xref: /openbmc/linux/kernel/kcsan/core.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/atomic.h>
4 #include <linux/bug.h>
5 #include <linux/delay.h>
6 #include <linux/export.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/list.h>
10 #include <linux/moduleparam.h>
11 #include <linux/percpu.h>
12 #include <linux/preempt.h>
13 #include <linux/random.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16 
17 #include "atomic.h"
18 #include "encoding.h"
19 #include "kcsan.h"
20 
21 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
22 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
23 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
24 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
25 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
26 
27 #ifdef MODULE_PARAM_PREFIX
28 #undef MODULE_PARAM_PREFIX
29 #endif
30 #define MODULE_PARAM_PREFIX "kcsan."
31 module_param_named(early_enable, kcsan_early_enable, bool, 0);
32 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
33 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
34 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
35 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
36 
37 bool kcsan_enabled;
38 
39 /* Per-CPU kcsan_ctx for interrupts */
40 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
41 	.disable_count		= 0,
42 	.atomic_next		= 0,
43 	.atomic_nest_count	= 0,
44 	.in_flat_atomic		= false,
45 	.access_mask		= 0,
46 	.scoped_accesses	= {LIST_POISON1, NULL},
47 };
48 
49 /*
50  * Helper macros to index into adjacent slots, starting from address slot
51  * itself, followed by the right and left slots.
52  *
53  * The purpose is 2-fold:
54  *
55  *	1. if during insertion the address slot is already occupied, check if
56  *	   any adjacent slots are free;
57  *	2. accesses that straddle a slot boundary due to size that exceeds a
58  *	   slot's range may check adjacent slots if any watchpoint matches.
59  *
60  * Note that accesses with very large size may still miss a watchpoint; however,
61  * given this should be rare, this is a reasonable trade-off to make, since this
62  * will avoid:
63  *
64  *	1. excessive contention between watchpoint checks and setup;
65  *	2. larger number of simultaneous watchpoints without sacrificing
66  *	   performance.
67  *
68  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
69  *
70  *   slot=0:  [ 1,  2,  0]
71  *   slot=9:  [10, 11,  9]
72  *   slot=63: [64, 65, 63]
73  */
74 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
75 
76 /*
77  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
78  * slot (middle) is fine if we assume that races occur rarely. The set of
79  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
80  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
81  */
82 #define SLOT_IDX_FAST(slot, i) (slot + i)
83 
84 /*
85  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
86  * able to safely update and access a watchpoint without introducing locking
87  * overhead, we encode each watchpoint as a single atomic long. The initial
88  * zero-initialized state matches INVALID_WATCHPOINT.
89  *
90  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
91  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
92  */
93 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
94 
95 /*
96  * Instructions to skip watching counter, used in should_watch(). We use a
97  * per-CPU counter to avoid excessive contention.
98  */
99 static DEFINE_PER_CPU(long, kcsan_skip);
100 
101 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
102 						      size_t size,
103 						      bool expect_write,
104 						      long *encoded_watchpoint)
105 {
106 	const int slot = watchpoint_slot(addr);
107 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
108 	atomic_long_t *watchpoint;
109 	unsigned long wp_addr_masked;
110 	size_t wp_size;
111 	bool is_write;
112 	int i;
113 
114 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
115 
116 	for (i = 0; i < NUM_SLOTS; ++i) {
117 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
118 		*encoded_watchpoint = atomic_long_read(watchpoint);
119 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
120 				       &wp_size, &is_write))
121 			continue;
122 
123 		if (expect_write && !is_write)
124 			continue;
125 
126 		/* Check if the watchpoint matches the access. */
127 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
128 			return watchpoint;
129 	}
130 
131 	return NULL;
132 }
133 
134 static inline atomic_long_t *
135 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
136 {
137 	const int slot = watchpoint_slot(addr);
138 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
139 	atomic_long_t *watchpoint;
140 	int i;
141 
142 	/* Check slot index logic, ensuring we stay within array bounds. */
143 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
144 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
145 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
146 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
147 
148 	for (i = 0; i < NUM_SLOTS; ++i) {
149 		long expect_val = INVALID_WATCHPOINT;
150 
151 		/* Try to acquire this slot. */
152 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
153 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
154 			return watchpoint;
155 	}
156 
157 	return NULL;
158 }
159 
160 /*
161  * Return true if watchpoint was successfully consumed, false otherwise.
162  *
163  * This may return false if:
164  *
165  *	1. another thread already consumed the watchpoint;
166  *	2. the thread that set up the watchpoint already removed it;
167  *	3. the watchpoint was removed and then re-used.
