1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * jump label support 4 * 5 * Copyright (C) 2009 Jason Baron <jbaron@redhat.com> 6 * Copyright (C) 2011 Peter Zijlstra 7 * 8 */ 9 #include <linux/memory.h> 10 #include <linux/uaccess.h> 11 #include <linux/module.h> 12 #include <linux/list.h> 13 #include <linux/slab.h> 14 #include <linux/sort.h> 15 #include <linux/err.h> 16 #include <linux/static_key.h> 17 #include <linux/jump_label_ratelimit.h> 18 #include <linux/bug.h> 19 #include <linux/cpu.h> 20 #include <asm/sections.h> 21 22 /* mutex to protect coming/going of the jump_label table */ 23 static DEFINE_MUTEX(jump_label_mutex); 24 25 void jump_label_lock(void) 26 { 27 mutex_lock(&jump_label_mutex); 28 } 29 30 void jump_label_unlock(void) 31 { 32 mutex_unlock(&jump_label_mutex); 33 } 34 35 static int jump_label_cmp(const void *a, const void *b) 36 { 37 const struct jump_entry *jea = a; 38 const struct jump_entry *jeb = b; 39 40 /* 41 * Entrires are sorted by key. 42 */ 43 if (jump_entry_key(jea) < jump_entry_key(jeb)) 44 return -1; 45 46 if (jump_entry_key(jea) > jump_entry_key(jeb)) 47 return 1; 48 49 /* 50 * In the batching mode, entries should also be sorted by the code 51 * inside the already sorted list of entries, enabling a bsearch in 52 * the vector. 53 */ 54 if (jump_entry_code(jea) < jump_entry_code(jeb)) 55 return -1; 56 57 if (jump_entry_code(jea) > jump_entry_code(jeb)) 58 return 1; 59 60 return 0; 61 } 62 63 static void jump_label_swap(void *a, void *b, int size) 64 { 65 long delta = (unsigned long)a - (unsigned long)b; 66 struct jump_entry *jea = a; 67 struct jump_entry *jeb = b; 68 struct jump_entry tmp = *jea; 69 70 jea->code = jeb->code - delta; 71 jea->target = jeb->target - delta; 72 jea->key = jeb->key - delta; 73 74 jeb->code = tmp.code + delta; 75 jeb->target = tmp.target + delta; 76 jeb->key = tmp.key + delta; 77 } 78 79 static void 80 jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop) 81 { 82 unsigned long size; 83 void *swapfn = NULL; 84 85 if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE)) 86 swapfn = jump_label_swap; 87 88 size = (((unsigned long)stop - (unsigned long)start) 89 / sizeof(struct jump_entry)); 90 sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn); 91 } 92 93 static void jump_label_update(struct static_key *key); 94 95 /* 96 * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h. 97 * The use of 'atomic_read()' requires atomic.h and its problematic for some 98 * kernel headers such as kernel.h and others. Since static_key_count() is not 99 * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok 100 * to have it be a function here. Similarly, for 'static_key_enable()' and 101 * 'static_key_disable()', which require bug.h. This should allow jump_label.h 102 * to be included from most/all places for CONFIG_JUMP_LABEL. 103 */ 104 int static_key_count(struct static_key *key) 105 { 106 /* 107 * -1 means the first static_key_slow_inc() is in progress. 108 * static_key_enabled() must return true, so return 1 here. 109 */ 110 int n = atomic_read(&key->enabled); 111 112 return n >= 0 ? n : 1; 113 } 114 EXPORT_SYMBOL_GPL(static_key_count); 115 116 void static_key_slow_inc_cpuslocked(struct static_key *key) 117 { 118 int v, v1; 119 120 STATIC_KEY_CHECK_USE(key); 121 lockdep_assert_cpus_held(); 122 123 /* 124 * Careful if we get concurrent static_key_slow_inc() calls; 125 * later calls must wait for the first one to _finish_ the 126 * jump_label_update() process. At the same time, however, 127 * the jump_label_update() call below wants to see 128 * static_key_enabled(&key) for jumps to be updated properly. 