1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "kcov: " fmt 3 4 #define DISABLE_BRANCH_PROFILING 5 #include <linux/atomic.h> 6 #include <linux/compiler.h> 7 #include <linux/errno.h> 8 #include <linux/export.h> 9 #include <linux/types.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/hashtable.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/preempt.h> 16 #include <linux/printk.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/spinlock.h> 20 #include <linux/vmalloc.h> 21 #include <linux/debugfs.h> 22 #include <linux/uaccess.h> 23 #include <linux/kcov.h> 24 #include <linux/refcount.h> 25 #include <linux/log2.h> 26 #include <asm/setup.h> 27 28 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 29 30 /* Number of 64-bit words written per one comparison: */ 31 #define KCOV_WORDS_PER_CMP 4 32 33 /* 34 * kcov descriptor (one per opened debugfs file). 35 * State transitions of the descriptor: 36 * - initial state after open() 37 * - then there must be a single ioctl(KCOV_INIT_TRACE) call 38 * - then, mmap() call (several calls are allowed but not useful) 39 * - then, ioctl(KCOV_ENABLE, arg), where arg is 40 * KCOV_TRACE_PC - to trace only the PCs 41 * or 42 * KCOV_TRACE_CMP - to trace only the comparison operands 43 * - then, ioctl(KCOV_DISABLE) to disable the task. 44 * Enabling/disabling ioctls can be repeated (only one task a time allowed). 45 */ 46 struct kcov { 47 /* 48 * Reference counter. We keep one for: 49 * - opened file descriptor 50 * - task with enabled coverage (we can't unwire it from another task) 51 * - each code section for remote coverage collection 52 */ 53 refcount_t refcount; 54 /* The lock protects mode, size, area and t. */ 55 spinlock_t lock; 56 enum kcov_mode mode; 57 /* Size of arena (in long's). */ 58 unsigned int size; 59 /* Coverage buffer shared with user space. */ 60 void *area; 61 /* Task for which we collect coverage, or NULL. */ 62 struct task_struct *t; 63 /* Collecting coverage from remote (background) threads. */ 64 bool remote; 65 /* Size of remote area (in long's). */ 66 unsigned int remote_size; 67 /* 68 * Sequence is incremented each time kcov is reenabled, used by 69 * kcov_remote_stop(), see the comment there. 70 */ 71 int sequence; 72 }; 73 74 struct kcov_remote_area { 75 struct list_head list; 76 unsigned int size; 77 }; 78 79 struct kcov_remote { 80 u64 handle; 81 struct kcov *kcov; 82 struct hlist_node hnode; 83 }; 84 85 static DEFINE_SPINLOCK(kcov_remote_lock); 86 static DEFINE_HASHTABLE(kcov_remote_map, 4); 87 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); 88 89 struct kcov_percpu_data { 90 void *irq_area; 91 local_lock_t lock; 92 93 unsigned int saved_mode; 94 unsigned int saved_size; 95 void *saved_area; 96 struct kcov *saved_kcov; 97 int saved_sequence; 98 }; 99 100 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { 101 .lock = INIT_LOCAL_LOCK(lock), 102 }; 103 104 /* Must be called with kcov_remote_lock locked. */ 105 static struct kcov_remote *kcov_remote_find(u64 handle) 106 { 107 struct kcov_remote *remote; 108 109 hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { 110 if (remote->handle == handle) 111 return remote; 112 } 113 return NULL; 114 } 115 116 /* Must be called with kcov_remote_lock locked. */ 117 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) 118 { 119 struct kcov_remote *remote; 120 121 if (kcov_remote_find(handle)) 122 return ERR_PTR(-EEXIST); 123 remote = kmalloc(sizeof(*remote), GFP_ATOMIC); 124 if (!remote) 125 return ERR_PTR(-ENOMEM); 126 remote->handle = handle; 127 remote->kcov = kcov; 128 hash_add(kcov_remote_map, &remote->hnode, handle); 129 return remote; 130 } 131 132 /* Must be called with kcov_remote_lock locked. */ 133 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) 134 { 135 struct kcov_remote_area *area; 136 struct list_head *pos; 137 138 list_for_each(pos, &kcov_remote_areas) { 139 area = list_entry(pos, struct kcov_remote_area, list); 140 if (area->size == size) { 141 list_del(&area->list); 142 return