168  */
169 static __always_inline bool
170 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
171 {
172 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
173 }
174 
175 /* Return true if watchpoint was not touched, false if already consumed. */
176 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
177 {
178 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
179 }
180 
181 /* Remove the watchpoint -- its slot may be reused after. */
182 static inline void remove_watchpoint(atomic_long_t *watchpoint)
183 {
184 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
185 }
186 
187 static __always_inline struct kcsan_ctx *get_ctx(void)
188 {
189 	/*
190 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
191 	 * also result in calls that generate warnings in uaccess regions.
192 	 */
193 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
194 }
195 
196 /* Check scoped accesses; never inline because this is a slow-path! */
197 static noinline void kcsan_check_scoped_accesses(void)
198 {
199 	struct kcsan_ctx *ctx = get_ctx();
200 	struct list_head *prev_save = ctx->scoped_accesses.prev;
201 	struct kcsan_scoped_access *scoped_access;
202 
203 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
204 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
205 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
206 	ctx->scoped_accesses.prev = prev_save;
207 }
208 
209 /* Rules for generic atomic accesses. Called from fast-path. */
210 static __always_inline bool
211 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
212 {
213 	if (type & KCSAN_ACCESS_ATOMIC)
214 		return true;
215 
216 	/*
217 	 * Unless explicitly declared atomic, never consider an assertion access
218 	 * as atomic. This allows using them also in atomic regions, such as
219 	 * seqlocks, without implicitly changing their semantics.
220 	 */
221 	if (type & KCSAN_ACCESS_ASSERT)
222 		return false;
223 
224 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
225 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
226 	    IS_ALIGNED((unsigned long)ptr, size))
227 		return true; /* Assume aligned writes up to word size are atomic. */
228 
229 	if (ctx->atomic_next > 0) {
230 		/*
231 		 * Because we do not have separate contexts for nested
232 		 * interrupts, in case atomic_next is set, we simply assume that
233 		 * the outer interrupt set atomic_next. In the worst case, we
234 		 * will conservatively consider operations as atomic. This is a
235 		 * reasonable trade-off to make, since this case should be
236 		 * extremely rare; however, even if extremely rare, it could
237 		 * lead to false positives otherwise.
238 		 */
239 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
240 			--ctx->atomic_next; /* in task, or outer interrupt */
241 		return true;
242 	}
243 
244 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
245 }
246 
247 static __always_inline bool
248 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
249 {
250 	/*
251 	 * Never set up watchpoints when memory operations are atomic.
252 	 *
253 	 * Need to check this first, before kcsan_skip check below: (1) atomics
254 	 * should not count towards skipped instructions, and (2) to actually
255 	 * decrement kcsan_atomic_next for consecutive instruction stream.
256 	 */
257 	if (is_atomic(ptr, size, type, ctx))
258 		return false;
259 
260 	if (this_cpu_dec_return(kcsan_skip) >= 0)
261 		return false;
262 
263 	/*
264 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
265 	 * via reset_kcsan_skip() to avoid underflow.
266 	 */
267 
268 	/* this operation should be watched */
269 	return true;
270 }
271 
272 static inline void reset_kcsan_skip(void)
273 {
274 	long skip_count = kcsan_skip_watch -
275 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
276 				   prandom_u32_max(kcsan_skip_watch) :
277 				   0);
278 	this_cpu_write(kcsan_skip, skip_count);
279 }
280 
281 static __always_inline bool kcsan_is_enabled(void)
282 {
283 	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
284 }
285 
286 static inline unsigned int get_delay(void)
287 {
288 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
289 	return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
290 				prandom_u32_max(delay) :
291 				0);
292 }
293 
294 void kcsan_save_irqtrace(struct task_struct *task)
295 {
296 #ifdef CONFIG_TRACE_IRQFLAGS
297 	task->kcsan_save_irqtrace = task->irqtrace;
298 #endif
299 }
300 
301 void kcsan_restore_irqtrace(struct task_struct *task)
302 {
303 #ifdef CONFIG_TRACE_IRQFLAGS
304 	task->irqtrace = task->kcsan_save_irqtrace;
305 #endif
306 }
307 
308 /*
309  * Pull everything together: check_access() below contains the performance
310  * critical operations; the fast-path (including check_access) functions should
311  * all be inlinable by the instrumentation functions.
