xref: /openbmc/linux/kernel/kcov.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "kcov: " fmt
3 
4 #define DISABLE_BRANCH_PROFILING
5 #include <linux/atomic.h>
6 #include <linux/compiler.h>
7 #include <linux/errno.h>
8 #include <linux/export.h>
9 #include <linux/types.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/preempt.h>
16 #include <linux/printk.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/vmalloc.h>
21 #include <linux/debugfs.h>
22 #include <linux/uaccess.h>
23 #include <linux/kcov.h>
24 #include <linux/refcount.h>
25 #include <linux/log2.h>
26 #include <asm/setup.h>
27 
28 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
29 
30 /* Number of 64-bit words written per one comparison: */
31 #define KCOV_WORDS_PER_CMP 4
32 
33 /*
34  * kcov descriptor (one per opened debugfs file).
35  * State transitions of the descriptor:
36  *  - initial state after open()
37  *  - then there must be a single ioctl(KCOV_INIT_TRACE) call
38  *  - then, mmap() call (several calls are allowed but not useful)
39  *  - then, ioctl(KCOV_ENABLE, arg), where arg is
40  *	KCOV_TRACE_PC - to trace only the PCs
41  *	or
42  *	KCOV_TRACE_CMP - to trace only the comparison operands
43  *  - then, ioctl(KCOV_DISABLE) to disable the task.
44  * Enabling/disabling ioctls can be repeated (only one task a time allowed).
45  */
46 struct kcov {
47 	/*
48 	 * Reference counter. We keep one for:
49 	 *  - opened file descriptor
50 	 *  - task with enabled coverage (we can't unwire it from another task)
51 	 *  - each code section for remote coverage collection
52 	 */
53 	refcount_t		refcount;
54 	/* The lock protects mode, size, area and t. */
55 	spinlock_t		lock;
56 	enum kcov_mode		mode;
57 	/* Size of arena (in long's). */
58 	unsigned int		size;
59 	/* Coverage buffer shared with user space. */
60 	void			*area;
61 	/* Task for which we collect coverage, or NULL. */
62 	struct task_struct	*t;
63 	/* Collecting coverage from remote (background) threads. */
64 	bool			remote;
65 	/* Size of remote area (in long's). */
66 	unsigned int		remote_size;
67 	/*
68 	 * Sequence is incremented each time kcov is reenabled, used by
69 	 * kcov_remote_stop(), see the comment there.
70 	 */
71 	int			sequence;
72 };
73 
74 struct kcov_remote_area {
75 	struct list_head	list;
76 	unsigned int		size;
77 };
78 
79 struct kcov_remote {
80 	u64			handle;
81 	struct kcov		*kcov;
82 	struct hlist_node	hnode;
83 };
84 
85 static DEFINE_SPINLOCK(kcov_remote_lock);
86 static DEFINE_HASHTABLE(kcov_remote_map, 4);
87 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
88 
89 struct kcov_percpu_data {
90 	void			*irq_area;
91 	local_lock_t		lock;
92 
93 	unsigned int		saved_mode;
94 	unsigned int		saved_size;
95 	void			*saved_area;
96 	struct kcov		*saved_kcov;
97 	int			saved_sequence;
98 };
99 
100 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
101 	.lock = INIT_LOCAL_LOCK(lock),
102 };
103 
104 /* Must be called with kcov_remote_lock locked. */
105 static struct kcov_remote *kcov_remote_find(u64 handle)
106 {
107 	struct kcov_remote *remote;
108 
109 	hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
110 		if (remote->handle == handle)
111 			return remote;
112 	}
113 	return NULL;
114 }
115 
116 /* Must be called with kcov_remote_lock locked. */
117 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
118 {
119 	struct kcov_remote *remote;
120 
121 	if (kcov_remote_find(handle))
122 		return ERR_PTR(-EEXIST);
123 	remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
124 	if (!remote)
125 		return ERR_PTR(-ENOMEM);
126 	remote->handle = handle;
127 	remote->kcov = kcov;
128 	hash_add(kcov_remote_map, &remote->hnode, handle);
129 	return remote;
130 }
131 
132 /* Must be called with kcov_remote_lock locked. */
133 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
134 {
135 	struct kcov_remote_area *area;
136 	struct list_head *pos;
137 
138 	list_for_each(pos, &kcov_remote_areas) {
139 		area = list_entry(pos, struct kcov_remote_area, list);
140 		if (area->size == size) {
141 			list_del(&area->list);
142 			return area;
143 		}
144 	}
145 	return NULL;
146 }
147 
148 /* Must be called with kcov_remote_lock locked. */
149 static void kcov_remote_area_put(struct kcov_remote_area *area,
150 					unsigned int size)
151 {
152 	INIT_LIST_HEAD(&area->list);
153 	area->size = size;
154 	list_add(&area->list, &kcov_remote_areas);
155 }
156 
157 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
158 {
159 	unsigned int mode;
160 
161 	/*
162 	 * We are interested in code coverage as a function of a syscall inputs,
163 	 * so we ignore code executed in interrupts, unless we are in a remote
164 	 * coverage collection section in a softirq.
