1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * jump label support 4 * 5 * Copyright (C) 2009 Jason Baron <jbaron@redhat.com> 6 * Copyright (C) 2011 Peter Zijlstra 7 * 8 */ 9 #include <linux/memory.h> 10 #include <linux/uaccess.h> 11 #include <linux/module.h> 12 #include <linux/list.h> 13 #include <linux/slab.h> 14 #include <linux/sort.h> 15 #include <linux/err.h> 16 #include <linux/static_key.h> 17 #include <linux/jump_label_ratelimit.h> 18 #include <linux/bug.h> 19 #include <linux/cpu.h> 20 #include <asm/sections.h> 21 22 /* mutex to protect coming/going of the jump_label table */ 23 static DEFINE_MUTEX(jump_label_mutex); 24 25 void jump_label_lock(void) 26 { 27 mutex_lock(&jump_label_mutex); 28 } 29 30 void jump_label_unlock(void) 31 { 32 mutex_unlock(&jump_label_mutex); 33 } 34 35 static int jump_label_cmp(const void *a, const void *b) 36 { 37 const struct jump_entry *jea = a; 38 const struct jump_entry *jeb = b; 39 40 /* 41 * Entrires are sorted by key. 42 */ 43 if (jump_entry_key(jea) < jump_entry_key(jeb)) 44 return -1; 45 46 if (jump_entry_key(jea) > jump_entry_key(jeb)) 47 return 1; 48 49 /* 50 * In the batching mode, entries should also be sorted by the code 51 * inside the already sorted list of entries, enabling a bsearch in 52 * the vector. 53 */ 54 if (jump_entry_code(jea) < jump_entry_code(jeb)) 55 return -1; 56 57 if (jump_entry_code(jea) > jump_entry_code(jeb)) 58 return 1; 59 60 return 0; 61 } 62 63 static void jump_label_swap(void *a, void *b, int size) 64 { 65 long delta = (unsigned long)a - (unsigned long)b; 66 struct jump_entry *jea = a; 67 struct jump_entry *jeb = b; 68 struct jump_entry tmp = *jea; 69 70 jea->code = jeb->code - delta; 71 jea->target = jeb->target - delta; 72 jea->key = jeb->key - delta; 73 74 jeb->code = tmp.code + delta; 75 jeb->target = tmp.target + delta; 76 jeb->key = tmp.key + delta; 77 } 78 79 static void 80 jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop) 81 { 82 unsigned long size; 83 void *swapfn = NULL; 84 85 if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE)) 86 swapfn = jump_label_swap; 87 88 size = (((unsigned long)stop - (unsigned long)start) 89 / sizeof(struct jump_entry)); 90 sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn); 91 } 92 93 static void jump_label_update(struct static_key *key); 94 95 /* 96 * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h. 97 * The use of 'atomic_read()' requires atomic.h and its problematic for some 98 * kernel headers such as kernel.h and others. Since static_key_count() is not 99 * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok 100 * to have it be a function here. Similarly, for 'static_key_enable()' and 101 * 'static_key_disable()', which require bug.h. This should allow jump_label.h 102 * to be included from most/all places for CONFIG_JUMP_LABEL. 103 */ 104 int static_key_count(struct static_key *key) 105 { 106 /* 107 * -1 means the first static_key_slow_inc() is in progress. 108 * static_key_enabled() must return true, so return 1 here. 109 */ 110 int n = atomic_read(&key->enabled); 111 112 return n >= 0 ? n : 1; 113 } 114 EXPORT_SYMBOL_GPL(static_key_count); 115 116 void static_key_slow_inc_cpuslocked(struct static_key *key) 117 { 118 int v, v1; 119 120 STATIC_KEY_CHECK_USE(key); 121 lockdep_assert_cpus_held(); 122 123 /* 124 * Careful if we get concurrent static_key_slow_inc() calls; 125 * later calls must wait for the first one to _finish_ the 126 * jump_label_update() process. At the same time, however, 127 * the jump_label_update() call below wants to see 128 * static_key_enabled(&key) for jumps to be updated properly. 129 * 130 * So give a special meaning to negative key->enabled: it sends 131 * static_key_slow_inc() down the slow path, and it is non-zero 132 * so it counts as "enabled" in jump_label_update(). Note that 133 * atomic_inc_unless_negative() checks >= 0, so roll our own. 134 */ 135 for (v = atomic_read(&key->enabled); v > 0; v = v1) { 136 v1 = atomic_cmpxchg(&key->enabled, v, v + 1); 137 if (likely(v1 == v)) 138 return; 139 } 140 141 jump_label_lock(); 142 if (atomic_read(&key->enabled) == 0) { 143 atomic_set(&key->enabled, -1); 144 jump_label_update(key); 145 /* 146 * Ensure that if the above cmpxchg loop observes our positive 147 * value, it must also observe all the text changes. 