area; 143 } 144 } 145 return NULL; 146 } 147 148 /* Must be called with kcov_remote_lock locked. */ 149 static void kcov_remote_area_put(struct kcov_remote_area *area, 150 unsigned int size) 151 { 152 INIT_LIST_HEAD(&area->list); 153 area->size = size; 154 list_add(&area->list, &kcov_remote_areas); 155 } 156 157 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) 158 { 159 unsigned int mode; 160 161 /* 162 * We are interested in code coverage as a function of a syscall inputs, 163 * so we ignore code executed in interrupts, unless we are in a remote 164 * coverage collection section in a softirq. 165 */ 166 if (!in_task() && !(in_serving_softirq() && t->kcov_softirq)) 167 return false; 168 mode = READ_ONCE(t->kcov_mode); 169 /* 170 * There is some code that runs in interrupts but for which 171 * in_interrupt() returns false (e.g. preempt_schedule_irq()). 172 * READ_ONCE()/barrier() effectively provides load-acquire wrt 173 * interrupts, there are paired barrier()/WRITE_ONCE() in 174 * kcov_start(). 175 */ 176 barrier(); 177 return mode == needed_mode; 178 } 179 180 static notrace unsigned long canonicalize_ip(unsigned long ip) 181 { 182 #ifdef CONFIG_RANDOMIZE_BASE 183 ip -= kaslr_offset(); 184 #endif 185 return ip; 186 } 187 188 /* 189 * Entry point from instrumented code. 190 * This is called once per basic-block/edge. 191 */ 192 void notrace __sanitizer_cov_trace_pc(void) 193 { 194 struct task_struct *t; 195 unsigned long *area; 196 unsigned long ip = canonicalize_ip(_RET_IP_); 197 unsigned long pos; 198 199 t = current; 200 if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) 201 return; 202 203 area = t->kcov_area; 204 /* The first 64-bit word is the number of subsequent PCs. */ 205 pos = READ_ONCE(area[0]) + 1; 206 if (likely(pos < t->kcov_size)) { 207 /* Previously we write pc before updating pos. However, some 208 * early interrupt code could bypass check_kcov_mode() check 209 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is 210 * raised between writing pc and updating pos, the pc could be 211 * overitten by the recursive __sanitizer_cov_trace_pc(). 212 * Update pos before writing pc to avoid such interleaving. 213 */ 214 WRITE_ONCE(area[0], pos); 215 barrier(); 216 area[pos] = ip; 217 } 218 } 219 EXPORT_SYMBOL(__sanitizer_cov_trace_pc); 220 221 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 222 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) 223 { 224 struct task_struct *t; 225 u64 *area; 226 u64 count, start_index, end_pos, max_pos; 227 228 t = current; 229 if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) 230 return; 231 232 ip = canonicalize_ip(ip); 233 234 /* 235 * We write all comparison arguments and types as u64. 236 * The buffer was allocated for t->kcov_size unsigned longs. 237 */ 238 area = (u64 *)t->kcov_area; 239 max_pos = t->kcov_size * sizeof(unsigned long); 240 241 count = READ_ONCE(area[0]); 242 243 /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ 244 start_index = 1 + count * KCOV_WORDS_PER_CMP; 245 end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); 246 if (likely(end_pos <= max_pos)) { 247 /* See comment in __sanitizer_cov_trace_pc(). */ 248 WRITE_ONCE(area[0], count + 1); 249 barrier(); 250 area[start_index] = type; 251 area[start_index + 1] = arg1; 252 area[start_index + 2] = arg2; 253 area[start_index + 3] = ip; 254 } 255 } 256 257 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) 258 { 259 write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); 260 } 261 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); 262 263 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) 264 { 265 write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); 266 } 267 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); 268 269 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) 270 { 271 write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); 272 } 273 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); 274 275 void notrace __sanitizer_cov_trace_cmp8(u64 