165 	 */
166 	if (!in_task() && !(in_serving_softirq() && t->kcov_softirq))
167 		return false;
168 	mode = READ_ONCE(t->kcov_mode);
169 	/*
170 	 * There is some code that runs in interrupts but for which
171 	 * in_interrupt() returns false (e.g. preempt_schedule_irq()).
172 	 * READ_ONCE()/barrier() effectively provides load-acquire wrt
173 	 * interrupts, there are paired barrier()/WRITE_ONCE() in
174 	 * kcov_start().
175 	 */
176 	barrier();
177 	return mode == needed_mode;
178 }
179 
180 static notrace unsigned long canonicalize_ip(unsigned long ip)
181 {
182 #ifdef CONFIG_RANDOMIZE_BASE
183 	ip -= kaslr_offset();
184 #endif
185 	return ip;
186 }
187 
188 /*
189  * Entry point from instrumented code.
190  * This is called once per basic-block/edge.
191  */
192 void notrace __sanitizer_cov_trace_pc(void)
193 {
194 	struct task_struct *t;
195 	unsigned long *area;
196 	unsigned long ip = canonicalize_ip(_RET_IP_);
197 	unsigned long pos;
198 
199 	t = current;
200 	if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
201 		return;
202 
203 	area = t->kcov_area;
204 	/* The first 64-bit word is the number of subsequent PCs. */
205 	pos = READ_ONCE(area[0]) + 1;
206 	if (likely(pos < t->kcov_size)) {
207 		area[pos] = ip;
208 		WRITE_ONCE(area[0], pos);
209 	}
210 }
211 EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
212 
213 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
214 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
215 {
216 	struct task_struct *t;
217 	u64 *area;
218 	u64 count, start_index, end_pos, max_pos;
219 
220 	t = current;
221 	if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
222 		return;
223 
224 	ip = canonicalize_ip(ip);
225 
226 	/*
227 	 * We write all comparison arguments and types as u64.
228 	 * The buffer was allocated for t->kcov_size unsigned longs.
229 	 */
230 	area = (u64 *)t->kcov_area;
231 	max_pos = t->kcov_size * sizeof(unsigned long);
232 
233 	count = READ_ONCE(area[0]);
234 
235 	/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
236 	start_index = 1 + count * KCOV_WORDS_PER_CMP;
237 	end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
238 	if (likely(end_pos <= max_pos)) {
239 		area[start_index] = type;
240 		area[start_index + 1] = arg1;
241 		area[start_index + 2] = arg2;
242 		area[start_index + 3] = ip;
243 		WRITE_ONCE(area[0], count + 1);
244 	}
245 }
246 
247 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
248 {
249 	write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
250 }
251 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
252 
253 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
254 {
255 	write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
256 }
257 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
258 
259 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
260 {
261 	write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
262 }
263 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
264 
265 void notrace __sanitizer_cov_trace_cmp8(u64 arg1, u64 arg2)
266 {
267 	write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
268 }
269 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
270 
271 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
272 {
273 	write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
274 			_RET_IP_);
275 }
276 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
277 
278 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
279 {
280 	write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
281 			_RET_IP_);
282 }
283 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
284 
285 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
286 {
287 	write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
288 			_RET_IP_);
289 }