148 */ 149 atomic_set_release(&key->enabled, 1); 150 } else { 151 atomic_inc(&key->enabled); 152 } 153 jump_label_unlock(); 154 } 155 156 void static_key_slow_inc(struct static_key *key) 157 { 158 cpus_read_lock(); 159 static_key_slow_inc_cpuslocked(key); 160 cpus_read_unlock(); 161 } 162 EXPORT_SYMBOL_GPL(static_key_slow_inc); 163 164 void static_key_enable_cpuslocked(struct static_key *key) 165 { 166 STATIC_KEY_CHECK_USE(key); 167 lockdep_assert_cpus_held(); 168 169 if (atomic_read(&key->enabled) > 0) { 170 WARN_ON_ONCE(atomic_read(&key->enabled) != 1); 171 return; 172 } 173 174 jump_label_lock(); 175 if (atomic_read(&key->enabled) == 0) { 176 atomic_set(&key->enabled, -1); 177 jump_label_update(key); 178 /* 179 * See static_key_slow_inc(). 180 */ 181 atomic_set_release(&key->enabled, 1); 182 } 183 jump_label_unlock(); 184 } 185 EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked); 186 187 void static_key_enable(struct static_key *key) 188 { 189 cpus_read_lock(); 190 static_key_enable_cpuslocked(key); 191 cpus_read_unlock(); 192 } 193 EXPORT_SYMBOL_GPL(static_key_enable); 194 195 void static_key_disable_cpuslocked(struct static_key *key) 196 { 197 STATIC_KEY_CHECK_USE(key); 198 lockdep_assert_cpus_held(); 199 200 if (atomic_read(&key->enabled) != 1) { 201 WARN_ON_ONCE(atomic_read(&key->enabled) != 0); 202 return; 203 } 204 205 jump_label_lock(); 206 if (atomic_cmpxchg(&key->enabled, 1, 0)) 207 jump_label_update(key); 208 jump_label_unlock(); 209 } 210 EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked); 211 212 void static_key_disable(struct static_key *key) 213 { 214 cpus_read_lock(); 215 static_key_disable_cpuslocked(key); 216 cpus_read_unlock(); 217 } 218 EXPORT_SYMBOL_GPL(static_key_disable); 219 220 static bool static_key_slow_try_dec(struct static_key *key) 221 { 222 int val; 223 224 val = atomic_fetch_add_unless(&key->enabled, -1, 1); 225 if (val == 1) 226 return false; 227 228 /* 229 * The negative count check is valid even when a negative 230 * key->enabled is in use by static_key_slow_inc(); a 231 * __static_key_slow_dec() before the first static_key_slow_inc() 232 * returns is unbalanced, because all other static_key_slow_inc() 233 * instances block while the update is in progress. 234 */ 235 WARN(val < 0, "jump label: negative count!\n"); 236 return true; 237 } 238 239 static void __static_key_slow_dec_cpuslocked(struct static_key *key) 240 { 241 lockdep_assert_cpus_held(); 242 243 if (static_key_slow_try_dec(key)) 244 return; 245 246 jump_label_lock(); 247 if (atomic_dec_and_test(&key->enabled)) 248 jump_label_update(key); 249 jump_label_unlock(); 250 } 251 252 static void __static_key_slow_dec(struct static_key *key) 253 { 254 cpus_read_lock(); 255 __static_key_slow_dec_cpuslocked(key); 256 cpus_read_unlock(); 257 } 258 259 void jump_label_update_timeout(struct work_struct *work) 260 { 261 struct static_key_deferred *key = 262 container_of(work, struct static_key_deferred, work.work); 263 __static_key_slow_dec(&key->key); 264 } 265 EXPORT_SYMBOL_GPL(jump_label_update_timeout); 266 267 void static_key_slow_dec(struct static_key *key) 268 { 269 STATIC_KEY_CHECK_USE(key); 270 __static_key_slow_dec(key); 271 } 272 EXPORT_SYMBOL_GPL(static_key_slow_dec); 273 274 void static_key_slow_dec_cpuslocked(struct static_key *key) 275 { 276 STATIC_KEY_CHECK_USE(key); 277 __static_key_slow_dec_cpuslocked(key); 278 } 279 280 void __static_key_slow_dec_deferred(struct static_key *key, 281 struct delayed_work *work, 282 unsigned long timeout) 283 { 284 STATIC_KEY_CHECK_USE(key); 285 286 if (static_key_slow_try_dec(key)) 287 return; 288 289 schedule_delayed_work(work, timeout); 