312  *
313  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
314  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
315  * be filtered from the stacktrace, as well as give them unique names for the
316  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
317  * since they do not access any user memory, but instrumentation is still
318  * emitted in UACCESS regions.
319  */
320 
321 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
322 					    size_t size,
323 					    int type,
324 					    atomic_long_t *watchpoint,
325 					    long encoded_watchpoint)
326 {
327 	unsigned long flags;
328 	bool consumed;
329 
330 	if (!kcsan_is_enabled())
331 		return;
332 
333 	/*
334 	 * The access_mask check relies on value-change comparison. To avoid
335 	 * reporting a race where e.g. the writer set up the watchpoint, but the
336 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
337 	 */
338 	if (get_ctx()->access_mask != 0)
339 		return;
340 
341 	/*
342 	 * Consume the watchpoint as soon as possible, to minimize the chances
343 	 * of !consumed. Consuming the watchpoint must always be guarded by
344 	 * kcsan_is_enabled() check, as otherwise we might erroneously
345 	 * triggering reports when disabled.
346 	 */
347 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
348 
349 	/* keep this after try_consume_watchpoint */
350 	flags = user_access_save();
351 
352 	if (consumed) {
353 		kcsan_save_irqtrace(current);
354 		kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
355 			     KCSAN_REPORT_CONSUMED_WATCHPOINT,
356 			     watchpoint - watchpoints);
357 		kcsan_restore_irqtrace(current);
358 	} else {
359 		/*
360 		 * The other thread may not print any diagnostics, as it has
361 		 * already removed the watchpoint, or another thread consumed
362 		 * the watchpoint before this thread.
363 		 */
364 		kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
365 	}
366 
367 	if ((type & KCSAN_ACCESS_ASSERT) != 0)
368 		kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
369 	else
370 		kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
371 
372 	user_access_restore(flags);
373 }
374 
375 static noinline void
376 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
377 {
378 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
379 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
380 	atomic_long_t *watchpoint;
381 	union {
382 		u8 _1;
383 		u16 _2;
384 		u32 _4;
385 		u64 _8;
386 	} expect_value;
387 	unsigned long access_mask;
388 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
389 	unsigned long ua_flags = user_access_save();
390 	unsigned long irq_flags = 0;
391 
392 	/*
393 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
394 	 * should_watch().
395 	 */
396 	reset_kcsan_skip();
397 
398 	if (!kcsan_is_enabled())
399 		goto out;
400 
401 	/*
402 	 * Special atomic rules: unlikely to be true, so we check them here in
403 	 * the slow-path, and not in the fast-path in is_atomic(). Call after
404 	 * kcsan_is_enabled(), as we may access memory that is not yet
405 	 * initialized during early boot.
406 	 */
407 	if (!is_assert && kcsan_is_atomic_special(ptr))
408 		goto out;
409 
410 	if (!check_encodable((unsigned long)ptr, size)) {
411 		kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
412 		goto out;
413 	}
414 
415 	/*
416 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
417 	 * runtime is entered for every memory access, and potentially useful
418 	 * information is lost if dirtied by KCSAN.
419 	 */
420 	kcsan_save_irqtrace(current);
421 	if (!kcsan_interrupt_watcher)
422 		local_irq_save(irq_flags);
423 
424 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
425 	if (watchpoint == NULL) {
426 		/*
427 		 * Out of capacity: the size of 'watchpoints', and the frequency
428 		 * with which should_watch() returns true should be tweaked so
429 		 * that this case happens very rarely.
430 		 */
431 		kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
432 		goto out_unlock;
433 	}
434 
435 	kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
436 	kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
437 
438 	/*
439 	 * Read the current value, to later check and infer a race if the data
440 	 * was modified via a non-instrumented access, e.g. from a device.
441 	 */
442 	expect_value._8 = 0;
443 	switch (size) {
444 	case 1:
445 		expect_value._1 = READ_ONCE(*(const u8 *)ptr);
446 		break;
447 	case 2:
448 		expect_value._2 = READ_ONCE(*(const u16 *)ptr);
449 		break;
450 	case 4:
451 		expect_value._4 = READ_ONCE(*(const u32 *)ptr);
452 		break;
453 	case 8:
454 		expect_value._8 = READ_ONCE(*(const u64 *)ptr);
455 		break;
456 	default:
457 		break; /* ignore; we do not diff the values */
458 	}
459 
460 	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
461 		kcsan_disable_current();
462 		pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
463 		       is_write ? "write" : "read", size, ptr,
464 		       watchpoint_slot((unsigned long)ptr),
465 		       encode_watchpoint((unsigned long)ptr, size, is_write));
466 		kcsan_enable_current();
467 	}
468 
469 	/*
470 	 * Delay this thread, to increase probability of observing a racy
471 	 * conflicting access.