290 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
291 
292 void notrace __sanitizer_cov_trace_const_cmp8(u64 arg1, u64 arg2)
293 {
294 	write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
295 			_RET_IP_);
296 }
297 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
298 
299 void notrace __sanitizer_cov_trace_switch(u64 val, u64 *cases)
300 {
301 	u64 i;
302 	u64 count = cases[0];
303 	u64 size = cases[1];
304 	u64 type = KCOV_CMP_CONST;
305 
306 	switch (size) {
307 	case 8:
308 		type |= KCOV_CMP_SIZE(0);
309 		break;
310 	case 16:
311 		type |= KCOV_CMP_SIZE(1);
312 		break;
313 	case 32:
314 		type |= KCOV_CMP_SIZE(2);
315 		break;
316 	case 64:
317 		type |= KCOV_CMP_SIZE(3);
318 		break;
319 	default:
320 		return;
321 	}
322 	for (i = 0; i < count; i++)
323 		write_comp_data(type, cases[i + 2], val, _RET_IP_);
324 }
325 EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
326 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
327 
328 static void kcov_start(struct task_struct *t, struct kcov *kcov,
329 			unsigned int size, void *area, enum kcov_mode mode,
330 			int sequence)
331 {
332 	kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
333 	t->kcov = kcov;
334 	/* Cache in task struct for performance. */
335 	t->kcov_size = size;
336 	t->kcov_area = area;
337 	t->kcov_sequence = sequence;
338 	/* See comment in check_kcov_mode(). */
339 	barrier();
340 	WRITE_ONCE(t->kcov_mode, mode);
341 }
342 
343 static void kcov_stop(struct task_struct *t)
344 {
345 	WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
346 	barrier();
347 	t->kcov = NULL;
348 	t->kcov_size = 0;
349 	t->kcov_area = NULL;
350 }
351 
352 static void kcov_task_reset(struct task_struct *t)
353 {
354 	kcov_stop(t);
355 	t->kcov_sequence = 0;
356 	t->kcov_handle = 0;
357 }
358 
359 void kcov_task_init(struct task_struct *t)
360 {
361 	kcov_task_reset(t);
362 	t->kcov_handle = current->kcov_handle;
363 }
364 
365 static void kcov_reset(struct kcov *kcov)
366 {
367 	kcov->t = NULL;
368 	kcov->mode = KCOV_MODE_INIT;
369 	kcov->remote = false;
370 	kcov->remote_size = 0;
371 	kcov->sequence++;
372 }
373 
374 static void kcov_remote_reset(struct kcov *kcov)
375 {
376 	int bkt;
377 	struct kcov_remote *remote;
378 	struct hlist_node *tmp;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&kcov_remote_lock, flags);
382 	hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
383 		if (remote->kcov != kcov)
384 			continue;
385 		hash_del(&remote->hnode);
386 		kfree(remote);
387 	}
388 	/* Do reset before unlock to prevent races with kcov_remote_start(). */
389 	kcov_reset(kcov);
390 	spin_unlock_irqrestore(&kcov_remote_lock, flags);
391 }
392 
393 static void kcov_disable(struct task_struct *t, struct kcov *kcov)
394 {
395 	kcov_task_reset(t);
396 	if (kcov->remote)
397 		kcov_remote_reset(kcov);
398 	else
399 		kcov_reset(kcov);
400 }
401 
402 static void kcov_get(struct kcov *kcov)
403 {
404 	refcount_inc(&kcov->refcount);
405 }
406 
407 static void kcov_put(struct kcov *kcov)
408 {
409 	if (refcount_dec_and_test(&kcov->refcount)) {
410 		kcov_remote_reset(kcov);
411 		vfree(kcov->area);
412 		kfree(kcov);
413 	}
414 }
415 
416 void kcov_task_exit(struct task_struct *t)
417 {
418 	struct kcov *kcov;
419 	unsigned long flags;
420 
421 	kcov = t->kcov;
422 	if (kcov == NULL)
423 		return;
424 
425 	spin_lock_irqsave(&kcov->lock, flags);
426 	kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
427 	/*
428 	 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
429 	 * which comes down to:
430 	 *        WARN_ON(!kcov->remote && kcov->t != t);
431 	 *
432 	 * For KCOV_REMOTE_ENABLE devices, the exiting task is either:
433 	 *
434 	 * 1. A remote task between kcov_remote_start() and kcov_remote_stop().
