xref: /openbmc/linux/kernel/irq/manage.c (revision e918e2bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affinity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 }
208 
209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 					       const struct cpumask *mask)
211 {
212 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 					       const struct cpumask *mask) { }
218 #endif
219 
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 			bool force)
222 {
223 	struct irq_desc *desc = irq_data_to_desc(data);
224 	struct irq_chip *chip = irq_data_get_irq_chip(data);
225 	int ret;
226 
227 	if (!chip || !chip->irq_set_affinity)
228 		return -EINVAL;
229 
230 	/*
231 	 * If this is a managed interrupt and housekeeping is enabled on
232 	 * it check whether the requested affinity mask intersects with
233 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
234 	 * the mask and just keep the housekeeping CPU(s). This prevents
235 	 * the affinity setter from routing the interrupt to an isolated
236 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
237 	 * interrupts on an isolated one.
238 	 *
239 	 * If the masks do not intersect or include online CPU(s) then
240 	 * keep the requested mask. The isolated target CPUs are only
241 	 * receiving interrupts when the I/O operation was submitted
242 	 * directly from them.
243 	 *
244 	 * If all housekeeping CPUs in the affinity mask are offline, the
245 	 * interrupt will be migrated by the CPU hotplug code once a
246 	 * housekeeping CPU which belongs to the affinity mask comes
247 	 * online.
248 	 */
249 	if (irqd_affinity_is_managed(data) &&
250 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
251 		const struct cpumask *hk_mask, *prog_mask;
252 
253 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
254 		static struct cpumask tmp_mask;
255 
256 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
257 
258 		raw_spin_lock(&tmp_mask_lock);
259 		cpumask_and(&tmp_mask, mask, hk_mask);
260 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
261 			prog_mask = mask;
262 		else
263 			prog_mask = &tmp_mask;
264 		ret = chip->irq_set_affinity(data, prog_mask, force);
265 		raw_spin_unlock(&tmp_mask_lock);
266 	} else {
267 		ret = chip->irq_set_affinity(data, mask, force);
268 	}
269 	switch (ret) {
270 	case IRQ_SET_MASK_OK:
271 	case IRQ_SET_MASK_OK_DONE:
272 		cpumask_copy(desc->irq_common_data.affinity, mask);
273 		fallthrough;
274 	case IRQ_SET_MASK_OK_NOCOPY:
275 		irq_validate_effective_affinity(data);
276 		irq_set_thread_affinity(desc);
277 		ret = 0;
278 	}
279 
280 	return ret;
281 }
282 
283 #ifdef CONFIG_GENERIC_PENDING_IRQ
284 static inline int irq_set_affinity_pending(struct irq_data *data,
285 					   const struct cpumask *dest)
286 {
287 	struct irq_desc *desc = irq_data_to_desc(data);
288 
289 	irqd_set_move_pending(data);
290 	irq_copy_pending(desc, dest);
291 	return 0;
292 }
293 #else
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 					   const struct cpumask *dest)
296 {
297 	return -EBUSY;
298 }
299 #endif
300 
301 static int irq_try_set_affinity(struct irq_data *data,
302 				const struct cpumask *dest, bool force)
303 {
304 	int ret = irq_do_set_affinity(data, dest, force);
305 
306 	/*
307 	 * In case that the underlying vector management is busy and the
308 	 * architecture supports the generic pending mechanism then utilize
309 	 * this to avoid returning an error to user space.
310 	 */
311 	if (ret == -EBUSY && !force)
312 		ret = irq_set_affinity_pending(data, dest);
313 	return ret;
314 }
315 
316 static bool irq_set_affinity_deactivated(struct irq_data *data,
317 					 const struct cpumask *mask, bool force)
318 {
319 	struct irq_desc *desc = irq_data_to_desc(data);
320 
321 	/*
322 	 * Handle irq chips which can handle affinity only in activated
323 	 * state correctly
324 	 *
325 	 * If the interrupt is not yet activated, just store the affinity
326 	 * mask and do not call the chip driver at all. On activation the
327 	 * driver has to make sure anyway that the interrupt is in a
328 	 * usable state so startup works.