129 * 130 * So give a special meaning to negative key->enabled: it sends 131 * static_key_slow_inc() down the slow path, and it is non-zero 132 * so it counts as "enabled" in jump_label_update(). Note that 133 * atomic_inc_unless_negative() checks >= 0, so roll our own. 134 */ 135 for (v = atomic_read(&key->enabled); v > 0; v = v1) { 136 v1 = atomic_cmpxchg(&key->enabled, v, v + 1); 137 if (likely(v1 == v)) 138 return; 139 } 140 141 jump_label_lock(); 142 if (atomic_read(&key->enabled) == 0) { 143 atomic_set(&key->enabled, -1); 144 jump_label_update(key); 145 /* 146 * Ensure that if the above cmpxchg loop observes our positive 147 * value, it must also observe all the text changes. 148 */ 149 atomic_set_release(&key->enabled, 1); 150 } else { 151 atomic_inc(&key->enabled); 152 } 153 jump_label_unlock(); 154 } 155 156 void static_key_slow_inc(struct static_key *key) 157 { 158 cpus_read_lock(); 159 static_key_slow_inc_cpuslocked(key); 160 cpus_read_unlock(); 161 } 162 EXPORT_SYMBOL_GPL(static_key_slow_inc); 163 164 void static_key_enable_cpuslocked(struct static_key *key) 165 { 166 STATIC_KEY_CHECK_USE(key); 167 lockdep_assert_cpus_held(); 168 169 if (atomic_read(&key->enabled) > 0) { 170 WARN_ON_ONCE(atomic_read(&key->enabled) != 1); 171 return; 172 } 173 174 jump_label_lock(); 175 if (atomic_read(&key->enabled) == 0) { 176 atomic_set(&key->enabled, -1); 177 jump_label_update(key); 178 /* 179 * See static_key_slow_inc(). 180 */ 181 atomic_set_release(&key->enabled, 1); 182 } 183 jump_label_unlock(); 184 } 185 EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked); 186 187 void static_key_enable(struct static_key *key) 188 { 189 cpus_read_lock(); 190 static_key_enable_cpuslocked(key); 191 cpus_read_unlock(); 192 } 193 EXPORT_SYMBOL_GPL(static_key_enable); 194 195 void static_key_disable_cpuslocked(struct static_key *key) 196 { 197 STATIC_KEY_CHECK_USE(key); 198 lockdep_assert_cpus_held(); 199 200 if (atomic_read(&key->enabled) != 1) { 201 WARN_ON_ONCE(atomic_read(&key->enabled) != 0); 202 return; 203 } 204 205 jump_label_lock(); 206 if (atomic_cmpxchg(&key->enabled, 1, 0)) 207 jump_label_update(key); 208 jump_label_unlock(); 209 } 210 EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked); 211 212 void static_key_disable(struct static_key *key) 213 { 214 cpus_read_lock(); 215 static_key_disable_cpuslocked(key); 216 cpus_read_unlock(); 217 } 218 EXPORT_SYMBOL_GPL(static_key_disable); 219 220 static bool static_key_slow_try_dec(struct static_key *key) 221 { 222 int val; 223 224 val = atomic_fetch_add_unless(&key->enabled, -1, 1); 225 if (val == 1) 226 return false; 227 228 /* 229 * The negative count check is valid even when a negative 230 * key->enabled is in use by static_key_slow_inc(); a 231 * __static_key_slow_dec() before the first static_key_slow_inc() 232 * returns is unbalanced, because all other static_key_slow_inc() 233 * instances block while the update is in progress. 234 */ 235 WARN(val < 0, "jump label: negative count!\n"); 236 return true; 237 } 238 239 static void __static_key_slow_dec_cpuslocked(struct static_key *key) 240 { 241 lockdep_assert_cpus_held(); 242 243 if (static_key_slow_try_dec(key)) 244 return; 245 246 jump_label_lock(); 247 if (atomic_dec_and_test(&key->enabled)) 248 jump_label_update(key); 249 jump_label_unlock(); 250 } 251 252 static void __static_key_slow_dec(struct static_key *key) 253 { 254 cpus_read_lock(); 255 __static_key_slow_dec_cpuslocked(key); 256 cpus_read_unlock(); 257 } 258 259 void jump_label_update_timeout(struct work_struct *work) 260 { 261 struct static_key_deferred *key = 262 container_of(work, struct static_key_deferred, work.work); 263 __static_key_slow_dec(&key->key); 264 } 265 EXPORT_SYMBOL_GPL(jump_label_update_timeout); 266 267 void static_key_slow_dec(struct static_key *key) 268 { 269 STATIC_KEY_CHECK_USE(key); 270 __static_key_slow_dec(key); 271 } 272 EXPORT_SYMBOL_GPL(static_key_slow_dec); 273 274 void static_key_slow_dec_cpuslocked(struct static_key *key) 275 { 276 STATIC_KEY_CHECK_USE(key); 277 __static_key_slow_dec_cpuslocked(key); 278 } 279 280 void __static_key_slow_dec_deferred(struct static_key *key, 281 struct delayed_work *work, 282 unsigned long timeout) 283 { 284 STATIC_KEY_CHECK_USE(key); 285 286 if (static_key_slow_try_dec(key)) 287 return; 288 289 schedule_delayed_work(work, timeout); 290 } 291 EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred); 292 293 void __static_key_deferred_flush(void *key, struct delayed_work *work) 294 { 295 STATIC_KEY_CHECK_USE(key); 296 flush_delayed_work(work); 297 } 298 EXPORT_SYMBOL_GPL(__static_key_deferred_flush); 299 300 void jump_label_rate_limit(struct static_key_deferred *key, 301 unsigned long rl) 302 { 303 STATIC_KEY_CHECK_USE(key); 304 key->timeout = rl; 305 INIT_DELAYED_WORK(&key->work, jump_label_update_timeout); 306 } 307 EXPORT_SYMBOL_GPL(jump_label_rate_limit); 308 309 static int addr_conflict(struct jump_entry *entry, void *start, void *end) 310 { 311 if (jump_entry_code(entry) <= (unsigned long)end && 312 jump_entry_code(entry) + JUMP_LABEL_NOP_SIZE > (unsigned long)start) 313 return 1; 314 315 return 0; 316 } 317 318 static int __jump_label_text_reserved(struct jump_entry *iter_start, 319 struct jump_entry *iter_stop, void *start, void *end) 320 { 321 struct jump_entry *iter; 322 323 iter = iter_start; 324 while (iter < iter_stop) { 325 if (addr_conflict(iter, start, end)) 326 return 1; 327 iter++; 328 } 329 330 return 0; 331 } 332 333 /* 334 * Update code which is definitely not currently executing. 335 * Architectures which need heavyweight synchronization to modify 336 * running code can override this to make the non-live update case 337 * cheaper. 338 */ 339 void __weak __init_or_module arch_jump_label_transform_static(struct jump_entry *entry, 340 enum jump_label_type type) 341 { 342 arch_jump_label_transform(entry, type); 343 } 344 345 static inline struct jump_entry *static_key_entries(struct static_key *key) 346 { 347 WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED); 348 return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK); 349 } 350 351 static inline bool static_key_type(struct static_key *key) 352 { 353 return key->type & JUMP_TYPE_TRUE; 354 } 355 356 static inline bool static_key_linked(struct static_key *key) 357 { 358 return key->type & JUMP_TYPE_LINKED; 359 } 360 361 static inline void static_key_clear_linked(struct static_key *key) 362 { 363 key->type &= ~JUMP_TYPE_LINKED; 364 } 365 366 static inline void static_key_set_linked(struct static_key *key) 367 { 368 key->type |= JUMP_TYPE_LINKED; 369 } 370 371 /*** 372 * A 'struct static_key' uses a union such that it either points directly 373 * to a table of 'struct jump_entry' or to a linked list of modules which in 374 * turn point to 'struct jump_entry' tables. 375 * 376 * The two lower bits of the pointer are used to keep track of which pointer 377 * type is in use and to store the initial branch direction, we use an access 378 * function which preserves these bits. 379 */ 380 static void static_key_set_entries(struct static_key *key, 381 struct jump_entry *entries) 382 { 383 unsigned long type; 384 385 WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK); 386 type = key->type & JUMP_TYPE_MASK; 387 key->entries = entries; 388 key->type |= type; 389 } 390 391 static enum jump_label_type jump_label_type(struct jump_entry *entry) 392 { 393 struct static_key *key = jump_entry_key(entry); 394 bool enabled = static_key_enabled(key); 395 bool branch = jump_entry_is_branch(entry); 396 397 /* See the comment in linux/jump_label.h */ 398 return enabled ^ branch; 399 } 400 401 static bool jump_label_can_update(struct jump_entry *entry, bool init) 402 { 403 /* 404 * Cannot update code that was in an init text area. 405 */ 406 if (!init && jump_entry_is_init(entry)) 407 return false; 408 409 if (!kernel_text_address(jump_entry_code(entry))) { 410 WARN_ONCE(!jump_entry_is_init(entry), 411 "can't patch jump_label at %pS", 412 (void *)jump_entry_code(entry)); 413 return false; 414 } 415 416 return true; 417 } 418 419 #ifndef HAVE_JUMP_LABEL_BATCH 420 static void __jump_label_update(struct static_key *key, 421 struct jump_entry *entry, 422 