435 	 *    In this case we should print a warning right away, since a task
436 	 *    shouldn't be exiting when it's in a kcov coverage collection
437 	 *    section. Here t points to the task that is collecting remote
438 	 *    coverage, and t->kcov->t points to the thread that created the
439 	 *    kcov device. Which means that to detect this case we need to
440 	 *    check that t != t->kcov->t, and this gives us the following:
441 	 *        WARN_ON(kcov->remote && kcov->t != t);
442 	 *
443 	 * 2. The task that created kcov exiting without calling KCOV_DISABLE,
444 	 *    and then again we make sure that t->kcov->t == t:
445 	 *        WARN_ON(kcov->remote && kcov->t != t);
446 	 *
447 	 * By combining all three checks into one we get:
448 	 */
449 	if (WARN_ON(kcov->t != t)) {
450 		spin_unlock_irqrestore(&kcov->lock, flags);
451 		return;
452 	}
453 	/* Just to not leave dangling references behind. */
454 	kcov_disable(t, kcov);
455 	spin_unlock_irqrestore(&kcov->lock, flags);
456 	kcov_put(kcov);
457 }
458 
459 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
460 {
461 	int res = 0;
462 	struct kcov *kcov = vma->vm_file->private_data;
463 	unsigned long size, off;
464 	struct page *page;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&kcov->lock, flags);
468 	size = kcov->size * sizeof(unsigned long);
469 	if (kcov->area == NULL || vma->vm_pgoff != 0 ||
470 	    vma->vm_end - vma->vm_start != size) {
471 		res = -EINVAL;
472 		goto exit;
473 	}
474 	spin_unlock_irqrestore(&kcov->lock, flags);
475 	vma->vm_flags |= VM_DONTEXPAND;
476 	for (off = 0; off < size; off += PAGE_SIZE) {
477 		page = vmalloc_to_page(kcov->area + off);
478 		if (vm_insert_page(vma, vma->vm_start + off, page))
479 			WARN_ONCE(1, "vm_insert_page() failed");
480 	}
481 	return 0;
482 exit:
483 	spin_unlock_irqrestore(&kcov->lock, flags);
484 	return res;
485 }
486 
487 static int kcov_open(struct inode *inode, struct file *filep)
488 {
489 	struct kcov *kcov;
490 
491 	kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
492 	if (!kcov)
493 		return -ENOMEM;
494 	kcov->mode = KCOV_MODE_DISABLED;
495 	kcov->sequence = 1;
496 	refcount_set(&kcov->refcount, 1);
497 	spin_lock_init(&kcov->lock);
498 	filep->private_data = kcov;
499 	return nonseekable_open(inode, filep);
500 }
501 
502 static int kcov_close(struct inode *inode, struct file *filep)
503 {
504 	kcov_put(filep->private_data);
505 	return 0;
506 }
507 
508 static int kcov_get_mode(unsigned long arg)
509 {
510 	if (arg == KCOV_TRACE_PC)
511 		return KCOV_MODE_TRACE_PC;
512 	else if (arg == KCOV_TRACE_CMP)
513 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
514 		return KCOV_MODE_TRACE_CMP;
515 #else
516 		return -ENOTSUPP;
517 #endif
518 	else
519 		return -EINVAL;
520 }
521 
522 /*
523  * Fault in a lazily-faulted vmalloc area before it can be used by
524  * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
525  * vmalloc fault handling path is instrumented.
526  */
527 static void kcov_fault_in_area(struct kcov *kcov)
528 {
529 	unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
530 	unsigned long *area = kcov->area;
531 	unsigned long offset;
532 
533 	for (offset = 0; offset < kcov->size; offset += stride)
534 		READ_ONCE(area[offset]);
535 }
536 
537 static inline bool kcov_check_handle(u64 handle, bool common_valid,
538 				bool uncommon_valid, bool zero_valid)
539 {
540 	if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
541 		return false;
542 	switch (handle & KCOV_SUBSYSTEM_MASK) {
543 	case KCOV_SUBSYSTEM_COMMON:
544 		return (handle & KCOV_INSTANCE_MASK) ?
545 			common_valid : zero_valid;
546 	case KCOV_SUBSYSTEM_USB:
547 		return uncommon_valid;
548 	default:
549 		return false;
550 	}
551 	return false;
552 }
553 
554 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
555 			     unsigned long arg)
556 {
557 	struct task_struct *t;
558 	unsigned long flags, unused;
559 	int mode, i;
560 	struct kcov_remote_arg *remote_arg;
561 	struct kcov_remote *remote;
562 
563 	switch (cmd) {
564 	case KCOV_ENABLE:
565 		/*
566 		 * Enable coverage for the current task.
