1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 EXPORT_SYMBOL_GPL(force_irqthreads); 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 case IRQ_SET_MASK_OK_NOCOPY: 200 irq_validate_effective_affinity(data); 201 irq_set_thread_affinity(desc); 202 ret = 0; 203 } 204 205 return ret; 206 } 207 208 #ifdef CONFIG_GENERIC_PENDING_IRQ 209 static inline int irq_set_affinity_pending(struct irq_data *data, 210 const struct cpumask *dest) 211 { 212 struct irq_desc *desc = irq_data_to_desc(data); 213 214 irqd_set_move_pending(data); 215 irq_copy_pending(desc, dest); 216 return 0; 217 } 218 #else 219 static inline int irq_set_affinity_pending(struct irq_data *data, 220 const struct cpumask *dest) 221 { 222 return -EBUSY; 223 } 224 #endif 225 226 static int irq_try_set_affinity(struct irq_data *data, 227 const struct cpumask *dest, bool force) 228 { 229 int ret = irq_do_set_affinity(data, dest, force); 230 231 /* 232 * In case that the underlying vector management is busy and the 233 * architecture supports the generic pending mechanism then utilize 234 * this to avoid returning an error to user space. 235 */ 236 if (ret == -EBUSY && !force) 237 ret = irq_set_affinity_pending(data, dest); 238 return ret; 239 } 240 241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 242 bool force) 243 { 244 struct irq_chip *chip = irq_data_get_irq_chip(data); 245 struct irq_desc *desc = irq_data_to_desc(data); 246 int ret = 0; 247 248 if (!chip || !chip->irq_set_affinity) 249 return -EINVAL; 250 251 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 252 ret = irq_try_set_affinity(data, mask, force); 253 } else { 254 irqd_set_move_pending(data); 255 irq_copy_pending(desc, mask); 256 } 257 258 if (desc->affinity_notify) { 259 kref_get(&desc->affinity_notify->kref); 260 schedule_work(&desc->affinity_notify->work); 261 } 262 irqd_set(data, IRQD_AFFINITY_SET); 263 264 return ret; 265 } 266 267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 268 { 269 struct irq_desc *desc = irq_to_desc(irq); 270 unsigned long flags; 271 int ret; 272 273 if (!desc) 274 return -EINVAL; 275 276 raw_spin_lock_irqsave(&desc->lock, flags); 277 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 278 raw_spin_unlock_irqrestore(&desc->lock, flags); 279 return ret; 280 } 281 282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 283 { 284 unsigned long flags; 285 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 286 287 if (!desc) 288 return -EINVAL; 289 desc->affinity_hint = m; 290 irq_put_desc_unlock(desc, flags); 291 /* set the initial affinity to prevent every interrupt being on CPU0 */ 292 if (m) 293 __irq_set_affinity(irq, m, false); 294 return 0; 295 } 296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 297 298 static void irq_affinity_notify(struct work_struct *work) 299 { 300 struct irq_affinity_notify *notify = 301 container_of(work, struct irq_affinity_notify, work); 302 struct irq_desc *desc = irq_to_desc(notify->irq); 303 cpumask_var_t cpumask; 304 unsigned long flags; 305 306 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 307 goto out; 308 309 raw_spin_lock_irqsave(&desc->lock, flags); 310 if (irq_move_pending(&desc->irq_data)) 311 irq_get_pending(cpumask, desc); 312 else 313 cpumask_copy(cpumask, desc->irq_common_data.affinity); 314 raw_spin_unlock_irqrestore(&desc->lock, flags); 315 316 notify->notify(notify, cpumask); 317 318 free_cpumask_var(cpumask); 319 out: 320 kref_put(¬ify->kref, notify->release); 321 } 322 323 /** 324 * irq_set_affinity_notifier - control notification of IRQ affinity changes 325 * @irq: Interrupt for which to enable/disable notification 326 * @notify: Context for notification, or %NULL to disable 327 * notification. Function pointers must be initialised; 328 * the other fields will be initialised by this function. 329 * 330 * Must be called in process context. Notification may only be enabled 331 * after the IRQ is allocated and must be disabled before the IRQ is 332 * freed using free_irq(). 333 */ 334 int 335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 336 { 337 struct irq_desc *desc = irq_to_desc(irq); 338 struct irq_affinity_notify *old_notify; 339 unsigned long flags; 340 341 /* The release function is promised process context */ 342 might_sleep(); 343 344 if (!desc) 345 return -EINVAL; 346 347 /* Complete initialisation of *notify */ 348 if (notify) { 349 notify->irq = irq; 350 kref_init(¬ify->kref); 351 INIT_WORK(¬ify->work, irq_affinity_notify); 352 } 353 354 raw_spin_lock_irqsave(&desc->lock, flags); 355 old_notify = desc->affinity_notify; 356 desc->affinity_notify = notify; 357 raw_spin_unlock_irqrestore(&desc->lock, flags); 358 359 if (old_notify) 360 kref_put(&old_notify->kref, old_notify->release); 361 362 return 0; 363 } 364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 365 366 #ifndef CONFIG_AUTO_IRQ_AFFINITY 367 /* 368 * Generic version of the affinity autoselector. 369 */ 370 int irq_setup_affinity(struct irq_desc *desc) 371 { 372 struct cpumask *set = irq_default_affinity; 373 int ret, node = irq_desc_get_node(desc); 374 static DEFINE_RAW_SPINLOCK(mask_lock); 375 static struct cpumask mask; 376 377 /* Excludes PER_CPU and NO_BALANCE interrupts */ 378 if (!__irq_can_set_affinity(desc)) 379 return 0; 380 381 raw_spin_lock(&mask_lock); 382 /* 383 * Preserve the managed affinity setting and a userspace affinity 384 * setup, but make sure that one of the targets is online. 385 */ 386 if (irqd_affinity_is_managed(&desc->irq_data) || 387 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 388 if (cpumask_intersects(desc->irq_common_data.affinity, 389 cpu_online_mask)) 390 set = desc->irq_common_data.affinity; 391 else 392 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 393 } 394 395 cpumask_and(&mask, cpu_online_mask, set); 396 if (node != NUMA_NO_NODE) { 397 const struct cpumask *nodemask = cpumask_of_node(node); 398 399 /* make sure at least one of the cpus in nodemask is online */ 400 if (cpumask_intersects(&mask, nodemask)) 401 cpumask_and(&mask, &mask, nodemask); 402 } 403 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 404 raw_spin_unlock(&mask_lock); 405 return ret; 406 } 407 #else 408 /* Wrapper for ALPHA specific affinity selector magic */ 409 int irq_setup_affinity(struct irq_desc *desc) 410 { 411 return irq_select_affinity(irq_desc_get_irq(desc)); 412 } 413 #endif 414 415 /* 416 * Called when a bogus affinity is set via /proc/irq 417 */ 418 int irq_select_affinity_usr(unsigned int irq) 419 { 420 struct irq_desc *desc = irq_to_desc(irq); 421 unsigned long flags; 422 int ret; 423 424 raw_spin_lock_irqsave(&desc->lock, flags); 425 ret = irq_setup_affinity(desc); 426 raw_spin_unlock_irqrestore(&desc->lock, flags); 427 return ret; 428 } 429 #endif 430 431 /** 432 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 433 * @irq: interrupt number to set affinity 434 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 435 * specific data for percpu_devid interrupts 436 * 437 * This function uses the vCPU specific data to set the vCPU 438 * affinity for an irq. The vCPU specific data is passed from 439 * outside, such as KVM. One example code path is as below: 440 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 441 */ 442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 443 { 444 unsigned long flags; 445 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 446 struct irq_data *data; 447 struct irq_chip *chip; 448 int ret = -ENOSYS; 449 450 if (!desc) 451 return -EINVAL; 452 453 data = irq_desc_get_irq_data(desc); 454 do { 455 chip = irq_data_get_irq_chip(data); 456 if (chip && chip->irq_set_vcpu_affinity) 457 break; 458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 459 data = data->parent_data; 460 #else 461 data = NULL; 462 #endif 463 } while (data); 464 465 if (data) 466 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 467 irq_put_desc_unlock(desc, flags); 468 469 return ret; 470 } 471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 472 473 void __disable_irq(struct irq_desc *desc) 474 { 475 if (!desc->depth++) 476 irq_disable(desc); 477 } 478 479 static int __disable_irq_nosync(unsigned int irq) 480 { 481 unsigned long flags; 482 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 483 484 if (!desc) 485 return -EINVAL; 486 __disable_irq(desc); 487 irq_put_desc_busunlock(desc, flags); 488 return 0; 489 } 490 491 /** 492 * disable_irq_nosync - disable an irq without waiting 493 * @irq: Interrupt to disable 494 * 495 * Disable the selected interrupt line. Disables and Enables are 496 * nested. 