290 } 291 EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred); 292 293 void __static_key_deferred_flush(void *key, struct delayed_work *work) 294 { 295 STATIC_KEY_CHECK_USE(key); 296 flush_delayed_work(work); 297 } 298 EXPORT_SYMBOL_GPL(__static_key_deferred_flush); 299 300 void jump_label_rate_limit(struct static_key_deferred *key, 301 unsigned long rl) 302 { 303 STATIC_KEY_CHECK_USE(key); 304 key->timeout = rl; 305 INIT_DELAYED_WORK(&key->work, jump_label_update_timeout); 306 } 307 EXPORT_SYMBOL_GPL(jump_label_rate_limit); 308 309 static int addr_conflict(struct jump_entry *entry, void *start, void *end) 310 { 311 if (jump_entry_code(entry) <= (unsigned long)end && 312 jump_entry_code(entry) + JUMP_LABEL_NOP_SIZE > (unsigned long)start) 313 return 1; 314 315 return 0; 316 } 317 318 static int __jump_label_text_reserved(struct jump_entry *iter_start, 319 struct jump_entry *iter_stop, void *start, void *end) 320 { 321 struct jump_entry *iter; 322 323 iter = iter_start; 324 while (iter < iter_stop) { 325 if (addr_conflict(iter, start, end)) 326 return 1; 327 iter++; 328 } 329 330 return 0; 331 } 332 333 /* 334 * Update code which is definitely not currently executing. 335 * Architectures which need heavyweight synchronization to modify 336 * running code can override this to make the non-live update case 337 * cheaper. 338 */ 339 void __weak __init_or_module arch_jump_label_transform_static(struct jump_entry *entry, 340 enum jump_label_type type) 341 { 342 arch_jump_label_transform(entry, type); 343 } 344 345 static inline struct jump_entry *static_key_entries(struct static_key *key) 346 { 347 WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED); 348 return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK); 349 } 350 351 static inline bool static_key_type(struct static_key *key) 352 { 353 return key->type & JUMP_TYPE_TRUE; 354 } 355 356 static inline bool static_key_linked(struct static_key *key) 357 { 358 return key->type & JUMP_TYPE_LINKED; 359 } 360 361 static inline void static_key_clear_linked(struct static_key *key) 362 { 363 key->type &= ~JUMP_TYPE_LINKED; 364 } 365 366 static inline void static_key_set_linked(struct static_key *key) 367 { 368 key->type |= JUMP_TYPE_LINKED; 369 } 370 371 /*** 372 * A 'struct static_key' uses a union such that it either points directly 373 * to a table of 'struct jump_entry' or to a linked list of modules which in 374 * turn point to 'struct jump_entry' tables. 375 * 376 * The two lower bits of the pointer are used to keep track of which pointer 377 * type is in use and to store the initial branch direction, we use an access 378 * function which preserves these bits. 379 */ 380 static void static_key_set_entries(struct static_key *key, 381 struct jump_entry *entries) 382 { 383 unsigned long type; 384 385 WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK); 386 type = key->type & JUMP_TYPE_MASK; 387 key->entries = entries; 388 key->type |= type; 389 } 390 391 static enum jump_label_type jump_label_type(struct jump_entry *entry) 392 { 393 struct static_key *key = jump_entry_key(entry); 394 bool enabled = static_key_enabled(key); 395 bool branch = jump_entry_is_branch(entry); 396 397 /* See the comment in linux/jump_label.h */ 398 return enabled ^ branch; 399 } 400 401 static bool jump_label_can_update(struct jump_entry *entry, bool init) 402 { 403 /* 404 * Cannot update code that was in an init text area. 405 */ 406 if (!init && jump_entry_is_init(entry)) 407 return false; 408 409 if (!kernel_text_address(jump_entry_code(entry))) { 410 /* 411 * This skips patching built-in __exit, which 412 * is part of init_section_contains() but is 413 * not part of kernel_text_address(). 414 * 415 * Skipping built-in __exit is fine since it 416 * will never be executed. 