329 	 */
330 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
331 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
332 		return false;
333 
334 	cpumask_copy(desc->irq_common_data.affinity, mask);
335 	irq_init_effective_affinity(data, mask);
336 	irqd_set(data, IRQD_AFFINITY_SET);
337 	return true;
338 }
339 
340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
341 			    bool force)
342 {
343 	struct irq_chip *chip = irq_data_get_irq_chip(data);
344 	struct irq_desc *desc = irq_data_to_desc(data);
345 	int ret = 0;
346 
347 	if (!chip || !chip->irq_set_affinity)
348 		return -EINVAL;
349 
350 	if (irq_set_affinity_deactivated(data, mask, force))
351 		return 0;
352 
353 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
354 		ret = irq_try_set_affinity(data, mask, force);
355 	} else {
356 		irqd_set_move_pending(data);
357 		irq_copy_pending(desc, mask);
358 	}
359 
360 	if (desc->affinity_notify) {
361 		kref_get(&desc->affinity_notify->kref);
362 		if (!schedule_work(&desc->affinity_notify->work)) {
363 			/* Work was already scheduled, drop our extra ref */
364 			kref_put(&desc->affinity_notify->kref,
365 				 desc->affinity_notify->release);
366 		}
367 	}
368 	irqd_set(data, IRQD_AFFINITY_SET);
369 
370 	return ret;
371 }
372 
373 /**
374  * irq_update_affinity_desc - Update affinity management for an interrupt
375  * @irq:	The interrupt number to update
376  * @affinity:	Pointer to the affinity descriptor
377  *
378  * This interface can be used to configure the affinity management of
379  * interrupts which have been allocated already.
380  *
381  * There are certain limitations on when it may be used - attempts to use it
382  * for when the kernel is configured for generic IRQ reservation mode (in
383  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
384  * managed/non-managed interrupt accounting. In addition, attempts to use it on
385  * an interrupt which is already started or which has already been configured
386  * as managed will also fail, as these mean invalid init state or double init.
387  */
388 int irq_update_affinity_desc(unsigned int irq,
389 			     struct irq_affinity_desc *affinity)
390 {
391 	struct irq_desc *desc;
392 	unsigned long flags;
393 	bool activated;
394 	int ret = 0;
395 
396 	/*
397 	 * Supporting this with the reservation scheme used by x86 needs
398 	 * some more thought. Fail it for now.
399 	 */
400 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
401 		return -EOPNOTSUPP;
402 
403 	desc = irq_get_desc_buslock(irq, &flags, 0);
404 	if (!desc)
405 		return -EINVAL;
406 
407 	/* Requires the interrupt to be shut down */
408 	if (irqd_is_started(&desc->irq_data)) {
409 		ret = -EBUSY;
410 		goto out_unlock;
411 	}
412 
413 	/* Interrupts which are already managed cannot be modified */
414 	if (irqd_affinity_is_managed(&desc->irq_data)) {
415 		ret = -EBUSY;
416 		goto out_unlock;
417 	}
418 
419 	/*
420 	 * Deactivate the interrupt. That's required to undo
421 	 * anything an earlier activation has established.
422 	 */
423 	activated = irqd_is_activated(&desc->irq_data);
424 	if (activated)
425 		irq_domain_deactivate_irq(&desc->irq_data);
426 
427 	if (affinity->is_managed) {
428 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
429 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
430 	}
431 
432 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
433 
434 	/* Restore the activation state */
435 	if (activated)
436 		irq_domain_activate_irq(&desc->irq_data, false);
437 
438 out_unlock:
439 	irq_put_desc_busunlock(desc, flags);
440 	return ret;
441 }
442 
443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
444 			      bool force)
445 {
446 	struct irq_desc *desc = irq_to_desc(irq);
447 	unsigned long flags;
448 	int ret;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	raw_spin_lock_irqsave(&desc->lock, flags);
454 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455 	raw_spin_unlock_irqrestore(&desc->lock, flags);
456 	return ret;
457 }
458 
459 /**
460  * irq_set_affinity - Set the irq affinity of a given irq
461  * @irq:	Interrupt to set affinity
462  * @cpumask:	cpumask
463  *
464  * Fails if cpumask does not contain an online CPU
465  */
466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
467 {
468 	return __irq_set_affinity(irq, cpumask, false);
469 }
470 EXPORT_SYMBOL_GPL(irq_set_affinity);
471 
472 /**
473  * irq_force_affinity - Force the irq affinity of a given irq
474  * @irq:	Interrupt to set affinity
475  * @cpumask:	cpumask
476  *
477  * Same as irq_set_affinity, but without checking the mask against
478  * online cpus.