497 * Unlike disable_irq(), this function does not ensure existing 498 * instances of the IRQ handler have completed before returning. 499 * 500 * This function may be called from IRQ context. 501 */ 502 void disable_irq_nosync(unsigned int irq) 503 { 504 __disable_irq_nosync(irq); 505 } 506 EXPORT_SYMBOL(disable_irq_nosync); 507 508 /** 509 * disable_irq - disable an irq and wait for completion 510 * @irq: Interrupt to disable 511 * 512 * Disable the selected interrupt line. Enables and Disables are 513 * nested. 514 * This function waits for any pending IRQ handlers for this interrupt 515 * to complete before returning. If you use this function while 516 * holding a resource the IRQ handler may need you will deadlock. 517 * 518 * This function may be called - with care - from IRQ context. 519 */ 520 void disable_irq(unsigned int irq) 521 { 522 if (!__disable_irq_nosync(irq)) 523 synchronize_irq(irq); 524 } 525 EXPORT_SYMBOL(disable_irq); 526 527 /** 528 * disable_hardirq - disables an irq and waits for hardirq completion 529 * @irq: Interrupt to disable 530 * 531 * Disable the selected interrupt line. Enables and Disables are 532 * nested. 533 * This function waits for any pending hard IRQ handlers for this 534 * interrupt to complete before returning. If you use this function while 535 * holding a resource the hard IRQ handler may need you will deadlock. 536 * 537 * When used to optimistically disable an interrupt from atomic context 538 * the return value must be checked. 539 * 540 * Returns: false if a threaded handler is active. 541 * 542 * This function may be called - with care - from IRQ context. 543 */ 544 bool disable_hardirq(unsigned int irq) 545 { 546 if (!__disable_irq_nosync(irq)) 547 return synchronize_hardirq(irq); 548 549 return false; 550 } 551 EXPORT_SYMBOL_GPL(disable_hardirq); 552 553 void __enable_irq(struct irq_desc *desc) 554 { 555 switch (desc->depth) { 556 case 0: 557 err_out: 558 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 559 irq_desc_get_irq(desc)); 560 break; 561 case 1: { 562 if (desc->istate & IRQS_SUSPENDED) 563 goto err_out; 564 /* Prevent probing on this irq: */ 565 irq_settings_set_noprobe(desc); 566 /* 567 * Call irq_startup() not irq_enable() here because the 568 * interrupt might be marked NOAUTOEN. So irq_startup() 569 * needs to be invoked when it gets enabled the first 570 * time. If it was already started up, then irq_startup() 571 * will invoke irq_enable() under the hood. 572 */ 573 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 574 break; 575 } 576 default: 577 desc->depth--; 578 } 579 } 580 581 /** 582 * enable_irq - enable handling of an irq 583 * @irq: Interrupt to enable 584 * 585 * Undoes the effect of one call to disable_irq(). If this 586 * matches the last disable, processing of interrupts on this 587 * IRQ line is re-enabled. 588 * 589 * This function may be called from IRQ context only when 590 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 591 */ 592 void enable_irq(unsigned int irq) 593 { 594 unsigned long flags; 595 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 596 597 if (!desc) 598 return; 599 if (WARN(!desc->irq_data.chip, 600 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 601 goto out; 602 603 __enable_irq(desc); 604 out: 605 irq_put_desc_busunlock(desc, flags); 606 } 607 EXPORT_SYMBOL(enable_irq); 608 609 static int set_irq_wake_real(unsigned int irq, unsigned int on) 610 { 611 struct irq_desc *desc = irq_to_desc(irq); 612 int ret = -ENXIO; 613 614 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 615 return 0; 616 617 if (desc->irq_data.chip->irq_set_wake) 618 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 619 620 return ret; 621 } 622 623 /** 624 * irq_set_irq_wake - control irq power management wakeup 625 * @irq: interrupt to control 626 * @on: enable/disable power management wakeup 627 * 628 * Enable/disable power management wakeup mode, which is 629 * disabled by default. Enables and disables must match, 630 * just as they match for non-wakeup mode support. 631 * 632 * Wakeup mode lets this IRQ wake the system from sleep 633 * states like "suspend to RAM". 634 */ 635 int irq_set_irq_wake(unsigned int irq, unsigned int on) 636 { 637 unsigned long flags; 638 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 639 int ret = 0; 640 641 if (!desc) 642 return -EINVAL; 643 644 /* wakeup-capable irqs can be shared between drivers that 645 * don't need to have the same sleep mode behaviors. 646 */ 647 if (on) { 648 if (desc->wake_depth++ == 0) { 649 ret = set_irq_wake_real(irq, on); 650 if (ret) 651 desc->wake_depth = 0; 652 else 653 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 654 } 655 } else { 656 if (desc->wake_depth == 0) { 657 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 658 } else if (--desc->wake_depth == 0) { 659 ret = set_irq_wake_real(irq, on); 660 if (ret) 661 desc->wake_depth = 1; 662 else 663 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 664 } 665 } 666 irq_put_desc_busunlock(desc, flags); 667 return ret; 668 } 669 EXPORT_SYMBOL(irq_set_irq_wake); 670 671 /* 672 * Internal function that tells the architecture code whether a 673 * particular irq has been exclusively allocated or is available 674 * for driver use. 675 */ 676 int can_request_irq(unsigned int irq, unsigned long irqflags) 677 { 678 unsigned long flags; 679 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 680 int canrequest = 0; 681 682 if (!desc) 683 return 0; 684 685 if (irq_settings_can_request(desc)) { 686 if (!desc->action || 687 irqflags & desc->action->flags & IRQF_SHARED) 688 canrequest = 1; 689 } 690 irq_put_desc_unlock(desc, flags); 691 return canrequest; 692 } 693 694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 695 { 696 struct irq_chip *chip = desc->irq_data.chip; 697 int ret, unmask = 0; 698 699 if (!chip || !chip->irq_set_type) { 700 /* 701 * IRQF_TRIGGER_* but the PIC does not support multiple 702 * flow-types? 