472 	 */
473 	udelay(get_delay());
474 
475 	/*
476 	 * Re-read value, and check if it is as expected; if not, we infer a
477 	 * racy access.
478 	 */
479 	access_mask = get_ctx()->access_mask;
480 	switch (size) {
481 	case 1:
482 		expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
483 		if (access_mask)
484 			expect_value._1 &= (u8)access_mask;
485 		break;
486 	case 2:
487 		expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
488 		if (access_mask)
489 			expect_value._2 &= (u16)access_mask;
490 		break;
491 	case 4:
492 		expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
493 		if (access_mask)
494 			expect_value._4 &= (u32)access_mask;
495 		break;
496 	case 8:
497 		expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
498 		if (access_mask)
499 			expect_value._8 &= (u64)access_mask;
500 		break;
501 	default:
502 		break; /* ignore; we do not diff the values */
503 	}
504 
505 	/* Were we able to observe a value-change? */
506 	if (expect_value._8 != 0)
507 		value_change = KCSAN_VALUE_CHANGE_TRUE;
508 
509 	/* Check if this access raced with another. */
510 	if (!consume_watchpoint(watchpoint)) {
511 		/*
512 		 * Depending on the access type, map a value_change of MAYBE to
513 		 * TRUE (always report) or FALSE (never report).
514 		 */
515 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
516 			if (access_mask != 0) {
517 				/*
518 				 * For access with access_mask, we require a
519 				 * value-change, as it is likely that races on
520 				 * ~access_mask bits are expected.
521 				 */
522 				value_change = KCSAN_VALUE_CHANGE_FALSE;
523 			} else if (size > 8 || is_assert) {
524 				/* Always assume a value-change. */
525 				value_change = KCSAN_VALUE_CHANGE_TRUE;
526 			}
527 		}
528 
529 		/*
530 		 * No need to increment 'data_races' counter, as the racing
531 		 * thread already did.
532 		 *
533 		 * Count 'assert_failures' for each failed ASSERT access,
534 		 * therefore both this thread and the racing thread may
535 		 * increment this counter.
536 		 */
537 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
538 			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
539 
540 		kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
541 			     watchpoint - watchpoints);
542 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
543 		/* Inferring a race, since the value should not have changed. */
544 
545 		kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
546 		if (is_assert)
547 			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
548 
549 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
550 			kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
551 				     KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
552 				     watchpoint - watchpoints);
553 	}
554 
555 	/*
556 	 * Remove watchpoint; must be after reporting, since the slot may be
557 	 * reused after this point.
558 	 */
559 	remove_watchpoint(watchpoint);
560 	kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
561 out_unlock:
562 	if (!kcsan_interrupt_watcher)
563 		local_irq_restore(irq_flags);
564 	kcsan_restore_irqtrace(current);
565 out:
566 	user_access_restore(ua_flags);
567 }
568 
569 static __always_inline void check_access(const volatile void *ptr, size_t size,
570 					 int type)
571 {
572 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
573 	atomic_long_t *watchpoint;
574 	long encoded_watchpoint;
575 
576 	/*
577 	 * Do nothing for 0 sized check; this comparison will be optimized out
578 	 * for constant sized instrumentation (__tsan_{read,write}N).
579 	 */
580 	if (unlikely(size == 0))
581 		return;
582 
583 	/*
584 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
585 	 * user_access_save, as the address that ptr points to is only used to
586 	 * check if a watchpoint exists; ptr is never dereferenced.
587 	 */
588 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
589 				     &encoded_watchpoint);
590 	/*
591 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
592 	 * slow-path, as long as no state changes that cause a race to be
593 	 * detected and reported have occurred until kcsan_is_enabled() is
594 	 * checked.
595 	 */
596 
597 	if (unlikely(watchpoint != NULL))
598 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
599 				       encoded_watchpoint);
600 	else {
601 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
602 
603 		if (unlikely(should_watch(ptr, size, type, ctx)))
604 			kcsan_setup_watchpoint(ptr, size, type);
605 		else if (unlikely(ctx->scoped_accesses.prev))
606 			kcsan_check_scoped_accesses();
607 	}
608 }
609 
610 /* === Public interface ===================================================== */
611 
612 void __init kcsan_init(void)
613 {
614 	BUG_ON(!in_task());
615 
616 	kcsan_debugfs_init();
617 
618 	/*
619 	 * We are in the init task, and no other tasks should be running;
620 	 * WRITE_ONCE without memory barrier is sufficient.