arg1, u64 arg2) 276 { 277 write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); 278 } 279 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); 280 281 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) 282 { 283 write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, 284 _RET_IP_); 285 } 286 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); 287 288 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) 289 { 290 write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, 291 _RET_IP_); 292 } 293 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); 294 295 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) 296 { 297 write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, 298 _RET_IP_); 299 } 300 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); 301 302 void notrace __sanitizer_cov_trace_const_cmp8(u64 arg1, u64 arg2) 303 { 304 write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, 305 _RET_IP_); 306 } 307 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); 308 309 void notrace __sanitizer_cov_trace_switch(u64 val, u64 *cases) 310 { 311 u64 i; 312 u64 count = cases[0]; 313 u64 size = cases[1]; 314 u64 type = KCOV_CMP_CONST; 315 316 switch (size) { 317 case 8: 318 type |= KCOV_CMP_SIZE(0); 319 break; 320 case 16: 321 type |= KCOV_CMP_SIZE(1); 322 break; 323 case 32: 324 type |= KCOV_CMP_SIZE(2); 325 break; 326 case 64: 327 type |= KCOV_CMP_SIZE(3); 328 break; 329 default: 330 return; 331 } 332 for (i = 0; i < count; i++) 333 write_comp_data(type, cases[i + 2], val, _RET_IP_); 334 } 335 EXPORT_SYMBOL(__sanitizer_cov_trace_switch); 336 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ 337 338 static void kcov_start(struct task_struct *t, struct kcov *kcov, 339 unsigned int size, void *area, enum kcov_mode mode, 340 int sequence) 341 { 342 kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); 343 t->kcov = kcov; 344 /* Cache in task struct for performance. */ 345 t->kcov_size = size; 346 t->kcov_area = area; 347 t->kcov_sequence = sequence; 348 /* See comment in check_kcov_mode(). */ 349 barrier(); 350 WRITE_ONCE(t->kcov_mode, mode); 351 } 352 353 static void kcov_stop(struct task_struct *t) 354 { 355 WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); 356 barrier(); 357 t->kcov = NULL; 358 t->kcov_size = 0; 359 t->kcov_area = NULL; 360 } 361 362 static void kcov_task_reset(struct task_struct *t) 363 { 364 kcov_stop(t); 365 t->kcov_sequence = 0; 366 t->kcov_handle = 0; 367 } 368 369 void kcov_task_init(struct task_struct *t) 370 { 371 kcov_task_reset(t); 372 t->kcov_handle = current->kcov_handle; 373 } 374 375 static void kcov_reset(struct kcov *kcov) 376 { 377 kcov->t = NULL; 378 kcov->mode = KCOV_MODE_INIT; 379 kcov->remote = false; 380 kcov->remote_size = 0; 381 kcov->sequence++; 382 } 383 384 static void kcov_remote_reset(struct kcov *kcov) 385 { 386 int bkt; 387 struct kcov_remote *remote; 388 struct hlist_node *tmp; 389 unsigned long flags; 390 391 spin_lock_irqsave(&kcov_remote_lock, flags); 392 hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { 393 if (remote->kcov != kcov) 394 continue; 395 hash_del(&remote->hnode); 396 kfree(remote); 397 } 398 /* Do reset before unlock to prevent races with kcov_remote_start(). */ 399 kcov_reset(kcov); 400 spin_unlock_irqrestore(&kcov_remote_lock, flags); 401 } 402 403 static void kcov_disable(struct task_struct *t, struct kcov *kcov) 404 { 405 kcov_task_reset(t); 406 if (kcov->remote) 407 kcov_remote_reset(kcov); 408 else 409 kcov_reset(kcov); 410 } 411 412 static void kcov_get(struct kcov *kcov) 413 { 414 refcount_inc(&kcov->refcount); 415 } 416 417 static void kcov_put(struct kcov *kcov) 418 { 419 if (refcount_dec_and_test(&kcov->refcount)) { 420 kcov_remote_reset(kcov); 421 vfree(kcov->area); 422 kfree(kcov); 423 } 424 } 425 426 void kcov_task_exit(struct task_struct *t) 427 { 428 struct kcov *kcov; 429 unsigned long flags; 430 431 kcov = t->kcov; 432 if (kcov == NULL) 433 return; 434 435 spin_lock_irqsave(&kcov->lock, flags); 436 kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); 437 /* 438 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, 439 * which comes down to: 440 * WARN_ON(!kcov->remote && kcov->t != t); 441 * 442 * For KCOV_REMOTE_ENABLE devices, the exiting task is either: 443 * 444 * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). 