703 */ 704 pr_debug("No set_type function for IRQ %d (%s)\n", 705 irq_desc_get_irq(desc), 706 chip ? (chip->name ? : "unknown") : "unknown"); 707 return 0; 708 } 709 710 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 711 if (!irqd_irq_masked(&desc->irq_data)) 712 mask_irq(desc); 713 if (!irqd_irq_disabled(&desc->irq_data)) 714 unmask = 1; 715 } 716 717 /* Mask all flags except trigger mode */ 718 flags &= IRQ_TYPE_SENSE_MASK; 719 ret = chip->irq_set_type(&desc->irq_data, flags); 720 721 switch (ret) { 722 case IRQ_SET_MASK_OK: 723 case IRQ_SET_MASK_OK_DONE: 724 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 725 irqd_set(&desc->irq_data, flags); 726 727 case IRQ_SET_MASK_OK_NOCOPY: 728 flags = irqd_get_trigger_type(&desc->irq_data); 729 irq_settings_set_trigger_mask(desc, flags); 730 irqd_clear(&desc->irq_data, IRQD_LEVEL); 731 irq_settings_clr_level(desc); 732 if (flags & IRQ_TYPE_LEVEL_MASK) { 733 irq_settings_set_level(desc); 734 irqd_set(&desc->irq_data, IRQD_LEVEL); 735 } 736 737 ret = 0; 738 break; 739 default: 740 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 741 flags, irq_desc_get_irq(desc), chip->irq_set_type); 742 } 743 if (unmask) 744 unmask_irq(desc); 745 return ret; 746 } 747 748 #ifdef CONFIG_HARDIRQS_SW_RESEND 749 int irq_set_parent(int irq, int parent_irq) 750 { 751 unsigned long flags; 752 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 753 754 if (!desc) 755 return -EINVAL; 756 757 desc->parent_irq = parent_irq; 758 759 irq_put_desc_unlock(desc, flags); 760 return 0; 761 } 762 EXPORT_SYMBOL_GPL(irq_set_parent); 763 #endif 764 765 /* 766 * Default primary interrupt handler for threaded interrupts. Is 767 * assigned as primary handler when request_threaded_irq is called 768 * with handler == NULL. Useful for oneshot interrupts. 769 */ 770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 771 { 772 return IRQ_WAKE_THREAD; 773 } 774 775 /* 776 * Primary handler for nested threaded interrupts. Should never be 777 * called. 778 */ 779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 780 { 781 WARN(1, "Primary handler called for nested irq %d\n", irq); 782 return IRQ_NONE; 783 } 784 785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 786 { 787 WARN(1, "Secondary action handler called for irq %d\n", irq); 788 return IRQ_NONE; 789 } 790 791 static int irq_wait_for_interrupt(struct irqaction *action) 792 { 793 set_current_state(TASK_INTERRUPTIBLE); 794 795 while (!kthread_should_stop()) { 796 797 if (test_and_clear_bit(IRQTF_RUNTHREAD, 798 &action->thread_flags)) { 799 __set_current_state(TASK_RUNNING); 800 return 0; 801 } 802 schedule(); 803 set_current_state(TASK_INTERRUPTIBLE); 804 } 805 __set_current_state(TASK_RUNNING); 806 return -1; 807 } 808 809 /* 810 * Oneshot interrupts keep the irq line masked until the threaded 811 * handler finished. unmask if the interrupt has not been disabled and 812 * is marked MASKED. 813 */ 814 static void irq_finalize_oneshot(struct irq_desc *desc, 815 struct irqaction *action) 816 { 817 if (!(desc->istate & IRQS_ONESHOT) || 818 action->handler == irq_forced_secondary_handler) 819 return; 820 again: 821 chip_bus_lock(desc); 822 raw_spin_lock_irq(&desc->lock); 823 824 /* 825 * Implausible though it may be we need to protect us against 826 * the following scenario: 827 * 828 * The thread is faster done than the hard interrupt handler 829 * on the other CPU. If we unmask the irq line then the 830 * interrupt can come in again and masks the line, leaves due 831 * to IRQS_INPROGRESS and the irq line is masked forever. 832 * 833 * This also serializes the state of shared oneshot handlers 834 * versus "desc->threads_onehsot |= action->thread_mask;" in 835 * irq_wake_thread(). See the comment there which explains the 836 * serialization. 837 */ 838 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 839 raw_spin_unlock_irq(&desc->lock); 840 chip_bus_sync_unlock(desc); 841 cpu_relax(); 842 goto again; 843 } 844 845 /* 846 * Now check again, whether the thread should run. Otherwise 847 * we would clear the threads_oneshot bit of this thread which 848 * was just set. 849 */ 850 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 851 goto out_unlock; 852 853 desc->threads_oneshot &= ~action->thread_mask; 854 855 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 856 irqd_irq_masked(&desc->irq_data)) 857 unmask_threaded_irq(desc); 858 859 out_unlock: 860 raw_spin_unlock_irq(&desc->lock); 861 chip_bus_sync_unlock(desc); 862 } 863 864 #ifdef CONFIG_SMP 865 /* 866 * Check whether we need to change the affinity of the interrupt thread. 867 */ 868 static void 869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 870 { 871 cpumask_var_t mask; 872 bool valid = true; 873 874 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 875 return; 876 877 /* 878 * In case we are out of memory we set IRQTF_AFFINITY again and 879 * try again next time 880 */ 881 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 882 set_bit(IRQTF_AFFINITY, &action->thread_flags); 883 return; 884 } 885 886 raw_spin_lock_irq(&desc->lock); 887 /* 888 * This code is triggered unconditionally. Check the affinity 889 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 890 */ 891 if (cpumask_available(desc->irq_common_data.affinity)) { 892 const struct cpumask *m; 893 894 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 895 cpumask_copy(mask, m); 896 } else { 897 valid = false; 898 } 899 raw_spin_unlock_irq(&desc->lock); 900 901 if (valid) 902 set_cpus_allowed_ptr(current, mask); 903 free_cpumask_var(mask); 904 } 905 #else 906 static inline void 907 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 908 #endif 909 910 /* 911 * Interrupts which are not explicitely requested as threaded 912 * interrupts rely on the implicit bh/preempt disable of the hard irq 913 * context. So we need to disable bh here to avoid deadlocks and other 914 * side effects. 915 */ 916 static irqreturn_t 917 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 918 { 919 irqreturn_t ret; 920 921 local_bh_disable(); 922 ret = action->thread_fn(action->irq, action->dev_id); 923 irq_finalize_oneshot(desc, action); 924 local_bh_enable(); 925 return ret; 926 } 927 928 /* 929 * Interrupts explicitly requested as threaded interrupts want to be 930 * preemtible - many of them need to sleep and wait for slow busses to 931 * complete. 932 */ 933 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 934 struct irqaction *action) 935 { 936 irqreturn_t ret; 937 938 ret = action->thread_fn(action->irq, action->dev_id); 939 irq_finalize_oneshot(desc, action); 940 return ret; 941 } 942 943 static void wake_threads_waitq(struct irq_desc *desc) 944 { 945 if (atomic_dec_and_test(&desc->threads_active)) 946 wake_up(&desc->wait_for_threads); 947 } 948 949 static void irq_thread_dtor(struct callback_head *unused) 950 { 951 struct task_struct *tsk = current; 952 struct irq_desc *desc; 953 struct irqaction *action; 954 955 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 956 return; 957 958 action = kthread_data(tsk); 959 960 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 961 tsk->comm, tsk->pid, action->irq); 962 963 964 desc = irq_to_desc(action->irq); 965 /* 966 * If IRQTF_RUNTHREAD is set, we need to decrement 967 * desc->threads_active and wake possible waiters. 