567 		 * At this point user must have been enabled trace mode,
568 		 * and mmapped the file. Coverage collection is disabled only
569 		 * at task exit or voluntary by KCOV_DISABLE. After that it can
570 		 * be enabled for another task.
571 		 */
572 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
573 			return -EINVAL;
574 		t = current;
575 		if (kcov->t != NULL || t->kcov != NULL)
576 			return -EBUSY;
577 		mode = kcov_get_mode(arg);
578 		if (mode < 0)
579 			return mode;
580 		kcov_fault_in_area(kcov);
581 		kcov->mode = mode;
582 		kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
583 				kcov->sequence);
584 		kcov->t = t;
585 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
586 		kcov_get(kcov);
587 		return 0;
588 	case KCOV_DISABLE:
589 		/* Disable coverage for the current task. */
590 		unused = arg;
591 		if (unused != 0 || current->kcov != kcov)
592 			return -EINVAL;
593 		t = current;
594 		if (WARN_ON(kcov->t != t))
595 			return -EINVAL;
596 		kcov_disable(t, kcov);
597 		kcov_put(kcov);
598 		return 0;
599 	case KCOV_REMOTE_ENABLE:
600 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
601 			return -EINVAL;
602 		t = current;
603 		if (kcov->t != NULL || t->kcov != NULL)
604 			return -EBUSY;
605 		remote_arg = (struct kcov_remote_arg *)arg;
606 		mode = kcov_get_mode(remote_arg->trace_mode);
607 		if (mode < 0)
608 			return mode;
609 		if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long))
610 			return -EINVAL;
611 		kcov->mode = mode;
612 		t->kcov = kcov;
613 		kcov->t = t;
614 		kcov->remote = true;
615 		kcov->remote_size = remote_arg->area_size;
616 		spin_lock_irqsave(&kcov_remote_lock, flags);
617 		for (i = 0; i < remote_arg->num_handles; i++) {
618 			if (!kcov_check_handle(remote_arg->handles[i],
619 						false, true, false)) {
620 				spin_unlock_irqrestore(&kcov_remote_lock,
621 							flags);
622 				kcov_disable(t, kcov);
623 				return -EINVAL;
624 			}
625 			remote = kcov_remote_add(kcov, remote_arg->handles[i]);
626 			if (IS_ERR(remote)) {
627 				spin_unlock_irqrestore(&kcov_remote_lock,
628 							flags);
629 				kcov_disable(t, kcov);
630 				return PTR_ERR(remote);
631 			}
632 		}
633 		if (remote_arg->common_handle) {
634 			if (!kcov_check_handle(remote_arg->common_handle,
635 						true, false, false)) {
636 				spin_unlock_irqrestore(&kcov_remote_lock,
637 							flags);
638 				kcov_disable(t, kcov);
639 				return -EINVAL;
640 			}
641 			remote = kcov_remote_add(kcov,
642 					remote_arg->common_handle);
643 			if (IS_ERR(remote)) {
644 				spin_unlock_irqrestore(&kcov_remote_lock,
645 							flags);
646 				kcov_disable(t, kcov);
647 				return PTR_ERR(remote);
648 			}
649 			t->kcov_handle = remote_arg->common_handle;
650 		}
651 		spin_unlock_irqrestore(&kcov_remote_lock, flags);
652 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
653 		kcov_get(kcov);
654 		return 0;
655 	default:
656 		return -ENOTTY;
657 	}
658 }
659 
660 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
661 {
662 	struct kcov *kcov;
663 	int res;
664 	struct kcov_remote_arg *remote_arg = NULL;
665 	unsigned int remote_num_handles;
666 	unsigned long remote_arg_size;
667 	unsigned long size, flags;
668 	void *area;
669 
670 	kcov = filep->private_data;
671 	switch (cmd) {
672 	case KCOV_INIT_TRACE:
673 		/*
674 		 * Enable kcov in trace mode and setup buffer size.
675 		 * Must happen before anything else.
676 		 *
677 		 * First check the size argument - it must be at least 2
678 		 * to hold the current position and one PC.