445 * In this case we should print a warning right away, since a task 446 * shouldn't be exiting when it's in a kcov coverage collection 447 * section. Here t points to the task that is collecting remote 448 * coverage, and t->kcov->t points to the thread that created the 449 * kcov device. Which means that to detect this case we need to 450 * check that t != t->kcov->t, and this gives us the following: 451 * WARN_ON(kcov->remote && kcov->t != t); 452 * 453 * 2. The task that created kcov exiting without calling KCOV_DISABLE, 454 * and then again we make sure that t->kcov->t == t: 455 * WARN_ON(kcov->remote && kcov->t != t); 456 * 457 * By combining all three checks into one we get: 458 */ 459 if (WARN_ON(kcov->t != t)) { 460 spin_unlock_irqrestore(&kcov->lock, flags); 461 return; 462 } 463 /* Just to not leave dangling references behind. */ 464 kcov_disable(t, kcov); 465 spin_unlock_irqrestore(&kcov->lock, flags); 466 kcov_put(kcov); 467 } 468 469 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) 470 { 471 int res = 0; 472 struct kcov *kcov = vma->vm_file->private_data; 473 unsigned long size, off; 474 struct page *page; 475 unsigned long flags; 476 477 spin_lock_irqsave(&kcov->lock, flags); 478 size = kcov->size * sizeof(unsigned long); 479 if (kcov->area == NULL || vma->vm_pgoff != 0 || 480 vma->vm_end - vma->vm_start != size) { 481 res = -EINVAL; 482 goto exit; 483 } 484 spin_unlock_irqrestore(&kcov->lock, flags); 485 vma->vm_flags |= VM_DONTEXPAND; 486 for (off = 0; off < size; off += PAGE_SIZE) { 487 page = vmalloc_to_page(kcov->area + off); 488 res = vm_insert_page(vma, vma->vm_start + off, page); 489 if (res) { 490 pr_warn_once("kcov: vm_insert_page() failed\n"); 491 return res; 492 } 493 } 494 return 0; 495 exit: 496 spin_unlock_irqrestore(&kcov->lock, flags); 497 return res; 498 } 499 500 static int kcov_open(struct inode *inode, struct file *filep) 501 { 502 struct kcov *kcov; 503 504 kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); 505 if (!kcov) 506 return -ENOMEM; 507 kcov->mode = KCOV_MODE_DISABLED; 508 kcov->sequence = 1; 509 refcount_set(&kcov->refcount, 1); 510 spin_lock_init(&kcov->lock); 511 filep->private_data = kcov; 512 return nonseekable_open(inode, filep); 513 } 514 515 static int kcov_close(struct inode *inode, struct file *filep) 516 { 517 kcov_put(filep->private_data); 518 return 0; 519 } 520 521 static int kcov_get_mode(unsigned long arg) 522 { 523 if (arg == KCOV_TRACE_PC) 524 return KCOV_MODE_TRACE_PC; 525 else if (arg == KCOV_TRACE_CMP) 526 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 527 return KCOV_MODE_TRACE_CMP; 528 #else 529 return -ENOTSUPP; 530 #endif 531 else 532 return -EINVAL; 533 } 534 535 /* 536 * Fault in a lazily-faulted vmalloc area before it can be used by 537 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the 538 * vmalloc fault handling path is instrumented. 539 */ 540 static void kcov_fault_in_area(struct kcov *kcov) 541 { 542 unsigned long stride = PAGE_SIZE / sizeof(unsigned long); 543 unsigned long *area = kcov->area; 544 unsigned long offset; 545 546 for (offset = 0; offset < kcov->size; offset += stride) 547 READ_ONCE(area[offset]); 548 } 549 550 static inline bool kcov_check_handle(u64 handle, bool common_valid, 551 bool uncommon_valid, bool zero_valid) 552 { 553 if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) 554 return false; 555 switch (handle & KCOV_SUBSYSTEM_MASK) { 556 case KCOV_SUBSYSTEM_COMMON: 557 return (handle & KCOV_INSTANCE_MASK) ? 