968 */ 969 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 970 wake_threads_waitq(desc); 971 972 /* Prevent a stale desc->threads_oneshot */ 973 irq_finalize_oneshot(desc, action); 974 } 975 976 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 977 { 978 struct irqaction *secondary = action->secondary; 979 980 if (WARN_ON_ONCE(!secondary)) 981 return; 982 983 raw_spin_lock_irq(&desc->lock); 984 __irq_wake_thread(desc, secondary); 985 raw_spin_unlock_irq(&desc->lock); 986 } 987 988 /* 989 * Interrupt handler thread 990 */ 991 static int irq_thread(void *data) 992 { 993 struct callback_head on_exit_work; 994 struct irqaction *action = data; 995 struct irq_desc *desc = irq_to_desc(action->irq); 996 irqreturn_t (*handler_fn)(struct irq_desc *desc, 997 struct irqaction *action); 998 999 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1000 &action->thread_flags)) 1001 handler_fn = irq_forced_thread_fn; 1002 else 1003 handler_fn = irq_thread_fn; 1004 1005 init_task_work(&on_exit_work, irq_thread_dtor); 1006 task_work_add(current, &on_exit_work, false); 1007 1008 irq_thread_check_affinity(desc, action); 1009 1010 while (!irq_wait_for_interrupt(action)) { 1011 irqreturn_t action_ret; 1012 1013 irq_thread_check_affinity(desc, action); 1014 1015 action_ret = handler_fn(desc, action); 1016 if (action_ret == IRQ_HANDLED) 1017 atomic_inc(&desc->threads_handled); 1018 if (action_ret == IRQ_WAKE_THREAD) 1019 irq_wake_secondary(desc, action); 1020 1021 wake_threads_waitq(desc); 1022 } 1023 1024 /* 1025 * This is the regular exit path. __free_irq() is stopping the 1026 * thread via kthread_stop() after calling 1027 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 1028 * oneshot mask bit can be set. We cannot verify that as we 1029 * cannot touch the oneshot mask at this point anymore as 1030 * __setup_irq() might have given out currents thread_mask 1031 * again. 1032 */ 1033 task_work_cancel(current, irq_thread_dtor); 1034 return 0; 1035 } 1036 1037 /** 1038 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1039 * @irq: Interrupt line 1040 * @dev_id: Device identity for which the thread should be woken 1041 * 1042 */ 1043 void irq_wake_thread(unsigned int irq, void *dev_id) 1044 { 1045 struct irq_desc *desc = irq_to_desc(irq); 1046 struct irqaction *action; 1047 unsigned long flags; 1048 1049 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1050 return; 1051 1052 raw_spin_lock_irqsave(&desc->lock, flags); 1053 for_each_action_of_desc(desc, action) { 1054 if (action->dev_id == dev_id) { 1055 if (action->thread) 1056 __irq_wake_thread(desc, action); 1057 break; 1058 } 1059 } 1060 raw_spin_unlock_irqrestore(&desc->lock, flags); 1061 } 1062 EXPORT_SYMBOL_GPL(irq_wake_thread); 1063 1064 static int irq_setup_forced_threading(struct irqaction *new) 1065 { 1066 if (!force_irqthreads) 1067 return 0; 1068 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1069 return 0; 1070 1071 /* 1072 * No further action required for interrupts which are requested as 1073 * threaded interrupts already 1074 */ 1075 if (new->handler == irq_default_primary_handler) 1076 return 0; 1077 1078 new->flags |= IRQF_ONESHOT; 1079 1080 /* 1081 * Handle the case where we have a real primary handler and a 1082 * thread handler. We force thread them as well by creating a 1083 * secondary action. 1084 */ 1085 if (new->handler && new->thread_fn) { 1086 /* Allocate the secondary action */ 1087 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1088 if (!new->secondary) 1089 return -ENOMEM; 1090 new->secondary->handler = irq_forced_secondary_handler; 1091 new->secondary->thread_fn = new->thread_fn; 1092 new->secondary->dev_id = new->dev_id; 1093 new->secondary->irq = new->irq; 1094 new->secondary->name = new->name; 1095 } 1096 /* Deal with the primary handler */ 1097 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1098 new->thread_fn = new->handler; 1099 new->handler = irq_default_primary_handler; 1100 return 0; 1101 } 1102 1103 static int irq_request_resources(struct irq_desc *desc) 1104 { 1105 struct irq_data *d = &desc->irq_data; 1106 struct irq_chip *c = d->chip; 1107 1108 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1109 } 1110 1111 static void irq_release_resources(struct irq_desc *desc) 1112 { 1113 struct irq_data *d = &desc->irq_data; 1114 struct irq_chip *c = d->chip; 1115 1116 if (c->irq_release_resources) 1117 c->irq_release_resources(d); 1118 } 1119 1120 static int 1121 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1122 { 1123 struct task_struct *t; 1124 struct sched_param param = { 1125 .sched_priority = MAX_USER_RT_PRIO/2, 1126 }; 1127 1128 if (!secondary) { 1129 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1130 new->name); 1131 } else { 1132 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1133 new->name); 1134 param.sched_priority -= 1; 1135 } 1136 1137 if (IS_ERR(t)) 1138 return PTR_ERR(t); 1139 1140 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1141 1142 /* 1143 * We keep the reference to the task struct even if 1144 * the thread dies to avoid that the interrupt code 1145 * references an already freed task_struct. 1146 */ 1147 get_task_struct(t); 1148 new->thread = t; 1149 /* 1150 * Tell the thread to set its affinity. This is 1151 * important for shared interrupt handlers as we do 1152 * not invoke setup_affinity() for the secondary 1153 * handlers as everything is already set up. Even for 1154 * interrupts marked with IRQF_NO_BALANCE this is 1155 * correct as we want the thread to move to the cpu(s) 1156 * on which the requesting code placed the interrupt. 1157 */ 1158 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1159 return 0; 1160 } 1161 1162 /* 1163 * Internal function to register an irqaction - typically used to 1164 * allocate special interrupts that are part of the architecture. 1165 * 1166 * Locking rules: 1167 * 1168 * desc->request_mutex Provides serialization against a concurrent free_irq() 1169 * chip_bus_lock Provides serialization for slow bus operations 1170 * desc->lock Provides serialization against hard interrupts 1171 * 1172 * chip_bus_lock and desc->lock are sufficient for all other management and 1173 * interrupt related functions. desc->request_mutex solely serializes 1174 * request/free_irq(). 1175 */ 1176 static int 1177 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1178 { 1179 struct irqaction *old, **old_ptr; 1180 unsigned long flags, thread_mask = 0; 1181 int ret, nested, shared = 0; 1182 1183 if (!desc) 1184 return -EINVAL; 1185 1186 if (desc->irq_data.chip == &no_irq_chip) 1187 return -ENOSYS; 1188 if (!try_module_get(desc->owner)) 1189 return -ENODEV; 1190 1191 new->irq = irq; 1192 1193 /* 1194 * If the trigger type is not specified by the caller, 1195 * then use the default for this interrupt. 1196 */ 1197 if (!(new->flags & IRQF_TRIGGER_MASK)) 1198 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1199 1200 /* 1201 * Check whether the interrupt nests into another interrupt 1202 * thread. 1203 */ 1204 nested = irq_settings_is_nested_thread(desc); 1205 if (nested) { 1206 if (!new->thread_fn) { 1207 ret = -EINVAL; 1208 goto out_mput; 1209 } 1210 /* 1211 * Replace the primary handler which was provided from 1212 * the driver for non nested interrupt handling by the 1213 * dummy function which warns when called. 1214 */ 1215 new->handler = irq_nested_primary_handler; 1216 } else { 1217 if (irq_settings_can_thread(desc)) { 1218 ret = irq_setup_forced_threading(new); 1219 if (ret) 1220 goto out_mput; 1221 } 1222 } 1223 1224 /* 1225 * Create a handler thread when a thread function is supplied 1226 * and the interrupt does not nest into another interrupt 1227 * thread. 1228 */ 1229 if (new->thread_fn && !nested) { 1230 ret = setup_irq_thread(new, irq, false); 1231 if (ret) 1232 goto out_mput; 1233 if (new->secondary) { 1234 ret = setup_irq_thread(new->secondary, irq, true); 1235 if (ret) 1236 goto out_thread; 1237 } 1238 } 1239 1240 /* 1241 * Drivers are often written to work w/o knowledge about the 1242 * underlying irq chip implementation, so a request for a 1243 * threaded irq without a primary hard irq context handler 1244 * requires the ONESHOT flag to be set. Some irq chips like 1245 * MSI based interrupts are per se one shot safe. Check the 1246 * chip flags, so we can avoid the unmask dance at the end of 1247 * the threaded handler for those. 