621 	 */
622 	if (kcsan_early_enable)
623 		WRITE_ONCE(kcsan_enabled, true);
624 }
625 
626 /* === Exported interface =================================================== */
627 
628 void kcsan_disable_current(void)
629 {
630 	++get_ctx()->disable_count;
631 }
632 EXPORT_SYMBOL(kcsan_disable_current);
633 
634 void kcsan_enable_current(void)
635 {
636 	if (get_ctx()->disable_count-- == 0) {
637 		/*
638 		 * Warn if kcsan_enable_current() calls are unbalanced with
639 		 * kcsan_disable_current() calls, which causes disable_count to
640 		 * become negative and should not happen.
641 		 */
642 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
643 		kcsan_disable_current(); /* disable to generate warning */
644 		WARN(1, "Unbalanced %s()", __func__);
645 		kcsan_enable_current();
646 	}
647 }
648 EXPORT_SYMBOL(kcsan_enable_current);
649 
650 void kcsan_enable_current_nowarn(void)
651 {
652 	if (get_ctx()->disable_count-- == 0)
653 		kcsan_disable_current();
654 }
655 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
656 
657 void kcsan_nestable_atomic_begin(void)
658 {
659 	/*
660 	 * Do *not* check and warn if we are in a flat atomic region: nestable
661 	 * and flat atomic regions are independent from each other.
662 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
663 	 * comments.
664 	 */
665 
666 	++get_ctx()->atomic_nest_count;
667 }
668 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
669 
670 void kcsan_nestable_atomic_end(void)
671 {
672 	if (get_ctx()->atomic_nest_count-- == 0) {
673 		/*
674 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
675 		 * kcsan_nestable_atomic_begin() calls, which causes
676 		 * atomic_nest_count to become negative and should not happen.
677 		 */
678 		kcsan_nestable_atomic_begin(); /* restore to 0 */
679 		kcsan_disable_current(); /* disable to generate warning */
680 		WARN(1, "Unbalanced %s()", __func__);
681 		kcsan_enable_current();
682 	}
683 }
684 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
685 
686 void kcsan_flat_atomic_begin(void)
687 {
688 	get_ctx()->in_flat_atomic = true;
689 }
690 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
691 
692 void kcsan_flat_atomic_end(void)
693 {
694 	get_ctx()->in_flat_atomic = false;
695 }
696 EXPORT_SYMBOL(kcsan_flat_atomic_end);
697 
698 void kcsan_atomic_next(int n)
699 {
700 	get_ctx()->atomic_next = n;
701 }
702 EXPORT_SYMBOL(kcsan_atomic_next);
703 
704 void kcsan_set_access_mask(unsigned long mask)
705 {
706 	get_ctx()->access_mask = mask;
707 }
708 EXPORT_SYMBOL(kcsan_set_access_mask);
709 
710 struct kcsan_scoped_access *
711 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
712 			  struct kcsan_scoped_access *sa)
713 {
714 	struct kcsan_ctx *ctx = get_ctx();
715 
716 	__kcsan_check_access(ptr, size, type);
717 
718 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
719 
720 	INIT_LIST_HEAD(&sa->list);
721 	sa->ptr = ptr;
722 	sa->size = size;
723 	sa->type = type;
724 
725 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
726 		INIT_LIST_HEAD(&ctx->scoped_accesses);
727 	list_add(&sa->list, &ctx->scoped_accesses);
728 
729 	ctx->disable_count--;
730 	return sa;
731 }
732 EXPORT_SYMBOL(kcsan_begin_scoped_access);
733 
734 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
735 {
736 	struct kcsan_ctx *ctx = get_ctx();
737 
738 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
739 		return;
740 
741 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
742 
743 	list_del(&sa->list);
744 	if (list_empty(&ctx->scoped_accesses))
745 		/*
746 		 * Ensure we do not enter kcsan_check_scoped_accesses()
747 		 * slow-path if unnecessary, and avoids requiring list_empty()
748 		 * in the fast-path (to avoid a READ_ONCE() and potential
749 		 * uaccess warning).