679 		 */
680 		size = arg;
681 		if (size < 2 || size > INT_MAX / sizeof(unsigned long))
682 			return -EINVAL;
683 		area = vmalloc_user(size * sizeof(unsigned long));
684 		if (area == NULL)
685 			return -ENOMEM;
686 		spin_lock_irqsave(&kcov->lock, flags);
687 		if (kcov->mode != KCOV_MODE_DISABLED) {
688 			spin_unlock_irqrestore(&kcov->lock, flags);
689 			vfree(area);
690 			return -EBUSY;
691 		}
692 		kcov->area = area;
693 		kcov->size = size;
694 		kcov->mode = KCOV_MODE_INIT;
695 		spin_unlock_irqrestore(&kcov->lock, flags);
696 		return 0;
697 	case KCOV_REMOTE_ENABLE:
698 		if (get_user(remote_num_handles, (unsigned __user *)(arg +
699 				offsetof(struct kcov_remote_arg, num_handles))))
700 			return -EFAULT;
701 		if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
702 			return -EINVAL;
703 		remote_arg_size = struct_size(remote_arg, handles,
704 					remote_num_handles);
705 		remote_arg = memdup_user((void __user *)arg, remote_arg_size);
706 		if (IS_ERR(remote_arg))
707 			return PTR_ERR(remote_arg);
708 		if (remote_arg->num_handles != remote_num_handles) {
709 			kfree(remote_arg);
710 			return -EINVAL;
711 		}
712 		arg = (unsigned long)remote_arg;
713 		fallthrough;
714 	default:
715 		/*
716 		 * All other commands can be normally executed under a spin lock, so we
717 		 * obtain and release it here in order to simplify kcov_ioctl_locked().
718 		 */
719 		spin_lock_irqsave(&kcov->lock, flags);
720 		res = kcov_ioctl_locked(kcov, cmd, arg);
721 		spin_unlock_irqrestore(&kcov->lock, flags);
722 		kfree(remote_arg);
723 		return res;
724 	}
725 }
726 
727 static const struct file_operations kcov_fops = {
728 	.open		= kcov_open,
729 	.unlocked_ioctl	= kcov_ioctl,
730 	.compat_ioctl	= kcov_ioctl,
731 	.mmap		= kcov_mmap,
732 	.release        = kcov_close,
733 };
734 
735 /*
736  * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
737  * of code in a kernel background thread or in a softirq to allow kcov to be
738  * used to collect coverage from that part of code.
739  *
740  * The handle argument of kcov_remote_start() identifies a code section that is
741  * used for coverage collection. A userspace process passes this handle to
742  * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
743  * coverage for the code section identified by this handle.
744  *
745  * The usage of these annotations in the kernel code is different depending on
746  * the type of the kernel thread whose code is being annotated.
747  *
748  * For global kernel threads that are spawned in a limited number of instances
749  * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
750  * softirqs, each instance must be assigned a unique 4-byte instance id. The
751  * instance id is then combined with a 1-byte subsystem id to get a handle via
752  * kcov_remote_handle(subsystem_id, instance_id).
753  *
754  * For local kernel threads that are spawned from system calls handler when a
755  * user interacts with some kernel interface (e.g. vhost workers), a handle is
756  * passed from a userspace process as the common_handle field of the
757  * kcov_remote_arg struct (note, that the user must generate a handle by using
758  * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
759  * arbitrary 4-byte non-zero number as the instance id). This common handle
760  * then gets saved into the task_struct of the process that issued the
761  * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
762  * kernel threads, the common handle must be retrieved via kcov_common_handle()
763  * and passed to the spawned threads via custom annotations. Those kernel
764  * threads must in turn be annotated with kcov_remote_start(common_handle) and
765  * kcov_remote_stop(). All of the threads that are spawned by the same process
766  * obtain the same handle, hence the name "common".
767  *
768  * See Documentation/dev-tools/kcov.rst for more details.
769  *
770  * Internally, kcov_remote_start() looks up the kcov device associated with the
771  * provided handle, allocates an area for coverage collection, and saves the
772  * pointers to kcov and area into the current task_struct to allow coverage to
773  * be collected via __sanitizer_cov_trace_pc().
774  * In turns kcov_remote_stop() clears those pointers from task_struct to stop
775  * collecting coverage and copies all collected coverage into the kcov area.