1248 */ 1249 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1250 new->flags &= ~IRQF_ONESHOT; 1251 1252 /* 1253 * Protects against a concurrent __free_irq() call which might wait 1254 * for synchronize_irq() to complete without holding the optional 1255 * chip bus lock and desc->lock. 1256 */ 1257 mutex_lock(&desc->request_mutex); 1258 1259 /* 1260 * Acquire bus lock as the irq_request_resources() callback below 1261 * might rely on the serialization or the magic power management 1262 * functions which are abusing the irq_bus_lock() callback, 1263 */ 1264 chip_bus_lock(desc); 1265 1266 /* First installed action requests resources. */ 1267 if (!desc->action) { 1268 ret = irq_request_resources(desc); 1269 if (ret) { 1270 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1271 new->name, irq, desc->irq_data.chip->name); 1272 goto out_bus_unlock; 1273 } 1274 } 1275 1276 /* 1277 * The following block of code has to be executed atomically 1278 * protected against a concurrent interrupt and any of the other 1279 * management calls which are not serialized via 1280 * desc->request_mutex or the optional bus lock. 1281 */ 1282 raw_spin_lock_irqsave(&desc->lock, flags); 1283 old_ptr = &desc->action; 1284 old = *old_ptr; 1285 if (old) { 1286 /* 1287 * Can't share interrupts unless both agree to and are 1288 * the same type (level, edge, polarity). So both flag 1289 * fields must have IRQF_SHARED set and the bits which 1290 * set the trigger type must match. Also all must 1291 * agree on ONESHOT. 1292 */ 1293 unsigned int oldtype; 1294 1295 /* 1296 * If nobody did set the configuration before, inherit 1297 * the one provided by the requester. 1298 */ 1299 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1300 oldtype = irqd_get_trigger_type(&desc->irq_data); 1301 } else { 1302 oldtype = new->flags & IRQF_TRIGGER_MASK; 1303 irqd_set_trigger_type(&desc->irq_data, oldtype); 1304 } 1305 1306 if (!((old->flags & new->flags) & IRQF_SHARED) || 1307 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1308 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1309 goto mismatch; 1310 1311 /* All handlers must agree on per-cpuness */ 1312 if ((old->flags & IRQF_PERCPU) != 1313 (new->flags & IRQF_PERCPU)) 1314 goto mismatch; 1315 1316 /* add new interrupt at end of irq queue */ 1317 do { 1318 /* 1319 * Or all existing action->thread_mask bits, 1320 * so we can find the next zero bit for this 1321 * new action. 1322 */ 1323 thread_mask |= old->thread_mask; 1324 old_ptr = &old->next; 1325 old = *old_ptr; 1326 } while (old); 1327 shared = 1; 1328 } 1329 1330 /* 1331 * Setup the thread mask for this irqaction for ONESHOT. For 1332 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1333 * conditional in irq_wake_thread(). 1334 */ 1335 if (new->flags & IRQF_ONESHOT) { 1336 /* 1337 * Unlikely to have 32 resp 64 irqs sharing one line, 1338 * but who knows. 1339 */ 1340 if (thread_mask == ~0UL) { 1341 ret = -EBUSY; 1342 goto out_unlock; 1343 } 1344 /* 1345 * The thread_mask for the action is or'ed to 1346 * desc->thread_active to indicate that the 1347 * IRQF_ONESHOT thread handler has been woken, but not 1348 * yet finished. The bit is cleared when a thread 1349 * completes. When all threads of a shared interrupt 1350 * line have completed desc->threads_active becomes 1351 * zero and the interrupt line is unmasked. See 1352 * handle.c:irq_wake_thread() for further information. 1353 * 1354 * If no thread is woken by primary (hard irq context) 1355 * interrupt handlers, then desc->threads_active is 1356 * also checked for zero to unmask the irq line in the 1357 * affected hard irq flow handlers 1358 * (handle_[fasteoi|level]_irq). 1359 * 1360 * The new action gets the first zero bit of 1361 * thread_mask assigned. See the loop above which or's 1362 * all existing action->thread_mask bits. 1363 */ 1364 new->thread_mask = 1UL << ffz(thread_mask); 1365 1366 } else if (new->handler == irq_default_primary_handler && 1367 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1368 /* 1369 * The interrupt was requested with handler = NULL, so 1370 * we use the default primary handler for it. But it 1371 * does not have the oneshot flag set. In combination 1372 * with level interrupts this is deadly, because the 1373 * default primary handler just wakes the thread, then 1374 * the irq lines is reenabled, but the device still 1375 * has the level irq asserted. Rinse and repeat.... 1376 * 1377 * While this works for edge type interrupts, we play 1378 * it safe and reject unconditionally because we can't 1379 * say for sure which type this interrupt really 1380 * has. The type flags are unreliable as the 1381 * underlying chip implementation can override them. 1382 */ 1383 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1384 irq); 1385 ret = -EINVAL; 1386 goto out_unlock; 1387 } 1388 1389 if (!shared) { 1390 init_waitqueue_head(&desc->wait_for_threads); 1391 1392 /* Setup the type (level, edge polarity) if configured: */ 1393 if (new->flags & IRQF_TRIGGER_MASK) { 1394 ret = __irq_set_trigger(desc, 1395 new->flags & IRQF_TRIGGER_MASK); 1396 1397 if (ret) 1398 goto out_unlock; 1399 } 1400 1401 /* 1402 * Activate the interrupt. That activation must happen 1403 * independently of IRQ_NOAUTOEN. request_irq() can fail 1404 * and the callers are supposed to handle 1405 * that. enable_irq() of an interrupt requested with 1406 * IRQ_NOAUTOEN is not supposed to fail. The activation 1407 * keeps it in shutdown mode, it merily associates 1408 * resources if necessary and if that's not possible it 1409 * fails. Interrupts which are in managed shutdown mode 1410 * will simply ignore that activation request. 1411 */ 1412 ret = irq_activate(desc); 1413 if (ret) 1414 goto out_unlock; 1415 1416 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1417 IRQS_ONESHOT | IRQS_WAITING); 1418 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1419 1420 if (new->flags & IRQF_PERCPU) { 1421 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1422 irq_settings_set_per_cpu(desc); 1423 } 1424 1425 if (new->flags & IRQF_ONESHOT) 1426 desc->istate |= IRQS_ONESHOT; 1427 1428 /* Exclude IRQ from balancing if requested */ 1429 if (new->flags & IRQF_NOBALANCING) { 1430 irq_settings_set_no_balancing(desc); 1431 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1432 } 1433 1434 if (irq_settings_can_autoenable(desc)) { 1435 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1436 } else { 1437 /* 1438 * Shared interrupts do not go well with disabling 1439 * auto enable. The sharing interrupt might request 1440 * it while it's still disabled and then wait for 1441 * interrupts forever. 1442 */ 1443 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1444 /* Undo nested disables: */ 1445 desc->depth = 1; 1446 } 1447 1448 } else if (new->flags & IRQF_TRIGGER_MASK) { 1449 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1450 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1451 1452 if (nmsk != omsk) 1453 /* hope the handler works with current trigger mode */ 1454 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1455 irq, omsk, nmsk); 1456 } 1457 1458 *old_ptr = new; 1459 1460 irq_pm_install_action(desc, new); 1461 1462 /* Reset broken irq detection when installing new handler */ 1463 desc->irq_count = 0; 1464 desc->irqs_unhandled = 0; 1465 1466 /* 1467 * Check whether we disabled the irq via the spurious handler 1468 * before. Reenable it and give it another chance. 