558 common_valid : zero_valid; 559 case KCOV_SUBSYSTEM_USB: 560 return uncommon_valid; 561 default: 562 return false; 563 } 564 return false; 565 } 566 567 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, 568 unsigned long arg) 569 { 570 struct task_struct *t; 571 unsigned long flags, unused; 572 int mode, i; 573 struct kcov_remote_arg *remote_arg; 574 struct kcov_remote *remote; 575 576 switch (cmd) { 577 case KCOV_ENABLE: 578 /* 579 * Enable coverage for the current task. 580 * At this point user must have been enabled trace mode, 581 * and mmapped the file. Coverage collection is disabled only 582 * at task exit or voluntary by KCOV_DISABLE. After that it can 583 * be enabled for another task. 584 */ 585 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 586 return -EINVAL; 587 t = current; 588 if (kcov->t != NULL || t->kcov != NULL) 589 return -EBUSY; 590 mode = kcov_get_mode(arg); 591 if (mode < 0) 592 return mode; 593 kcov_fault_in_area(kcov); 594 kcov->mode = mode; 595 kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, 596 kcov->sequence); 597 kcov->t = t; 598 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 599 kcov_get(kcov); 600 return 0; 601 case KCOV_DISABLE: 602 /* Disable coverage for the current task. */ 603 unused = arg; 604 if (unused != 0 || current->kcov != kcov) 605 return -EINVAL; 606 t = current; 607 if (WARN_ON(kcov->t != t)) 608 return -EINVAL; 609 kcov_disable(t, kcov); 610 kcov_put(kcov); 611 return 0; 612 case KCOV_REMOTE_ENABLE: 613 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 614 return -EINVAL; 615 t = current; 616 if (kcov->t != NULL || t->kcov != NULL) 617 return -EBUSY; 618 remote_arg = (struct kcov_remote_arg *)arg; 619 mode = kcov_get_mode(remote_arg->trace_mode); 620 if (mode < 0) 621 return mode; 622 if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long)) 623 return -EINVAL; 624 kcov->mode = mode; 625 t->kcov = kcov; 626 kcov->t = t; 627 kcov->remote = true; 628 kcov->remote_size = remote_arg->area_size; 629 spin_lock_irqsave(&kcov_remote_lock, flags); 630 for (i = 0; i < remote_arg->num_handles; i++) { 631 if (!kcov_check_handle(remote_arg->handles[i], 632 false, true, false)) { 633 spin_unlock_irqrestore(&kcov_remote_lock, 634 flags); 635 kcov_disable(t, kcov); 636 return -EINVAL; 637 } 638 remote = kcov_remote_add(kcov, remote_arg->handles[i]); 639 if (IS_ERR(remote)) { 640 spin_unlock_irqrestore(&kcov_remote_lock, 641 flags); 642 kcov_disable(t, kcov); 643 return PTR_ERR(remote); 644 } 645 } 646 if (remote_arg->common_handle) { 647 if (!kcov_check_handle(remote_arg->common_handle, 648 true, false, false)) { 649 spin_unlock_irqrestore(&kcov_remote_lock, 650 flags); 651 kcov_disable(t, kcov); 652 return -EINVAL; 653 } 654 remote = kcov_remote_add(kcov, 655 remote_arg->common_handle); 656 if (IS_ERR(remote)) { 657 spin_unlock_irqrestore(&kcov_remote_lock, 658 flags); 659 kcov_disable(t, kcov); 660 return PTR_ERR(remote); 661 } 662 t->kcov_handle = remote_arg->common_handle; 663 } 664 spin_unlock_irqrestore(&kcov_remote_lock, flags); 665 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 666 kcov_get(kcov); 667 return 0; 668 default: 669 return -ENOTTY; 670 } 671 } 672 673 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 674 { 675 struct kcov *kcov; 676 int res; 677 struct kcov_remote_arg *remote_arg = NULL; 678 unsigned int remote_num_handles; 679 unsigned long remote_arg_size; 680 unsigned long size, flags; 681 void *area; 682 683 kcov = filep->private_data; 684 switch (cmd) { 685 case KCOV_INIT_TRACE: 686 /* 687 * Enable kcov in trace mode and setup buffer size. 688 * Must happen before anything else. 689 * 690 * First check the size argument - it must be at least 2 691 * to hold the current position and one PC. 692 */ 693 size = arg; 694 if (size < 2 || size > INT_MAX / sizeof(unsigned long)) 695 return -EINVAL; 696 area = vmalloc_user(size * sizeof(unsigned long)); 697 if (area == NULL) 698 return -ENOMEM; 699 spin_lock_irqsave(&kcov->lock, flags); 700 if (kcov->mode != KCOV_MODE_DISABLED) { 701 spin_unlock_irqrestore(&kcov->lock, flags); 702 vfree(area); 703 return -EBUSY; 704 } 705 kcov->area = area; 706 kcov->size = size; 707 kcov->mode = KCOV_MODE_INIT; 708 spin_unlock_irqrestore(&kcov->lock, flags); 709 return 0; 710 case KCOV_REMOTE_ENABLE: 711 if (get_user(remote_num_handles, (unsigned __user *)(arg + 712 offsetof(struct kcov_remote_arg, num_handles)))) 713 return -EFAULT; 714 if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) 715 return -EINVAL; 716 remote_arg_size = struct_size(remote_arg, handles, 717 remote_num_handles); 718 remote_arg = memdup_user((void __user *)arg, remote_arg_size); 719 if (IS_ERR(remote_arg)) 720 return PTR_ERR(remote_arg); 721 if (remote_arg->num_handles != remote_num_handles) { 722 kfree(remote_arg); 723 return -EINVAL; 724 } 725 arg = (unsigned long)remote_arg; 726 fallthrough; 727 default: 728 /* 729 * All other commands can be normally executed under a spin lock, so we 730 * obtain and release it here in order to simplify kcov_ioctl_locked(). 731 */ 732 spin_lock_irqsave(&kcov->lock, flags); 733 res = kcov_ioctl_locked(kcov, cmd, arg); 734 spin_unlock_irqrestore(&kcov->lock, flags); 735 kfree(remote_arg); 736 return res; 737 } 738 } 739 740 static const struct file_operations kcov_fops = { 741 .open = kcov_open, 742 .unlocked_ioctl = kcov_ioctl, 743 .compat_ioctl = kcov_ioctl, 744 .mmap = kcov_mmap, 745 .release = kcov_close, 746 }; 747 748 /* 749 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section 750 * of code in a kernel background thread or in a softirq to allow kcov to be 751 * used to collect coverage from that part of code. 752 * 753 * The handle argument of kcov_remote_start() identifies a code section that is 754 * used for coverage collection. A userspace process passes this handle to 755 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting 756 * coverage for the code section identified by this handle. 757 * 758 * The usage of these annotations in the kernel code is different depending on 759 * the type of the kernel thread whose code is being annotated. 760 * 761 * For global kernel threads that are spawned in a limited number of instances 762 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for 763 * softirqs, each instance must be assigned a unique 4-byte instance id. The 764 * instance id is then combined with a 1-byte subsystem id to get a handle via 765 * kcov_remote_handle(subsystem_id, instance_id). 766 * 767 * For local kernel threads that are spawned from system calls handler when a 768 * user interacts with some kernel interface (e.g. vhost workers), a handle is 769 * passed from a userspace process as the common_handle field of the 770 * kcov_remote_arg struct (note, that the user must generate a handle by using 771 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an 772 * arbitrary 4-byte non-zero number as the instance id). This common handle 773 * then gets saved into the task_struct of the process that issued the 774 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn 775 * kernel threads, the common handle must be retrieved via kcov_common_handle() 776 * and passed to the spawned threads via custom annotations. Those kernel 777 * threads must in turn be annotated with kcov_remote_start(common_handle) and 778 * kcov_remote_stop(). All of the threads that are spawned by the same process 779 * obtain the same handle, hence the name "common". 780 * 781 * See Documentation/dev-tools/kcov.rst for more details. 782 * 783 * Internally, kcov_remote_start() looks up the kcov device associated with the 784 * provided handle, allocates an area for coverage collection, and saves the 785 * pointers to kcov and area into the current task_struct to allow coverage to 786 * be collected via __sanitizer_cov_trace_pc(). 