417 */ 418 WARN_ONCE(!jump_entry_is_init(entry), 419 "can't patch jump_label at %pS", 420 (void *)jump_entry_code(entry)); 421 return false; 422 } 423 424 return true; 425 } 426 427 #ifndef HAVE_JUMP_LABEL_BATCH 428 static void __jump_label_update(struct static_key *key, 429 struct jump_entry *entry, 430 struct jump_entry *stop, 431 bool init) 432 { 433 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 434 if (jump_label_can_update(entry, init)) 435 arch_jump_label_transform(entry, jump_label_type(entry)); 436 } 437 } 438 #else 439 static void __jump_label_update(struct static_key *key, 440 struct jump_entry *entry, 441 struct jump_entry *stop, 442 bool init) 443 { 444 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 445 446 if (!jump_label_can_update(entry, init)) 447 continue; 448 449 if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) { 450 /* 451 * Queue is full: Apply the current queue and try again. 452 */ 453 arch_jump_label_transform_apply(); 454 BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry))); 455 } 456 } 457 arch_jump_label_transform_apply(); 458 } 459 #endif 460 461 void __init jump_label_init(void) 462 { 463 struct jump_entry *iter_start = __start___jump_table; 464 struct jump_entry *iter_stop = __stop___jump_table; 465 struct static_key *key = NULL; 466 struct jump_entry *iter; 467 468 /* 469 * Since we are initializing the static_key.enabled field with 470 * with the 'raw' int values (to avoid pulling in atomic.h) in 471 * jump_label.h, let's make sure that is safe. There are only two 472 * cases to check since we initialize to 0 or 1. 473 */ 474 BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0); 475 BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1); 476 477 if (static_key_initialized) 478 return; 479 480 cpus_read_lock(); 481 jump_label_lock(); 482 jump_label_sort_entries(iter_start, iter_stop); 483 484 for (iter = iter_start; iter < iter_stop; iter++) { 485 struct static_key *iterk; 486 487 /* rewrite NOPs */ 488 if (jump_label_type(iter) == JUMP_LABEL_NOP) 489 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 490 491 if (init_section_contains((void *)jump_entry_code(iter), 1)) 492 jump_entry_set_init(iter); 493 494 iterk = jump_entry_key(iter); 495 if (iterk == key) 496 continue; 497 498 key = iterk; 499 static_key_set_entries(key, iter); 500 } 501 static_key_initialized = true; 502 jump_label_unlock(); 503 cpus_read_unlock(); 504 } 505 506 #ifdef CONFIG_MODULES 507 508 static enum jump_label_type jump_label_init_type(struct jump_entry *entry) 509 { 510 struct static_key *key = jump_entry_key(entry); 511 bool type = static_key_type(key); 512 bool branch = jump_entry_is_branch(entry); 513 514 /* See the comment in linux/jump_label.h */ 515 return type ^ branch; 516 } 517 518 struct static_key_mod { 519 struct static_key_mod *next; 520 struct jump_entry *entries; 521 struct module *mod; 522 }; 523 524 static inline struct static_key_mod *static_key_mod(struct static_key *key) 525 { 526 WARN_ON_ONCE(!static_key_linked(key)); 527 return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK); 528 } 529 530 /*** 531 * key->type and key->next are the same via union. 532 * This sets key->next and preserves the type bits. 533 * 534 * See additional comments above static_key_set_entries(). 535 */ 536 static void static_key_set_mod(struct static_key *key, 537 struct static_key_mod *mod) 538 { 539 unsigned long type; 540 541 WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK); 542 type = key->type & JUMP_TYPE_MASK; 543 key->next = mod; 544 key->type |= type; 545 } 546 547 static int __jump_label_mod_text_reserved(void *start, void *end) 548 { 549 struct module *mod; 550 int ret; 551 552 preempt_disable(); 553 mod = __module_text_address((unsigned long)start); 554 WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod); 555 if (!try_module_get(mod)) 556 mod = NULL; 557 preempt_enable(); 558 559 if (!mod) 560 return 0; 561 562 ret = __jump_label_text_reserved(mod->jump_entries, 563 mod->jump_entries + mod->num_jump_entries, 564 start, end); 565 566 module_put(mod); 567 568 return ret; 569 } 570 571 static void __jump_label_mod_update(struct