750 		 */
751 		ctx->scoped_accesses.prev = NULL;
752 
753 	ctx->disable_count--;
754 
755 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
756 }
757 EXPORT_SYMBOL(kcsan_end_scoped_access);
758 
759 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
760 {
761 	check_access(ptr, size, type);
762 }
763 EXPORT_SYMBOL(__kcsan_check_access);
764 
765 /*
766  * KCSAN uses the same instrumentation that is emitted by supported compilers
767  * for ThreadSanitizer (TSAN).
768  *
769  * When enabled, the compiler emits instrumentation calls (the functions
770  * prefixed with "__tsan" below) for all loads and stores that it generated;
771  * inline asm is not instrumented.
772  *
773  * Note that, not all supported compiler versions distinguish aligned/unaligned
774  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
775  * version to the generic version, which can handle both.
776  */
777 
778 #define DEFINE_TSAN_READ_WRITE(size)                                           \
779 	void __tsan_read##size(void *ptr);                                     \
780 	void __tsan_read##size(void *ptr)                                      \
781 	{                                                                      \
782 		check_access(ptr, size, 0);                                    \
783 	}                                                                      \
784 	EXPORT_SYMBOL(__tsan_read##size);                                      \
785 	void __tsan_unaligned_read##size(void *ptr)                            \
786 		__alias(__tsan_read##size);                                    \
787 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
788 	void __tsan_write##size(void *ptr);                                    \
789 	void __tsan_write##size(void *ptr)                                     \
790 	{                                                                      \
791 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
792 	}                                                                      \
793 	EXPORT_SYMBOL(__tsan_write##size);                                     \
794 	void __tsan_unaligned_write##size(void *ptr)                           \
795 		__alias(__tsan_write##size);                                   \
796 	EXPORT_SYMBOL(__tsan_unaligned_write##size)
797 
798 DEFINE_TSAN_READ_WRITE(1);
799 DEFINE_TSAN_READ_WRITE(2);
800 DEFINE_TSAN_READ_WRITE(4);
801 DEFINE_TSAN_READ_WRITE(8);
802 DEFINE_TSAN_READ_WRITE(16);
803 
804 void __tsan_read_range(void *ptr, size_t size);
805 void __tsan_read_range(void *ptr, size_t size)
806 {
807 	check_access(ptr, size, 0);
808 }
809 EXPORT_SYMBOL(__tsan_read_range);
810 
811 void __tsan_write_range(void *ptr, size_t size);
812 void __tsan_write_range(void *ptr, size_t size)
813 {
814 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
815 }
816 EXPORT_SYMBOL(__tsan_write_range);
817 
818 /*
819  * Use of explicit volatile is generally disallowed [1], however, volatile is
820  * still used in various concurrent context, whether in low-level
821  * synchronization primitives or for legacy reasons.
822  * [1] https://lwn.net/Articles/233479/
823  *
824  * We only consider volatile accesses atomic if they are aligned and would pass
825  * the size-check of compiletime_assert_rwonce_type().
826  */
827 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
828 	void __tsan_volatile_read##size(void *ptr);                            \
829 	void __tsan_volatile_read##size(void *ptr)                             \
830 	{                                                                      \
831 		const bool is_atomic = size <= sizeof(long long) &&            \
832 				       IS_ALIGNED((unsigned long)ptr, size);   \
833 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
834 			return;                                                \
835 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
836 	}                                                                      \
837 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
838 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
839 		__alias(__tsan_volatile_read##size);                           \
840 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
841 	void __tsan_volatile_write##size(void *ptr);                           \
842 	void __tsan_volatile_write##size(void *ptr)                            \
843 	{                                                                      \
844 		const bool is_atomic = size <= sizeof(long long) &&            \
845 				       IS_ALIGNED((unsigned long)ptr, size);   \
846 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
847 			return;                                                \
848 		check_access(ptr, size,                                        \
849 			     KCSAN_ACCESS_WRITE |                              \
850 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
851 	}                                                                      \
852 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
853 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
854 		__alias(__tsan_volatile_write##size);                          \
855 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
856 
857 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
858 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
859 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
860 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
861 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
862 
863 /*
864  * The below are not required by KCSAN, but can still be emitted by the
865  * compiler.
866  */
867 void __tsan_func_entry(void *call_pc);
868 void __tsan_func_entry(void *call_pc)
869 {
870 }
871 EXPORT_SYMBOL(__tsan_func_entry);
872 void __tsan_func_exit(void);
873 void __tsan_func_exit(void)
874 {
875 }
876 EXPORT_SYMBOL(__tsan_func_exit);
877 void __tsan_init(void);
878 void __tsan_init(void)
879 {
880 }
881 EXPORT_SYMBOL(__tsan_init);
882