struct jump_entry *stop, 423 bool init) 424 { 425 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 426 if (jump_label_can_update(entry, init)) 427 arch_jump_label_transform(entry, jump_label_type(entry)); 428 } 429 } 430 #else 431 static void __jump_label_update(struct static_key *key, 432 struct jump_entry *entry, 433 struct jump_entry *stop, 434 bool init) 435 { 436 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 437 438 if (!jump_label_can_update(entry, init)) 439 continue; 440 441 if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) { 442 /* 443 * Queue is full: Apply the current queue and try again. 444 */ 445 arch_jump_label_transform_apply(); 446 BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry))); 447 } 448 } 449 arch_jump_label_transform_apply(); 450 } 451 #endif 452 453 void __init jump_label_init(void) 454 { 455 struct jump_entry *iter_start = __start___jump_table; 456 struct jump_entry *iter_stop = __stop___jump_table; 457 struct static_key *key = NULL; 458 struct jump_entry *iter; 459 460 /* 461 * Since we are initializing the static_key.enabled field with 462 * with the 'raw' int values (to avoid pulling in atomic.h) in 463 * jump_label.h, let's make sure that is safe. There are only two 464 * cases to check since we initialize to 0 or 1. 465 */ 466 BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0); 467 BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1); 468 469 if (static_key_initialized) 470 return; 471 472 cpus_read_lock(); 473 jump_label_lock(); 474 jump_label_sort_entries(iter_start, iter_stop); 475 476 for (iter = iter_start; iter < iter_stop; iter++) { 477 struct static_key *iterk; 478 479 /* rewrite NOPs */ 480 if (jump_label_type(iter) == JUMP_LABEL_NOP) 481 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 482 483 if (init_section_contains((void *)jump_entry_code(iter), 1)) 484 jump_entry_set_init(iter); 485 486 iterk = jump_entry_key(iter); 487 if (iterk == key) 488 continue; 489 490 key = iterk; 491 static_key_set_entries(key, iter); 492 } 493 static_key_initialized = true; 494 jump_label_unlock(); 495 cpus_read_unlock(); 496 } 497 498 #ifdef CONFIG_MODULES 499 500 static enum jump_label_type jump_label_init_type(struct jump_entry *entry) 501 { 502 struct static_key *key = jump_entry_key(entry); 503 bool type = static_key_type(key); 504 bool branch = jump_entry_is_branch(entry); 505 506 /* See the comment in linux/jump_label.h */ 507 return type ^ branch; 508 } 509 510 struct static_key_mod { 511 struct static_key_mod *next; 512 struct jump_entry *entries; 513 struct module *mod; 514 }; 515 516 static inline struct static_key_mod *static_key_mod(struct static_key *key) 517 { 518 WARN_ON_ONCE(!static_key_linked(key)); 519 return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK); 520 } 521 522 /*** 523 * key->type and key->next are the same via union. 524 * This sets key->next and preserves the type bits. 525 * 526 * See additional comments above static_key_set_entries(). 527 */ 528 static void static_key_set_mod(struct static_key *key, 529 struct static_key_mod *mod) 530 { 531 unsigned long type; 532 533 WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK); 534 type = key->type & JUMP_TYPE_MASK; 535 key->next = mod; 536 key->type |= type; 537 } 538 539 static int __jump_label_mod_text_reserved(void *start, void *end) 540 { 541 struct module *mod; 542 int ret; 543 544 preempt_disable(); 545 mod = __module_text_address((unsigned long)start); 546 WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod); 547 if (!try_module_get(mod)) 548 mod = NULL; 549 preempt_enable(); 550 551 if (!mod) 552 return 0; 553 554 ret = __jump_label_text_reserved(mod->jump_entries, 555 mod->jump_entries + mod->num_jump_entries, 556 start, end); 557 558 module_put(mod); 559 560 return ret; 561 } 562 563 static void __jump_label_mod_update(struct static_key *key) 564 { 565 struct static_key_mod *mod; 566 567 for (mod = static_key_mod(key); mod; mod = mod->next) { 568 struct jump_entry *stop; 569 struct module *m; 570 571 /* 572 * NULL if the static_key is defined in a module 573 * that does not use it 574 */ 575 if (!mod->entries) 576 continue; 577 578 m = mod->mod; 579 if (!m) 580 stop = __stop___jump_table; 581 else 582 stop = m->jump_entries + m->num_jump_entries; 583 __jump_label_update(key, mod->entries, stop, 584 m && m->state == MODULE_STATE_COMING); 585 } 586 } 587 588 /*** 589 * apply_jump_label_nops - patch module jump labels with arch_get_jump_label_nop() 590 * @mod: module to patch 591 * 592 * Allow for run-time selection of the optimal nops. Before the module 593 * loads patch these with arch_get_jump_label_nop(), which is specified by 594 * the arch specific jump label code. 595 */ 596 void jump_label_apply_nops(struct module *mod) 597 { 598 struct jump_entry *iter_start = mod->jump_entries; 599 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 600 struct jump_entry *iter; 601 602 /* if the module doesn't have jump label entries, just return */ 603 if (iter_start == iter_stop) 604 return; 605 606 for (iter = iter_start; iter < iter_stop; iter++) { 607 /* Only write NOPs for arch_branch_static(). */ 608 if (jump_label_init_type(iter) == JUMP_LABEL_NOP) 609 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 610 } 611 } 612 613 static int jump_label_add_module(struct module *mod) 614 { 615 struct jump_entry *iter_start = mod->jump_entries; 616 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 617 struct jump_entry *iter; 618 struct static_key *key = NULL; 619 struct static_key_mod *jlm, *jlm2; 620 621 /* if the module doesn't have jump label entries, just return */ 622 if (iter_start == iter_stop) 623 return 0; 624 625 jump_label_sort_entries(iter_start, iter_stop); 626 627 for (iter = iter_start; iter < iter_stop; iter++) { 628 struct static_key *iterk; 629 630 if (within_module_init(jump_entry_code(iter), mod)) 631 jump_entry_set_init(iter); 632 633 iterk = jump_entry_key(iter); 634 if (iterk == key) 635 continue; 636 637 key = iterk; 638 if (within_module((unsigned long)key, mod)) { 639 static_key_set_entries(key, iter); 640 continue; 641 } 642 jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); 643 if (!jlm) 644 return -ENOMEM; 645 if (!static_key_linked(key)) { 646 jlm2 = kzalloc(sizeof(struct static_key_mod), 647 GFP_KERNEL); 648 if (!jlm2) { 649 kfree(jlm); 650 return -ENOMEM; 651 } 652 preempt_disable(); 653 jlm2->mod = __module_address((unsigned long)key); 654 preempt_enable(); 655 jlm2->entries = static_key_entries(key); 656 jlm2->next = NULL; 657 static_key_set_mod(key, jlm2); 658 static_key_set_linked(key); 659 } 660 jlm->mod = mod; 661 jlm->entries = iter; 662 jlm->next = static_key_mod(key); 663 static_key_set_mod(key, jlm); 664 static_key_set_linked(key); 665 666 /* Only update if we've changed from our initial state */ 667 if (jump_label_type(iter) != jump_label_init_type(iter)) 668 __jump_label_update(key, iter, iter_stop, true); 669 } 670 671 return 0; 672 } 673 674 static void jump_label_del_module(struct module *mod) 675 { 676 struct jump_entry *iter_start = mod->jump_entries; 677 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 678 struct jump_entry *iter; 679 struct static_key *key = NULL; 680 struct static_key_mod *jlm, **prev; 681 682 for (iter = iter_start; iter < iter_stop; iter++) { 683 if (jump_entry_key(iter) == key) 684 continue; 685 686 key = jump_entry_key(iter); 687 688 if (within_module((unsigned long)key, mod)) 689 continue; 690 691 /* No memory during module load */ 692 if (WARN_ON(!static_key_linked(key))) 693 continue; 694 695 prev = &key->next; 696 jlm = static_key_mod(key); 697 698 while (jlm && jlm->mod != mod) { 699 prev = &jlm->next; 700 jlm = jlm->next; 701 } 702 703 /* No memory during module load */ 704 if (WARN_ON(!jlm)) 705 continue; 706 707 if (prev == &key->next) 708 static_key_set_mod(key, jlm->next); 709 