static_key *key) 572 { 573 struct static_key_mod *mod; 574 575 for (mod = static_key_mod(key); mod; mod = mod->next) { 576 struct jump_entry *stop; 577 struct module *m; 578 579 /* 580 * NULL if the static_key is defined in a module 581 * that does not use it 582 */ 583 if (!mod->entries) 584 continue; 585 586 m = mod->mod; 587 if (!m) 588 stop = __stop___jump_table; 589 else 590 stop = m->jump_entries + m->num_jump_entries; 591 __jump_label_update(key, mod->entries, stop, 592 m && m->state == MODULE_STATE_COMING); 593 } 594 } 595 596 /*** 597 * apply_jump_label_nops - patch module jump labels with arch_get_jump_label_nop() 598 * @mod: module to patch 599 * 600 * Allow for run-time selection of the optimal nops. Before the module 601 * loads patch these with arch_get_jump_label_nop(), which is specified by 602 * the arch specific jump label code. 603 */ 604 void jump_label_apply_nops(struct module *mod) 605 { 606 struct jump_entry *iter_start = mod->jump_entries; 607 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 608 struct jump_entry *iter; 609 610 /* if the module doesn't have jump label entries, just return */ 611 if (iter_start == iter_stop) 612 return; 613 614 for (iter = iter_start; iter < iter_stop; iter++) { 615 /* Only write NOPs for arch_branch_static(). */ 616 if (jump_label_init_type(iter) == JUMP_LABEL_NOP) 617 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 618 } 619 } 620 621 static int jump_label_add_module(struct module *mod) 622 { 623 struct jump_entry *iter_start = mod->jump_entries; 624 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 625 struct jump_entry *iter; 626 struct static_key *key = NULL; 627 struct static_key_mod *jlm, *jlm2; 628 629 /* if the module doesn't have jump label entries, just return */ 630 if (iter_start == iter_stop) 631 return 0; 632 633 jump_label_sort_entries(iter_start, iter_stop); 634 635 for (iter = iter_start; iter < iter_stop; iter++) { 636 struct static_key *iterk; 637 638 if (within_module_init(jump_entry_code(iter), mod)) 639 jump_entry_set_init(iter); 640 641 iterk = jump_entry_key(iter); 642 if (iterk == key) 643 continue; 644 645 key = iterk; 646 if (within_module((unsigned long)key, mod)) { 647 static_key_set_entries(key, iter); 648 continue; 649 } 650 jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); 651 if (!jlm) 652 return -ENOMEM; 653 if (!static_key_linked(key)) { 654 jlm2 = kzalloc(sizeof(struct static_key_mod), 655 GFP_KERNEL); 656 if (!jlm2) { 657 kfree(jlm); 658 return -ENOMEM; 659 } 660 preempt_disable(); 661 jlm2->mod = __module_address((unsigned long)key); 662 preempt_enable(); 663 jlm2->entries = static_key_entries(key); 664 jlm2->next = NULL; 665 static_key_set_mod(key, jlm2); 666 static_key_set_linked(key); 667 } 668 jlm->mod = mod; 669 jlm->entries = iter; 670 jlm->next = static_key_mod(key); 671 static_key_set_mod(key, jlm); 672 static_key_set_linked(key); 673 674 /* Only update if we've changed from our initial state */ 675 if (jump_label_type(iter) != jump_label_init_type(iter)) 676 __jump_label_update(key, iter, iter_stop, true); 677 } 678 679 return 0; 680 } 681 682 static void jump_label_del_module(struct module *mod) 683 { 684 struct jump_entry *iter_start = mod->jump_entries; 685 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 686 struct jump_entry *iter; 687 struct static_key *key = NULL; 688 struct static_key_mod *jlm, **prev; 689 690 for (iter = iter_start; iter < iter_stop; iter++) { 691 if (jump_entry_key(iter) == key) 692 continue; 693 694 key = jump_entry_key(iter); 695 696 if (within_module((unsigned long)key, mod)) 697 continue; 698 699 /* No memory during module load */ 700 if (WARN_ON(!static_key_linked(key))) 701 continue; 702 703 prev = &key->next; 704 jlm = static_key_mod(key); 705 706 while (jlm && jlm->mod != mod) { 707 prev = &jlm->next; 708 jlm = jlm->next; 709 } 710 711 /* No memory during module load */ 712 if (WARN_ON(!jlm)) 713 continue; 714 715 if (prev == &key->next) 716 