479  *
480  * Solely for low level cpu hotplug code, where we need to make per
481  * cpu interrupts affine before the cpu becomes online.
482  */
483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
484 {
485 	return __irq_set_affinity(irq, cpumask, true);
486 }
487 EXPORT_SYMBOL_GPL(irq_force_affinity);
488 
489 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
490 			      bool setaffinity)
491 {
492 	unsigned long flags;
493 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
494 
495 	if (!desc)
496 		return -EINVAL;
497 	desc->affinity_hint = m;
498 	irq_put_desc_unlock(desc, flags);
499 	if (m && setaffinity)
500 		__irq_set_affinity(irq, m, false);
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
504 
505 static void irq_affinity_notify(struct work_struct *work)
506 {
507 	struct irq_affinity_notify *notify =
508 		container_of(work, struct irq_affinity_notify, work);
509 	struct irq_desc *desc = irq_to_desc(notify->irq);
510 	cpumask_var_t cpumask;
511 	unsigned long flags;
512 
513 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
514 		goto out;
515 
516 	raw_spin_lock_irqsave(&desc->lock, flags);
517 	if (irq_move_pending(&desc->irq_data))
518 		irq_get_pending(cpumask, desc);
519 	else
520 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
521 	raw_spin_unlock_irqrestore(&desc->lock, flags);
522 
523 	notify->notify(notify, cpumask);
524 
525 	free_cpumask_var(cpumask);
526 out:
527 	kref_put(&notify->kref, notify->release);
528 }
529 
530 /**
531  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
532  *	@irq:		Interrupt for which to enable/disable notification
533  *	@notify:	Context for notification, or %NULL to disable
534  *			notification.  Function pointers must be initialised;
535  *			the other fields will be initialised by this function.
536  *
537  *	Must be called in process context.  Notification may only be enabled
538  *	after the IRQ is allocated and must be disabled before the IRQ is
539  *	freed using free_irq().
540  */
541 int
542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
543 {
544 	struct irq_desc *desc = irq_to_desc(irq);
545 	struct irq_affinity_notify *old_notify;
546 	unsigned long flags;
547 
548 	/* The release function is promised process context */
549 	might_sleep();
550 
551 	if (!desc || desc->istate & IRQS_NMI)
552 		return -EINVAL;
553 
554 	/* Complete initialisation of *notify */
555 	if (notify) {
556 		notify->irq = irq;
557 		kref_init(&notify->kref);
558 		INIT_WORK(&notify->work, irq_affinity_notify);
559 	}
560 
561 	raw_spin_lock_irqsave(&desc->lock, flags);
562 	old_notify = desc->affinity_notify;
563 	desc->affinity_notify = notify;
564 	raw_spin_unlock_irqrestore(&desc->lock, flags);
565 
566 	if (old_notify) {
567 		if (cancel_work_sync(&old_notify->work)) {
568 			/* Pending work had a ref, put that one too */
569 			kref_put(&old_notify->kref, old_notify->release);
570 		}
571 		kref_put(&old_notify->kref, old_notify->release);
572 	}
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
577 
578 #ifndef CONFIG_AUTO_IRQ_AFFINITY
579 /*
580  * Generic version of the affinity autoselector.
581  */
582 int irq_setup_affinity(struct irq_desc *desc)
583 {
584 	struct cpumask *set = irq_default_affinity;
585 	int ret, node = irq_desc_get_node(desc);
586 	static DEFINE_RAW_SPINLOCK(mask_lock);
587 	static struct cpumask mask;
588 
589 	/* Excludes PER_CPU and NO_BALANCE interrupts */
590 	if (!__irq_can_set_affinity(desc))
591 		return 0;
592 
593 	raw_spin_lock(&mask_lock);
594 	/*
595 	 * Preserve the managed affinity setting and a userspace affinity
596 	 * setup, but make sure that one of the targets is online.