else 710 *prev = jlm->next; 711 712 kfree(jlm); 713 714 jlm = static_key_mod(key); 715 /* if only one etry is left, fold it back into the static_key */ 716 if (jlm->next == NULL) { 717 static_key_set_entries(key, jlm->entries); 718 static_key_clear_linked(key); 719 kfree(jlm); 720 } 721 } 722 } 723 724 static int 725 jump_label_module_notify(struct notifier_block *self, unsigned long val, 726 void *data) 727 { 728 struct module *mod = data; 729 int ret = 0; 730 731 cpus_read_lock(); 732 jump_label_lock(); 733 734 switch (val) { 735 case MODULE_STATE_COMING: 736 ret = jump_label_add_module(mod); 737 if (ret) { 738 WARN(1, "Failed to allocate memory: jump_label may not work properly.\n"); 739 jump_label_del_module(mod); 740 } 741 break; 742 case MODULE_STATE_GOING: 743 jump_label_del_module(mod); 744 break; 745 } 746 747 jump_label_unlock(); 748 cpus_read_unlock(); 749 750 return notifier_from_errno(ret); 751 } 752 753 static struct notifier_block jump_label_module_nb = { 754 .notifier_call = jump_label_module_notify, 755 .priority = 1, /* higher than tracepoints */ 756 }; 757 758 static __init int jump_label_init_module(void) 759 { 760 return register_module_notifier(&jump_label_module_nb); 761 } 762 early_initcall(jump_label_init_module); 763 764 #endif /* CONFIG_MODULES */ 765 766 /*** 767 * jump_label_text_reserved - check if addr range is reserved 768 * @start: start text addr 769 * @end: end text addr 770 * 771 * checks if the text addr located between @start and @end 772 * overlaps with any of the jump label patch addresses. Code 773 * that wants to modify kernel text should first verify that 774 * it does not overlap with any of the jump label addresses. 775 * Caller must hold jump_label_mutex. 776 * 777 * returns 1 if there is an overlap, 0 otherwise 778 */ 779 int jump_label_text_reserved(void *start, void *end) 780 { 781 int ret = __jump_label_text_reserved(__start___jump_table, 782 __stop___jump_table, start, end); 783 784 if (ret) 785 return ret; 786 787 #ifdef CONFIG_MODULES 788 ret = __jump_label_mod_text_reserved(start, end); 789 #endif 790 return ret; 791 } 792 793 static void jump_label_update(struct static_key *key) 794 { 795 struct jump_entry *stop = __stop___jump_table; 796 bool init = system_state < SYSTEM_RUNNING; 797 struct jump_entry *entry; 798 #ifdef CONFIG_MODULES 799 struct module *mod; 800 801 if (static_key_linked(key)) { 802 __jump_label_mod_update(key); 803 return; 804 } 805 806 preempt_disable(); 807 mod = __module_address((unsigned long)key); 808 if (mod) { 809 stop = mod->jump_entries + mod->num_jump_entries; 810 init = mod->state == MODULE_STATE_COMING; 811 } 812 preempt_enable(); 813 #endif 814 entry = static_key_entries(key); 815 /* if there are no users, entry can be NULL */ 816 if (entry) 817 __jump_label_update(key, entry, stop, init); 818 } 819 820 #ifdef CONFIG_STATIC_KEYS_SELFTEST 821 static DEFINE_STATIC_KEY_TRUE(sk_true); 822 static DEFINE_STATIC_KEY_FALSE(sk_false); 823 824 static __init int jump_label_test(void) 825 { 826 int i; 827 828 for (i = 0; i < 2; i++) { 829 WARN_ON(static_key_enabled(&sk_true.key) != true); 830 WARN_ON(static_key_enabled(&sk_false.key) != false); 831 832 WARN_ON(!static_branch_likely(&sk_true)); 833 WARN_ON(!static_branch_unlikely(&sk_true)); 834 WARN_ON(static_branch_likely(&sk_false)); 835 WARN_ON(static_branch_unlikely(&sk_false)); 836 837 static_branch_disable(&sk_true); 838 static_branch_enable(&sk_false); 839 840 WARN_ON(static_key_enabled(&sk_true.key) == true); 841 WARN_ON(static_key_enabled(&sk_false.key) == false); 842 843 WARN_ON(static_branch_likely(&sk_true)); 844 WARN_ON(static_branch_unlikely(&sk_true)); 845 WARN_ON(!static_branch_likely(&sk_false)); 846 WARN_ON(!static_branch_unlikely(&sk_false)); 847 848 static_branch_enable(&sk_true); 849 static_branch_disable(&sk_false); 850 } 851 852 return 0; 853 } 854 early_initcall(jump_label_test); 855 #endif /* STATIC_KEYS_SELFTEST */ 856