1469 */ 1470 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1471 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1472 __enable_irq(desc); 1473 } 1474 1475 raw_spin_unlock_irqrestore(&desc->lock, flags); 1476 chip_bus_sync_unlock(desc); 1477 mutex_unlock(&desc->request_mutex); 1478 1479 irq_setup_timings(desc, new); 1480 1481 /* 1482 * Strictly no need to wake it up, but hung_task complains 1483 * when no hard interrupt wakes the thread up. 1484 */ 1485 if (new->thread) 1486 wake_up_process(new->thread); 1487 if (new->secondary) 1488 wake_up_process(new->secondary->thread); 1489 1490 register_irq_proc(irq, desc); 1491 new->dir = NULL; 1492 register_handler_proc(irq, new); 1493 return 0; 1494 1495 mismatch: 1496 if (!(new->flags & IRQF_PROBE_SHARED)) { 1497 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1498 irq, new->flags, new->name, old->flags, old->name); 1499 #ifdef CONFIG_DEBUG_SHIRQ 1500 dump_stack(); 1501 #endif 1502 } 1503 ret = -EBUSY; 1504 1505 out_unlock: 1506 raw_spin_unlock_irqrestore(&desc->lock, flags); 1507 1508 if (!desc->action) 1509 irq_release_resources(desc); 1510 out_bus_unlock: 1511 chip_bus_sync_unlock(desc); 1512 mutex_unlock(&desc->request_mutex); 1513 1514 out_thread: 1515 if (new->thread) { 1516 struct task_struct *t = new->thread; 1517 1518 new->thread = NULL; 1519 kthread_stop(t); 1520 put_task_struct(t); 1521 } 1522 if (new->secondary && new->secondary->thread) { 1523 struct task_struct *t = new->secondary->thread; 1524 1525 new->secondary->thread = NULL; 1526 kthread_stop(t); 1527 put_task_struct(t); 1528 } 1529 out_mput: 1530 module_put(desc->owner); 1531 return ret; 1532 } 1533 1534 /** 1535 * setup_irq - setup an interrupt 1536 * @irq: Interrupt line to setup 1537 * @act: irqaction for the interrupt 1538 * 1539 * Used to statically setup interrupts in the early boot process. 1540 */ 1541 int setup_irq(unsigned int irq, struct irqaction *act) 1542 { 1543 int retval; 1544 struct irq_desc *desc = irq_to_desc(irq); 1545 1546 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1547 return -EINVAL; 1548 1549 retval = irq_chip_pm_get(&desc->irq_data); 1550 if (retval < 0) 1551 return retval; 1552 1553 retval = __setup_irq(irq, desc, act); 1554 1555 if (retval) 1556 irq_chip_pm_put(&desc->irq_data); 1557 1558 return retval; 1559 } 1560 EXPORT_SYMBOL_GPL(setup_irq); 1561 1562 /* 1563 * Internal function to unregister an irqaction - used to free 1564 * regular and special interrupts that are part of the architecture. 1565 */ 1566 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1567 { 1568 unsigned irq = desc->irq_data.irq; 1569 struct irqaction *action, **action_ptr; 1570 unsigned long flags; 1571 1572 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1573 1574 if (!desc) 1575 return NULL; 1576 1577 mutex_lock(&desc->request_mutex); 1578 chip_bus_lock(desc); 1579 raw_spin_lock_irqsave(&desc->lock, flags); 1580 1581 /* 1582 * There can be multiple actions per IRQ descriptor, find the right 1583 * one based on the dev_id: 1584 */ 1585 action_ptr = &desc->action; 1586 for (;;) { 1587 action = *action_ptr; 1588 1589 if (!action) { 1590 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1591 raw_spin_unlock_irqrestore(&desc->lock, flags); 1592 chip_bus_sync_unlock(desc); 1593 mutex_unlock(&desc->request_mutex); 1594 return NULL; 1595 } 1596 1597 if (action->dev_id == dev_id) 1598 break; 1599 action_ptr = &action->next; 1600 } 1601 1602 /* Found it - now remove it from the list of entries: */ 1603 *action_ptr = action->next; 1604 1605 irq_pm_remove_action(desc, action); 1606 1607 /* If this was the last handler, shut down the IRQ line: */ 1608 if (!desc->action) { 1609 irq_settings_clr_disable_unlazy(desc); 1610 irq_shutdown(desc); 1611 } 1612 1613 #ifdef CONFIG_SMP 1614 /* make sure affinity_hint is cleaned up */ 1615 if (WARN_ON_ONCE(desc->affinity_hint)) 1616 desc->affinity_hint = NULL; 1617 #endif 1618 1619 raw_spin_unlock_irqrestore(&desc->lock, flags); 1620 /* 1621 * Drop bus_lock here so the changes which were done in the chip 1622 * callbacks above are synced out to the irq chips which hang 1623 * behind a slow bus (I2C, SPI) before calling synchronize_irq(). 1624 * 1625 * Aside of that the bus_lock can also be taken from the threaded 1626 * handler in irq_finalize_oneshot() which results in a deadlock 1627 * because synchronize_irq() would wait forever for the thread to 1628 * complete, which is blocked on the bus lock. 1629 * 1630 * The still held desc->request_mutex() protects against a 1631 * concurrent request_irq() of this irq so the release of resources 1632 * and timing data is properly serialized. 1633 */ 1634 chip_bus_sync_unlock(desc); 1635 1636 unregister_handler_proc(irq, action); 1637 1638 /* Make sure it's not being used on another CPU: */ 1639 synchronize_irq(irq); 1640 1641 #ifdef CONFIG_DEBUG_SHIRQ 1642 /* 1643 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1644 * event to happen even now it's being freed, so let's make sure that 1645 * is so by doing an extra call to the handler .... 1646 * 1647 * ( We do this after actually deregistering it, to make sure that a 1648 * 'real' IRQ doesn't run in * parallel with our fake. ) 1649 */ 1650 if (action->flags & IRQF_SHARED) { 1651 local_irq_save(flags); 1652 action->handler(irq, dev_id); 1653 local_irq_restore(flags); 1654 } 1655 #endif 1656 1657 if (action->thread) { 1658 kthread_stop(action->thread); 1659 put_task_struct(action->thread); 1660 if (action->secondary && action->secondary->thread) { 1661 kthread_stop(action->secondary->thread); 1662 put_task_struct(action->secondary->thread); 1663 } 1664 } 1665 1666 /* Last action releases resources */ 1667 if (!desc->action) { 1668 /* 1669 * Reaquire bus lock as irq_release_resources() might 1670 * require it to deallocate resources over the slow bus. 1671 */ 1672 chip_bus_lock(desc); 1673 irq_release_resources(desc); 1674 chip_bus_sync_unlock(desc); 1675 irq_remove_timings(desc); 1676 } 1677 1678 mutex_unlock(&desc->request_mutex); 1679 1680 irq_chip_pm_put(&desc->irq_data); 1681 module_put(desc->owner); 1682 kfree(action->secondary); 1683 return action; 1684 } 1685 1686 /** 1687 * remove_irq - free an interrupt 1688 * @irq: Interrupt line to free 1689 * @act: irqaction for the interrupt 1690 * 1691 * Used to remove interrupts statically setup by the early boot process. 1692 */ 1693 void remove_irq(unsigned int irq, struct irqaction *act) 1694 { 1695 struct irq_desc *desc = irq_to_desc(irq); 1696 1697 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1698 __free_irq(desc, act->dev_id); 1699 } 1700 EXPORT_SYMBOL_GPL(remove_irq); 1701 1702 /** 1703 * free_irq - free an interrupt allocated with request_irq 1704 * @irq: Interrupt line to free 1705 * @dev_id: Device identity to free 1706 * 1707 * Remove an interrupt handler. The handler is removed and if the 1708 * interrupt line is no longer in use by any driver it is disabled. 1709 * On a shared IRQ the caller must ensure the interrupt is disabled 1710 * on the card it drives before calling this function. The function 1711 * does not return until any executing interrupts for this IRQ 1712 * have completed. 1713 * 1714 * This function must not be called from interrupt context. 1715 * 1716 * Returns the devname argument passed to request_irq. 1717 */ 1718 const void *free_irq(unsigned int irq, void *dev_id) 1719 { 1720 struct irq_desc *desc = irq_to_desc(irq); 1721 struct irqaction *action; 1722 const char *devname; 1723 1724 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1725 return NULL; 1726 1727 #ifdef CONFIG_SMP 1728 if (WARN_ON(desc->affinity_notify)) 1729 desc->affinity_notify = NULL; 1730 #endif 1731 1732 action = __free_irq(desc, dev_id); 1733 1734 if (!action) 1735 return NULL; 1736 1737 devname = action->name; 1738 kfree(action); 1739 return devname; 1740 } 1741 EXPORT_SYMBOL(free_irq); 1742 1743 /** 1744 * request_threaded_irq - allocate an interrupt line 1745 * @irq: Interrupt line to allocate 1746 * @handler: Function to be called when the IRQ occurs. 