776  */
777 
778 static inline bool kcov_mode_enabled(unsigned int mode)
779 {
780 	return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
781 }
782 
783 static void kcov_remote_softirq_start(struct task_struct *t)
784 {
785 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
786 	unsigned int mode;
787 
788 	mode = READ_ONCE(t->kcov_mode);
789 	barrier();
790 	if (kcov_mode_enabled(mode)) {
791 		data->saved_mode = mode;
792 		data->saved_size = t->kcov_size;
793 		data->saved_area = t->kcov_area;
794 		data->saved_sequence = t->kcov_sequence;
795 		data->saved_kcov = t->kcov;
796 		kcov_stop(t);
797 	}
798 }
799 
800 static void kcov_remote_softirq_stop(struct task_struct *t)
801 {
802 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
803 
804 	if (data->saved_kcov) {
805 		kcov_start(t, data->saved_kcov, data->saved_size,
806 				data->saved_area, data->saved_mode,
807 				data->saved_sequence);
808 		data->saved_mode = 0;
809 		data->saved_size = 0;
810 		data->saved_area = NULL;
811 		data->saved_sequence = 0;
812 		data->saved_kcov = NULL;
813 	}
814 }
815 
816 void kcov_remote_start(u64 handle)
817 {
818 	struct task_struct *t = current;
819 	struct kcov_remote *remote;
820 	struct kcov *kcov;
821 	unsigned int mode;
822 	void *area;
823 	unsigned int size;
824 	int sequence;
825 	unsigned long flags;
826 
827 	if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
828 		return;
829 	if (!in_task() && !in_serving_softirq())
830 		return;
831 
832 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
833 
834 	/*
835 	 * Check that kcov_remote_start() is not called twice in background
836 	 * threads nor called by user tasks (with enabled kcov).
837 	 */
838 	mode = READ_ONCE(t->kcov_mode);
839 	if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
840 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
841 		return;
842 	}
843 	/*
844 	 * Check that kcov_remote_start() is not called twice in softirqs.
845 	 * Note, that kcov_remote_start() can be called from a softirq that
846 	 * happened while collecting coverage from a background thread.
847 	 */
848 	if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
849 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
850 		return;
851 	}
852 
853 	spin_lock(&kcov_remote_lock);
854 	remote = kcov_remote_find(handle);
855 	if (!remote) {
856 		spin_unlock(&kcov_remote_lock);
857 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
858 		return;
859 	}
860 	kcov_debug("handle = %llx, context: %s\n", handle,
861 			in_task() ? "task" : "softirq");
862 	kcov = remote->kcov;
863 	/* Put in kcov_remote_stop(). */
864 	kcov_get(kcov);
865 	/*
866 	 * Read kcov fields before unlock to prevent races with
867 	 * KCOV_DISABLE / kcov_remote_reset().
868 	 */
869 	mode = kcov->mode;
870 	sequence = kcov->sequence;
871 	if (in_task()) {
872 		size = kcov->remote_size;
873 		area = kcov_remote_area_get(size);
874 	} else {
875 		size = CONFIG_KCOV_IRQ_AREA_SIZE;
876 		area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
877 	}
878 	spin_unlock(&kcov_remote_lock);
879 
880 	/* Can only happen when in_task(). */
881 	if (!area) {
882 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
883 		area = vmalloc(size * sizeof(unsigned long));
884 		if (!area) {
885 			kcov_put(kcov);
886 			return;
887 		}
888 		local_lock_irqsave(&kcov_percpu_data.lock, flags);
889 	}
890 
891 	/* Reset coverage size. */
892 	*(u64 *)area = 0;
893 
894 	if (in_serving_softirq()) {
895 		kcov_remote_softirq_start(t);
896 		t->kcov_softirq = 1;
897 	}
898 	kcov_start(t, kcov, size, area, mode, sequence);
899 
900 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
901 
902 }
903 EXPORT_SYMBOL(kcov_remote_start);
904 
905 static void kcov_move_area(enum kcov_mode mode, void *dst_area,
906 				unsigned int dst_area_size, void *src_area)
907 {
908 	u64 word_size = sizeof(unsigned long);
909 	u64 count_size, entry_size_log;
910 	u64 dst_len, src_len;
911 	void *dst_entries, *src_entries;
912 	u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
913 
914 	kcov_debug("%px %u <= %px %lu\n",
915 		dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
916 
917 	switch (mode) {
918 	case KCOV_MODE_TRACE_PC:
919 		dst_len = READ_ONCE(*(unsigned long *)dst_area);