static_key_set_mod(key, jlm->next); 717 else 718 *prev = jlm->next; 719 720 kfree(jlm); 721 722 jlm = static_key_mod(key); 723 /* if only one etry is left, fold it back into the static_key */ 724 if (jlm->next == NULL) { 725 static_key_set_entries(key, jlm->entries); 726 static_key_clear_linked(key); 727 kfree(jlm); 728 } 729 } 730 } 731 732 static int 733 jump_label_module_notify(struct notifier_block *self, unsigned long val, 734 void *data) 735 { 736 struct module *mod = data; 737 int ret = 0; 738 739 cpus_read_lock(); 740 jump_label_lock(); 741 742 switch (val) { 743 case MODULE_STATE_COMING: 744 ret = jump_label_add_module(mod); 745 if (ret) { 746 WARN(1, "Failed to allocate memory: jump_label may not work properly.\n"); 747 jump_label_del_module(mod); 748 } 749 break; 750 case MODULE_STATE_GOING: 751 jump_label_del_module(mod); 752 break; 753 } 754 755 jump_label_unlock(); 756 cpus_read_unlock(); 757 758 return notifier_from_errno(ret); 759 } 760 761 static struct notifier_block jump_label_module_nb = { 762 .notifier_call = jump_label_module_notify, 763 .priority = 1, /* higher than tracepoints */ 764 }; 765 766 static __init int jump_label_init_module(void) 767 { 768 return register_module_notifier(&jump_label_module_nb); 769 } 770 early_initcall(jump_label_init_module); 771 772 #endif /* CONFIG_MODULES */ 773 774 /*** 775 * jump_label_text_reserved - check if addr range is reserved 776 * @start: start text addr 777 * @end: end text addr 778 * 779 * checks if the text addr located between @start and @end 780 * overlaps with any of the jump label patch addresses. Code 781 * that wants to modify kernel text should first verify that 782 * it does not overlap with any of the jump label addresses. 783 * Caller must hold jump_label_mutex. 784 * 785 * returns 1 if there is an overlap, 0 otherwise 786 */ 787 int jump_label_text_reserved(void *start, void *end) 788 { 789 int ret = __jump_label_text_reserved(__start___jump_table, 790 __stop___jump_table, start, end); 791 792 if (ret) 793 return ret; 794 795 #ifdef CONFIG_MODULES 796 ret = __jump_label_mod_text_reserved(start, end); 797 #endif 798 return ret; 799 } 800 801 static void jump_label_update(struct static_key *key) 802 { 803 struct jump_entry *stop = __stop___jump_table; 804 bool init = system_state < SYSTEM_RUNNING; 805 struct jump_entry *entry; 806 #ifdef CONFIG_MODULES 807 struct module *mod; 808 809 if (static_key_linked(key)) { 810 __jump_label_mod_update(key); 811 return; 812 } 813 814 preempt_disable(); 815 mod = __module_address((unsigned long)key); 816 if (mod) { 817 stop = mod->jump_entries + mod->num_jump_entries; 818 init = mod->state == MODULE_STATE_COMING; 819 } 820 preempt_enable(); 821 #endif 822 entry = static_key_entries(key); 823 /* if there are no users, entry can be NULL */ 824 if (entry) 825 __jump_label_update(key, entry, stop, init); 826 } 827 828 #ifdef CONFIG_STATIC_KEYS_SELFTEST 829 static DEFINE_STATIC_KEY_TRUE(sk_true); 830 static DEFINE_STATIC_KEY_FALSE(sk_false); 831 832 static __init int jump_label_test(void) 833 { 834 int i; 835 836 for (i = 0; i < 2; i++) { 837 WARN_ON(static_key_enabled(&sk_true.key) != true); 838 WARN_ON(static_key_enabled(&sk_false.key) != false); 839 840 WARN_ON(!static_branch_likely(&sk_true)); 841 WARN_ON(!static_branch_unlikely(&sk_true)); 842 WARN_ON(static_branch_likely(&sk_false)); 843 WARN_ON(static_branch_unlikely(&sk_false)); 844 845 static_branch_disable(&sk_true); 846 static_branch_enable(&sk_false); 847 848 WARN_ON(static_key_enabled(&sk_true.key) == true); 849 WARN_ON(static_key_enabled(&sk_false.key) == false); 850 851 WARN_ON(static_branch_likely(&sk_true)); 852 WARN_ON(static_branch_unlikely(&sk_true)); 853 WARN_ON(!static_branch_likely(&sk_false)); 854 WARN_ON(!static_branch_unlikely(&sk_false)); 855 856 static_branch_enable(&sk_true); 857 static_branch_disable(&sk_false); 858 } 859 860 return 0; 861 } 862 early_initcall(jump_label_test); 863 #endif /* STATIC_KEYS_SELFTEST */ 864