1747 * Primary handler for threaded interrupts 1748 * If NULL and thread_fn != NULL the default 1749 * primary handler is installed 1750 * @thread_fn: Function called from the irq handler thread 1751 * If NULL, no irq thread is created 1752 * @irqflags: Interrupt type flags 1753 * @devname: An ascii name for the claiming device 1754 * @dev_id: A cookie passed back to the handler function 1755 * 1756 * This call allocates interrupt resources and enables the 1757 * interrupt line and IRQ handling. From the point this 1758 * call is made your handler function may be invoked. Since 1759 * your handler function must clear any interrupt the board 1760 * raises, you must take care both to initialise your hardware 1761 * and to set up the interrupt handler in the right order. 1762 * 1763 * If you want to set up a threaded irq handler for your device 1764 * then you need to supply @handler and @thread_fn. @handler is 1765 * still called in hard interrupt context and has to check 1766 * whether the interrupt originates from the device. If yes it 1767 * needs to disable the interrupt on the device and return 1768 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1769 * @thread_fn. This split handler design is necessary to support 1770 * shared interrupts. 1771 * 1772 * Dev_id must be globally unique. Normally the address of the 1773 * device data structure is used as the cookie. Since the handler 1774 * receives this value it makes sense to use it. 1775 * 1776 * If your interrupt is shared you must pass a non NULL dev_id 1777 * as this is required when freeing the interrupt. 1778 * 1779 * Flags: 1780 * 1781 * IRQF_SHARED Interrupt is shared 1782 * IRQF_TRIGGER_* Specify active edge(s) or level 1783 * 1784 */ 1785 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1786 irq_handler_t thread_fn, unsigned long irqflags, 1787 const char *devname, void *dev_id) 1788 { 1789 struct irqaction *action; 1790 struct irq_desc *desc; 1791 int retval; 1792 1793 if (irq == IRQ_NOTCONNECTED) 1794 return -ENOTCONN; 1795 1796 /* 1797 * Sanity-check: shared interrupts must pass in a real dev-ID, 1798 * otherwise we'll have trouble later trying to figure out 1799 * which interrupt is which (messes up the interrupt freeing 1800 * logic etc). 1801 * 1802 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1803 * it cannot be set along with IRQF_NO_SUSPEND. 1804 */ 1805 if (((irqflags & IRQF_SHARED) && !dev_id) || 1806 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1807 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1808 return -EINVAL; 1809 1810 desc = irq_to_desc(irq); 1811 if (!desc) 1812 return -EINVAL; 1813 1814 if (!irq_settings_can_request(desc) || 1815 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1816 return -EINVAL; 1817 1818 if (!handler) { 1819 if (!thread_fn) 1820 return -EINVAL; 1821 handler = irq_default_primary_handler; 1822 } 1823 1824 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1825 if (!action) 1826 return -ENOMEM; 1827 1828 action->handler = handler; 1829 action->thread_fn = thread_fn; 1830 action->flags = irqflags; 1831 action->name = devname; 1832 action->dev_id = dev_id; 1833 1834 retval = irq_chip_pm_get(&desc->irq_data); 1835 if (retval < 0) { 1836 kfree(action); 1837 return retval; 1838 } 1839 1840 retval = __setup_irq(irq, desc, action); 1841 1842 if (retval) { 1843 irq_chip_pm_put(&desc->irq_data); 1844 kfree(action->secondary); 1845 kfree(action); 1846 } 1847 1848 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1849 if (!retval && (irqflags & IRQF_SHARED)) { 1850 /* 1851 * It's a shared IRQ -- the driver ought to be prepared for it 1852 * to happen immediately, so let's make sure.... 1853 * We disable the irq to make sure that a 'real' IRQ doesn't 1854 * run in parallel with our fake. 1855 */ 1856 unsigned long flags; 1857 1858 disable_irq(irq); 1859 local_irq_save(flags); 1860 1861 handler(irq, dev_id); 1862 1863 local_irq_restore(flags); 1864 enable_irq(irq); 1865 } 1866 #endif 1867 return retval; 1868 } 1869 EXPORT_SYMBOL(request_threaded_irq); 1870 1871 /** 1872 * request_any_context_irq - allocate an interrupt line 1873 * @irq: Interrupt line to allocate 1874 * @handler: Function to be called when the IRQ occurs. 1875 * Threaded handler for threaded interrupts. 1876 * @flags: Interrupt type flags 1877 * @name: An ascii name for the claiming device 1878 * @dev_id: A cookie passed back to the handler function 1879 * 1880 * This call allocates interrupt resources and enables the 1881 * interrupt line and IRQ handling. It selects either a 1882 * hardirq or threaded handling method depending on the 1883 * context. 1884 * 1885 * On failure, it returns a negative value. On success, 1886 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1887 */ 1888 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1889 unsigned long flags, const char *name, void *dev_id) 1890 { 1891 struct irq_desc *desc; 1892 int ret; 1893 1894 if (irq == IRQ_NOTCONNECTED) 1895 return -ENOTCONN; 1896 1897 desc = irq_to_desc(irq); 1898 if (!desc) 1899 return -EINVAL; 1900 1901 if (irq_settings_is_nested_thread(desc)) { 1902 ret = request_threaded_irq(irq, NULL, handler, 1903 flags, name, dev_id); 1904 return !ret ? IRQC_IS_NESTED : ret; 1905 } 1906 1907 ret = request_irq(irq, handler, flags, name, dev_id); 1908 return !ret ? IRQC_IS_HARDIRQ : ret; 1909 } 1910 EXPORT_SYMBOL_GPL(request_any_context_irq); 1911 1912 void enable_percpu_irq(unsigned int irq, unsigned int type) 1913 { 1914 unsigned int cpu = smp_processor_id(); 1915 unsigned long flags; 1916 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1917 1918 if (!desc) 1919 return; 1920 1921 /* 1922 * If the trigger type is not specified by the caller, then 1923 * use the default for this interrupt. 1924 */ 1925 type &= IRQ_TYPE_SENSE_MASK; 1926 if (type == IRQ_TYPE_NONE) 1927 type = irqd_get_trigger_type(&desc->irq_data); 1928 1929 if (type != IRQ_TYPE_NONE) { 1930 int ret; 1931 1932 ret = __irq_set_trigger(desc, type); 1933 1934 if (ret) { 1935 WARN(1, "failed to set type for IRQ%d\n", irq); 1936 goto out; 1937 } 1938 } 1939 1940 irq_percpu_enable(desc, cpu); 1941 out: 1942 irq_put_desc_unlock(desc, flags); 1943 } 1944 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1945 1946 /** 1947 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1948 * @irq: Linux irq number to check for 1949 * 1950 * Must be called from a non migratable context. Returns the enable 1951 * state of a per cpu interrupt on the current cpu. 1952 */ 1953 bool irq_percpu_is_enabled(unsigned int irq) 1954 { 1955 unsigned int cpu = smp_processor_id(); 1956 struct irq_desc *desc; 1957 unsigned long flags; 1958 bool is_enabled; 1959 1960 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1961 if (!desc) 1962 return false; 1963 1964 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1965 irq_put_desc_unlock(desc, flags); 1966 1967 return is_enabled; 1968 } 1969 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1970 1971 void disable_percpu_irq(unsigned int irq) 1972 { 1973 unsigned int cpu = smp_processor_id(); 1974 unsigned long flags; 1975 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1976 1977 if (!desc) 1978 return; 1979 1980 irq_percpu_disable(desc, cpu); 1981 irq_put_desc_unlock(desc, flags); 1982 } 1983 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1984 1985 /* 1986 * Internal function to unregister a percpu irqaction. 