920 		src_len = *(unsigned long *)src_area;
921 		count_size = sizeof(unsigned long);
922 		entry_size_log = __ilog2_u64(sizeof(unsigned long));
923 		break;
924 	case KCOV_MODE_TRACE_CMP:
925 		dst_len = READ_ONCE(*(u64 *)dst_area);
926 		src_len = *(u64 *)src_area;
927 		count_size = sizeof(u64);
928 		BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
929 		entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
930 		break;
931 	default:
932 		WARN_ON(1);
933 		return;
934 	}
935 
936 	/* As arm can't divide u64 integers use log of entry size. */
937 	if (dst_len > ((dst_area_size * word_size - count_size) >>
938 				entry_size_log))
939 		return;
940 	dst_occupied = count_size + (dst_len << entry_size_log);
941 	dst_free = dst_area_size * word_size - dst_occupied;
942 	bytes_to_move = min(dst_free, src_len << entry_size_log);
943 	dst_entries = dst_area + dst_occupied;
944 	src_entries = src_area + count_size;
945 	memcpy(dst_entries, src_entries, bytes_to_move);
946 	entries_moved = bytes_to_move >> entry_size_log;
947 
948 	switch (mode) {
949 	case KCOV_MODE_TRACE_PC:
950 		WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
951 		break;
952 	case KCOV_MODE_TRACE_CMP:
953 		WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
954 		break;
955 	default:
956 		break;
957 	}
958 }
959 
960 /* See the comment before kcov_remote_start() for usage details. */
961 void kcov_remote_stop(void)
962 {
963 	struct task_struct *t = current;
964 	struct kcov *kcov;
965 	unsigned int mode;
966 	void *area;
967 	unsigned int size;
968 	int sequence;
969 	unsigned long flags;
970 
971 	if (!in_task() && !in_serving_softirq())
972 		return;
973 
974 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
975 
976 	mode = READ_ONCE(t->kcov_mode);
977 	barrier();
978 	if (!kcov_mode_enabled(mode)) {
979 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
980 		return;
981 	}
982 	/*
983 	 * When in softirq, check if the corresponding kcov_remote_start()
984 	 * actually found the remote handle and started collecting coverage.
985 	 */
986 	if (in_serving_softirq() && !t->kcov_softirq) {
987 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
988 		return;
989 	}
990 	/* Make sure that kcov_softirq is only set when in softirq. */
991 	if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
992 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
993 		return;
994 	}
995 
996 	kcov = t->kcov;
997 	area = t->kcov_area;
998 	size = t->kcov_size;
999 	sequence = t->kcov_sequence;
1000 
1001 	kcov_stop(t);
1002 	if (in_serving_softirq()) {
1003 		t->kcov_softirq = 0;
1004 		kcov_remote_softirq_stop(t);
1005 	}
1006 
1007 	spin_lock(&kcov->lock);
1008 	/*
1009 	 * KCOV_DISABLE could have been called between kcov_remote_start()
1010 	 * and kcov_remote_stop(), hence the sequence check.
1011 	 */
1012 	if (sequence == kcov->sequence && kcov->remote)
1013 		kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
1014 	spin_unlock(&kcov->lock);
1015 
1016 	if (in_task()) {
1017 		spin_lock(&kcov_remote_lock);
1018 		kcov_remote_area_put(area, size);
1019 		spin_unlock(&kcov_remote_lock);
1020 	}
1021 
1022 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1023 
1024 	/* Get in kcov_remote_start(). */
1025 	kcov_put(kcov);
1026 }
1027 EXPORT_SYMBOL(kcov_remote_stop);
1028 
1029 /* See the comment before kcov_remote_start() for usage details. */
1030 u64 kcov_common_handle(void)
1031 {
1032 	if (!in_task())
1033 		return 0;
1034 	return current->kcov_handle;
1035 }
1036 EXPORT_SYMBOL(kcov_common_handle);
1037 
1038 static int __init kcov_init(void)
1039 {
1040 	int cpu;
1041 
1042 	for_each_possible_cpu(cpu) {
1043 		void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
1044 				sizeof(unsigned long), cpu_to_node(cpu));
1045 		if (!area)
1046 			return -ENOMEM;
1047 		per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
1048 	}
1049 
1050 	/*
1051 	 * The kcov debugfs file won't ever get removed and thus,
1052 	 * there is no need to protect it against removal races. The
1053 	 * use of debugfs_create_file_unsafe() is actually safe here.
1054 	 */
1055 	debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
1056 
1057 	return 0;
1058 }
1059 
1060 device_initcall(kcov_init);
1061