787 * In turns kcov_remote_stop() clears those pointers from task_struct to stop 788 * collecting coverage and copies all collected coverage into the kcov area. 789 */ 790 791 static inline bool kcov_mode_enabled(unsigned int mode) 792 { 793 return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; 794 } 795 796 static void kcov_remote_softirq_start(struct task_struct *t) 797 { 798 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 799 unsigned int mode; 800 801 mode = READ_ONCE(t->kcov_mode); 802 barrier(); 803 if (kcov_mode_enabled(mode)) { 804 data->saved_mode = mode; 805 data->saved_size = t->kcov_size; 806 data->saved_area = t->kcov_area; 807 data->saved_sequence = t->kcov_sequence; 808 data->saved_kcov = t->kcov; 809 kcov_stop(t); 810 } 811 } 812 813 static void kcov_remote_softirq_stop(struct task_struct *t) 814 { 815 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 816 817 if (data->saved_kcov) { 818 kcov_start(t, data->saved_kcov, data->saved_size, 819 data->saved_area, data->saved_mode, 820 data->saved_sequence); 821 data->saved_mode = 0; 822 data->saved_size = 0; 823 data->saved_area = NULL; 824 data->saved_sequence = 0; 825 data->saved_kcov = NULL; 826 } 827 } 828 829 void kcov_remote_start(u64 handle) 830 { 831 struct task_struct *t = current; 832 struct kcov_remote *remote; 833 struct kcov *kcov; 834 unsigned int mode; 835 void *area; 836 unsigned int size; 837 int sequence; 838 unsigned long flags; 839 840 if (WARN_ON(!kcov_check_handle(handle, true, true, true))) 841 return; 842 if (!in_task() && !in_serving_softirq()) 843 return; 844 845 local_lock_irqsave(&kcov_percpu_data.lock, flags); 846 847 /* 848 * Check that kcov_remote_start() is not called twice in background 849 * threads nor called by user tasks (with enabled kcov). 850 */ 851 mode = READ_ONCE(t->kcov_mode); 852 if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { 853 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 854 return; 855 } 856 /* 857 * Check that kcov_remote_start() is not called twice in softirqs. 858 * Note, that kcov_remote_start() can be called from a softirq that 859 * happened while collecting coverage from a background thread. 860 */ 861 if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { 862 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 863 return; 864 } 865 866 spin_lock(&kcov_remote_lock); 867 remote = kcov_remote_find(handle); 868 if (!remote) { 869 spin_unlock(&kcov_remote_lock); 870 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 871 return; 872 } 873 kcov_debug("handle = %llx, context: %s\n", handle, 874 in_task() ? "task" : "softirq"); 875 kcov = remote->kcov; 876 /* Put in kcov_remote_stop(). */ 877 kcov_get(kcov); 878 /* 879 * Read kcov fields before unlock to prevent races with 880 * KCOV_DISABLE / kcov_remote_reset(). 881 */ 882 mode = kcov->mode; 883 sequence = kcov->sequence; 884 if (in_task()) { 885 size = kcov->remote_size; 886 area = kcov_remote_area_get(size); 887 } else { 888 size = CONFIG_KCOV_IRQ_AREA_SIZE; 889 area = this_cpu_ptr(&kcov_percpu_data)->irq_area; 890 } 891 spin_unlock(&kcov_remote_lock); 892 893 /* Can only happen when in_task(). */ 894 if (!area) { 895 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 896 area = vmalloc(size * sizeof(unsigned long)); 897 if (!area) { 898 kcov_put(kcov); 899 return; 900 } 901 local_lock_irqsave(&kcov_percpu_data.lock, flags); 902 } 903 904 /* Reset coverage size. */ 905 *(u64 *)area = 0; 906 907 if (in_serving_softirq()) { 908 kcov_remote_softirq_start(t); 909 t->kcov_softirq = 1; 910 } 911 kcov_start(t, kcov, size, area, mode, sequence); 912 913 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 914 915 } 916 EXPORT_SYMBOL(kcov_remote_start); 917 918 static void kcov_move_area(enum kcov_mode mode, void *dst_area, 919 unsigned int dst_area_size, void *src_area) 920 { 921 u64 word_size = sizeof(unsigned long); 922 u64 count_size, entry_size_log; 923 u64 dst_len, src_len; 924 void *dst_entries, *src_entries; 925 u64 dst_occupied, dst_free, bytes_to_move, entries_moved; 926 927 kcov_debug("%px %u <= %px %lu\n", 928 dst_area, dst_area_size, src_area, *(unsigned long *)src_area); 929 930 switch (mode) { 931 case KCOV_MODE_TRACE_PC: 932 dst_len = READ_ONCE(*(unsigned long *)dst_area); 933 src_len = *(unsigned long *)src_area; 934 count_size = sizeof(unsigned long); 935 entry_size_log = __ilog2_u64(sizeof(unsigned long)); 936 break; 937 case KCOV_MODE_TRACE_CMP: 938 dst_len = READ_ONCE(*(u64 *)dst_area); 939 src_len = *(u64 *)src_area; 940 count_size = sizeof(u64); 941 BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); 942 entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); 943 break; 944 default: 945 WARN_ON(1); 946 return; 947 } 948 949 /* As arm can't divide u64 integers use log of entry size. */ 950 if (dst_len > ((dst_area_size * word_size - count_size) >> 951 entry_size_log)) 952 return; 953 dst_occupied = count_size + (dst_len << entry_size_log); 954 dst_free = dst_area_size * word_size - dst_occupied; 955 bytes_to_move = min(dst_free, src_len << entry_size_log); 956 dst_entries = dst_area + dst_occupied; 957 src_entries = src_area + count_size; 958 memcpy(dst_entries, src_entries, bytes_to_move); 959 entries_moved = bytes_to_move >> entry_size_log; 960 961 switch (mode) { 962 case KCOV_MODE_TRACE_PC: 963 WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); 964 break; 965 case KCOV_MODE_TRACE_CMP: 966 WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); 967 break; 968 default: 969 break; 970 } 971 } 972 973 /* See the comment before kcov_remote_start() for usage details. */ 974 void kcov_remote_stop(void) 975 { 976 struct task_struct *t = current; 977 struct kcov *kcov; 978 unsigned int mode; 979 void *area; 980 unsigned int size; 981 int sequence; 982 unsigned long flags; 983 984 if (!in_task() && !in_serving_softirq()) 985 return; 986 987 local_lock_irqsave(&kcov_percpu_data.lock, flags); 988 989 mode = READ_ONCE(t->kcov_mode); 990 barrier(); 991 if (!kcov_mode_enabled(mode)) { 992 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 993 return; 994 } 995 /* 996 * When in softirq, check if the corresponding kcov_remote_start() 997 * actually found the remote handle and started collecting coverage. 998 */ 999 if (in_serving_softirq() && !t->kcov_softirq) { 1000 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1001 return; 1002 } 1003 /* Make sure that kcov_softirq is only set when in softirq. */ 1004 if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { 1005 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1006 return; 1007 } 1008 1009 kcov = t->kcov; 1010 area = t->kcov_area; 1011 size = t->kcov_size; 1012 sequence = t->kcov_sequence; 1013 1014 kcov_stop(t); 1015 if (in_serving_softirq()) { 1016 t->kcov_softirq = 0; 1017 kcov_remote_softirq_stop(t); 1018 } 1019 1020 spin_lock(&kcov->lock); 1021 /* 1022 * KCOV_DISABLE could have been called between kcov_remote_start() 1023 * and kcov_remote_stop(), hence the sequence check. 1024 */ 1025 if (sequence == kcov->sequence && kcov->remote) 1026 kcov_move_area(kcov->mode, kcov->area, kcov->size, area); 1027 spin_unlock(&kcov->lock); 1028 1029 if (in_task()) { 1030 spin_lock(&kcov_remote_lock); 1031 kcov_remote_area_put(area, size); 1032 spin_unlock(&kcov_remote_lock); 1033 } 1034 1035 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1036 1037 /* Get in kcov_remote_start(). */ 1038 kcov_put(kcov); 1039 } 1040 EXPORT_SYMBOL(kcov_remote_stop); 1041 1042 /* See the comment before kcov_remote_start() for usage details. */ 1043 u64 kcov_common_handle(void) 1044 { 1045 if (!in_task()) 1046 return 0; 1047 return current->kcov_handle; 1048 } 1049 EXPORT_SYMBOL(kcov_common_handle); 1050 1051 static int __init kcov_init(void) 1052 { 1053 int cpu; 1054 1055 for_each_possible_cpu(cpu) { 1056 void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * 1057 sizeof(unsigned long), cpu_to_node(cpu)); 1058 if (!area) 1059 return -ENOMEM; 1060 per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; 1061 } 1062 1063 /* 1064 * The kcov debugfs file won't ever get removed and thus, 1065 * there is no need to protect it against removal races. The 1066 * use of debugfs_create_file_unsafe() is actually safe here. 1067 */ 1068 debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); 1069 1070 return 0; 1071 } 1072 1073 device_initcall(kcov_init); 1074