1987 */ 1988 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1989 { 1990 struct irq_desc *desc = irq_to_desc(irq); 1991 struct irqaction *action; 1992 unsigned long flags; 1993 1994 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1995 1996 if (!desc) 1997 return NULL; 1998 1999 raw_spin_lock_irqsave(&desc->lock, flags); 2000 2001 action = desc->action; 2002 if (!action || action->percpu_dev_id != dev_id) { 2003 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2004 goto bad; 2005 } 2006 2007 if (!cpumask_empty(desc->percpu_enabled)) { 2008 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2009 irq, cpumask_first(desc->percpu_enabled)); 2010 goto bad; 2011 } 2012 2013 /* Found it - now remove it from the list of entries: */ 2014 desc->action = NULL; 2015 2016 raw_spin_unlock_irqrestore(&desc->lock, flags); 2017 2018 unregister_handler_proc(irq, action); 2019 2020 irq_chip_pm_put(&desc->irq_data); 2021 module_put(desc->owner); 2022 return action; 2023 2024 bad: 2025 raw_spin_unlock_irqrestore(&desc->lock, flags); 2026 return NULL; 2027 } 2028 2029 /** 2030 * remove_percpu_irq - free a per-cpu interrupt 2031 * @irq: Interrupt line to free 2032 * @act: irqaction for the interrupt 2033 * 2034 * Used to remove interrupts statically setup by the early boot process. 2035 */ 2036 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2037 { 2038 struct irq_desc *desc = irq_to_desc(irq); 2039 2040 if (desc && irq_settings_is_per_cpu_devid(desc)) 2041 __free_percpu_irq(irq, act->percpu_dev_id); 2042 } 2043 2044 /** 2045 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2046 * @irq: Interrupt line to free 2047 * @dev_id: Device identity to free 2048 * 2049 * Remove a percpu interrupt handler. The handler is removed, but 2050 * the interrupt line is not disabled. This must be done on each 2051 * CPU before calling this function. The function does not return 2052 * until any executing interrupts for this IRQ have completed. 2053 * 2054 * This function must not be called from interrupt context. 2055 */ 2056 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2057 { 2058 struct irq_desc *desc = irq_to_desc(irq); 2059 2060 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2061 return; 2062 2063 chip_bus_lock(desc); 2064 kfree(__free_percpu_irq(irq, dev_id)); 2065 chip_bus_sync_unlock(desc); 2066 } 2067 EXPORT_SYMBOL_GPL(free_percpu_irq); 2068 2069 /** 2070 * setup_percpu_irq - setup a per-cpu interrupt 2071 * @irq: Interrupt line to setup 2072 * @act: irqaction for the interrupt 2073 * 2074 * Used to statically setup per-cpu interrupts in the early boot process. 2075 */ 2076 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2077 { 2078 struct irq_desc *desc = irq_to_desc(irq); 2079 int retval; 2080 2081 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2082 return -EINVAL; 2083 2084 retval = irq_chip_pm_get(&desc->irq_data); 2085 if (retval < 0) 2086 return retval; 2087 2088 retval = __setup_irq(irq, desc, act); 2089 2090 if (retval) 2091 irq_chip_pm_put(&desc->irq_data); 2092 2093 return retval; 2094 } 2095 2096 /** 2097 * __request_percpu_irq - allocate a percpu interrupt line 2098 * @irq: Interrupt line to allocate 2099 * @handler: Function to be called when the IRQ occurs. 2100 * @flags: Interrupt type flags (IRQF_TIMER only) 2101 * @devname: An ascii name for the claiming device 2102 * @dev_id: A percpu cookie passed back to the handler function 2103 * 2104 * This call allocates interrupt resources and enables the 2105 * interrupt on the local CPU. If the interrupt is supposed to be 2106 * enabled on other CPUs, it has to be done on each CPU using 2107 * enable_percpu_irq(). 2108 * 2109 * Dev_id must be globally unique. It is a per-cpu variable, and 2110 * the handler gets called with the interrupted CPU's instance of 2111 * that variable. 2112 */ 2113 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2114 unsigned long flags, const char *devname, 2115 void __percpu *dev_id) 2116 { 2117 struct irqaction *action; 2118 struct irq_desc *desc; 2119 int retval; 2120 2121 if (!dev_id) 2122 return -EINVAL; 2123 2124 desc = irq_to_desc(irq); 2125 if (!desc || !irq_settings_can_request(desc) || 2126 !irq_settings_is_per_cpu_devid(desc)) 2127 return -EINVAL; 2128 2129 if (flags && flags != IRQF_TIMER) 2130 return -EINVAL; 2131 2132 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2133 if (!action) 2134 return -ENOMEM; 2135 2136 action->handler = handler; 2137 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2138 action->name = devname; 2139 action->percpu_dev_id = dev_id; 2140 2141 retval = irq_chip_pm_get(&desc->irq_data); 2142 if (retval < 0) { 2143 kfree(action); 2144 return retval; 2145 } 2146 2147 retval = __setup_irq(irq, desc, action); 2148 2149 if (retval) { 2150 irq_chip_pm_put(&desc->irq_data); 2151 kfree(action); 2152 } 2153 2154 return retval; 2155 } 2156 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2157 2158 /** 2159 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2160 * @irq: Interrupt line that is forwarded to a VM 2161 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2162 * @state: a pointer to a boolean where the state is to be storeed 2163 * 2164 * This call snapshots the internal irqchip state of an 2165 * interrupt, returning into @state the bit corresponding to 2166 * stage @which 2167 * 2168 * This function should be called with preemption disabled if the 2169 * interrupt controller has per-cpu registers. 2170 */ 2171 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2172 bool *state) 2173 { 2174 struct irq_desc *desc; 2175 struct irq_data *data; 2176 struct irq_chip *chip; 2177 unsigned long flags; 2178 int err = -EINVAL; 2179 2180 desc = irq_get_desc_buslock(irq, &flags, 0); 2181 if (!desc) 2182 return err; 2183 2184 data = irq_desc_get_irq_data(desc); 2185 2186 do { 2187 chip = irq_data_get_irq_chip(data); 2188 if (chip->irq_get_irqchip_state) 2189 break; 2190 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2191 data = data->parent_data; 2192 #else 2193 data = NULL; 2194 #endif 2195 } while (data); 2196 2197 if (data) 2198 err = chip->irq_get_irqchip_state(data, which, state); 2199 2200 irq_put_desc_busunlock(desc, flags); 2201 return err; 2202 } 2203 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2204 2205 /** 2206 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2207 * @irq: Interrupt line that is forwarded to a VM 2208 * @which: State to be restored (one of IRQCHIP_STATE_*) 2209 * @val: Value corresponding to @which 2210 * 2211 * This call sets the internal irqchip state of an interrupt, 2212 * depending on the value of @which. 2213 * 2214 * This function should be called with preemption disabled if the 2215 * interrupt controller has per-cpu registers. 2216 */ 2217 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2218 bool val) 2219 { 2220 struct irq_desc *desc; 2221 struct irq_data *data; 2222 struct irq_chip *chip; 2223 unsigned long flags; 2224 int err = -EINVAL; 2225 2226 desc = irq_get_desc_buslock(irq, &flags, 0); 2227 if (!desc) 2228 return err; 2229 2230 data = irq_desc_get_irq_data(desc); 2231 2232 do { 2233 chip = irq_data_get_irq_chip(data); 2234 if (chip->irq_set_irqchip_state) 2235 break; 2236 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2237 data = data->parent_data; 2238 #else 2239 data = NULL; 2240 #endif 2241 } while (data); 2242 2243 if (data) 2244 err = chip->irq_set_irqchip_state(data, which, val); 2245 2246 irq_put_desc_busunlock(desc, flags); 2247 return err; 2248 } 2249 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2250