const bool is_atomic = size <= sizeof(long long) &&            \
886 				       IS_ALIGNED((unsigned long)ptr, size);   \
887 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
888 			return;                                                \
889 		check_access(ptr, size,                                        \
890 			     KCSAN_ACCESS_WRITE |                              \
891 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
892 	}                                                                      \
893 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
894 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
895 		__alias(__tsan_volatile_write##size);                          \
896 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
897 
898 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
899 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
900 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
901 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
902 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
903 
904 /*
905  * The below are not required by KCSAN, but can still be emitted by the
906  * compiler.
907  */
908 void __tsan_func_entry(void *call_pc);
909 void __tsan_func_entry(void *call_pc)
910 {
911 }
912 EXPORT_SYMBOL(__tsan_func_entry);
913 void __tsan_func_exit(void);
914 void __tsan_func_exit(void)
915 {
916 }
917 EXPORT_SYMBOL(__tsan_func_exit);
918 void __tsan_init(void);
919 void __tsan_init(void)
920 {
921 }
922 EXPORT_SYMBOL(__tsan_init);
923 
924 /*
925  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
926  *
927  * Normal kernel code _should not_ be using them directly, but some
928  * architectures may implement some or all atomics using the compilers'
929  * builtins.
930  *
931  * Note: If an architecture decides to fully implement atomics using the
932  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
933  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
934  * atomic-instrumented) is no longer necessary.
935  *
936  * TSAN instrumentation replaces atomic accesses with calls to any of the below
937  * functions, whose job is to also execute the operation itself.
938  */
939 
940 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
941 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
942 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
943 	{                                                                                          \
944 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
945 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
946 		}                                                                                  \
947 		return __atomic_load_n(ptr, memorder);                                             \
948 	}                                                                                          \
949 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
950 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
951 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
952 	{                                                                                          \
953 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
954 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
955 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
956 		}                                                                                  \
957 		__atomic_store_n(ptr, v, memorder);                                                \
958 	}                                                                                          \
959 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
960 
961 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
962 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
963 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
964 	{                                                                                          \
965 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
966 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
967 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
968 					     KCSAN_ACCESS_ATOMIC);                                 \
969 		}                                                                                  \
970 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
971 	}                                                                                          \
972 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
973 
974 /*
975  * Note: CAS operations are always classified as write, even in case they
976  * fail. We cannot perform check_access() after a write, as it might lead to
977  * false positives, in cases such as:
978  *
979  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
980  *
981  *	T1: if (__atomic_load_n(&p->flag, ...)) {
982  *		modify *p;
983  *		p->flag = 0;
984  *	    }
985  *
986  * The only downside is that, if there are 3 threads, with one CAS that
987  * succeeds, another CAS that fails, and an unmarked racing operation, we may
988  * point at the wrong CAS as the source of the race. However, if we assume that
989  * all CAS can succeed in some other execution, the data race is still valid.
990  */
991 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
992 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
993 							      u##bits val, int mo, int fail_mo);   \
994 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
995 							      u##bits val, int mo, int fail_mo)    \
996 	{                                                                                          \
997 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
998 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
999 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1000 					     KCSAN_ACCESS_ATOMIC);                                 \
1001 		}                                                                                  \
1002 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1003 	}                                                                                          \
1004 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1005 
1006 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1007 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1008 							   int mo, int fail_mo);                   \
1009 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1010 							   int mo, int fail_mo)                    \
1011 	{                                                                                          \
1012 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1013 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1014 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1015 					     KCSAN_ACCESS_ATOMIC);                                 \
1016 		}                                                                                  \
1017 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1018 		return exp;                                                                        \
1019 	}                                                                                          \
1020 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1021 
1022 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1023 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1024 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1025 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1026 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1027 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1028 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1029 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1030 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1031 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1032 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1033 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1034 
1035 DEFINE_TSAN_ATOMIC_OPS(8);
1036 DEFINE_TSAN_ATOMIC_OPS(16);
1037 DEFINE_TSAN_ATOMIC_OPS(32);
1038 DEFINE_TSAN_ATOMIC_OPS(64);
1039 
1040 void __tsan_atomic_thread_fence(int memorder);
1041 void __tsan_atomic_thread_fence(int memorder)
1042 {
1043 	__atomic_thread_fence(memorder);
1044 }
1045 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1046 
1047 void __tsan_atomic_signal_fence(int memorder);
1048 void __tsan_atomic_signal_fence(int memorder) { }
1049 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1050