597 	 */
598 	if (irqd_affinity_is_managed(&desc->irq_data) ||
599 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
600 		if (cpumask_intersects(desc->irq_common_data.affinity,
601 				       cpu_online_mask))
602 			set = desc->irq_common_data.affinity;
603 		else
604 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
605 	}
606 
607 	cpumask_and(&mask, cpu_online_mask, set);
608 	if (cpumask_empty(&mask))
609 		cpumask_copy(&mask, cpu_online_mask);
610 
611 	if (node != NUMA_NO_NODE) {
612 		const struct cpumask *nodemask = cpumask_of_node(node);
613 
614 		/* make sure at least one of the cpus in nodemask is online */
615 		if (cpumask_intersects(&mask, nodemask))
616 			cpumask_and(&mask, &mask, nodemask);
617 	}
618 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
619 	raw_spin_unlock(&mask_lock);
620 	return ret;
621 }
622 #else
623 /* Wrapper for ALPHA specific affinity selector magic */
624 int irq_setup_affinity(struct irq_desc *desc)
625 {
626 	return irq_select_affinity(irq_desc_get_irq(desc));
627 }
628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
629 #endif /* CONFIG_SMP */
630 
631 
632 /**
633  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
634  *	@irq: interrupt number to set affinity
635  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
636  *	            specific data for percpu_devid interrupts
637  *
638  *	This function uses the vCPU specific data to set the vCPU
639  *	affinity for an irq. The vCPU specific data is passed from
640  *	outside, such as KVM. One example code path is as below:
641  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
642  */
643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
644 {
645 	unsigned long flags;
646 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 	struct irq_data *data;
648 	struct irq_chip *chip;
649 	int ret = -ENOSYS;
650 
651 	if (!desc)
652 		return -EINVAL;
653 
654 	data = irq_desc_get_irq_data(desc);
655 	do {
656 		chip = irq_data_get_irq_chip(data);
657 		if (chip && chip->irq_set_vcpu_affinity)
658 			break;
659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
660 		data = data->parent_data;
661 #else
662 		data = NULL;
663 #endif
664 	} while (data);
665 
666 	if (data)
667 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
668 	irq_put_desc_unlock(desc, flags);
669 
670 	return ret;
671 }
672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
673 
674 void __disable_irq(struct irq_desc *desc)
675 {
676 	if (!desc->depth++)
677 		irq_disable(desc);
678 }
679 
680 static int __disable_irq_nosync(unsigned int irq)
681 {
682 	unsigned long flags;
683 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
684 
685 	if (!desc)
686 		return -EINVAL;
687 	__disable_irq(desc);
688 	irq_put_desc_busunlock(desc, flags);
689 	return 0;
690 }
691 
692 /**
693  *	disable_irq_nosync - disable an irq without waiting
694  *	@irq: Interrupt to disable
695  *
696  *	Disable the selected interrupt line.  Disables and Enables are
697  *	nested.
698  *	Unlike disable_irq(), this function does not ensure existing
699  *	instances of the IRQ handler have completed before returning.
700  *
701  *	This function may be called from IRQ context.
702  */
703 void disable_irq_nosync(unsigned int irq)
704 {
705 	__disable_irq_nosync(irq);
706 }
707 EXPORT_SYMBOL(disable_irq_nosync);
708 
709 /**
710  *	disable_irq - disable an irq and wait for completion
711  *	@irq: Interrupt to disable
712  *
713  *	Disable the selected interrupt line.  Enables and Disables are
714  *	nested.
715  *	This function waits for any pending IRQ handlers for this interrupt
716  *	to complete before returning. If you use this function while
717  *	holding a resource the IRQ handler may need you will deadlock.
718  *
719  *	This function may be called - with care - from IRQ context.
720  */
721 void disable_irq(unsigned int irq)
722 {
723 	if (!__disable_irq_nosync(irq))
724 		synchronize_irq(irq);
725 }
726 EXPORT_SYMBOL(disable_irq);
727 
728 /**
729  *	disable_hardirq - disables an irq and waits for hardirq completion
730  *	@irq: Interrupt to disable
731  *
732  *	Disable the selected interrupt line.  Enables and Disables are
733  *	nested.
734  *	This function waits for any pending hard IRQ handlers for this
735  *	interrupt to complete before returning. If you use this function while
736  *	holding a resource the hard IRQ handler may need you will deadlock.
737  *
738  *	When used to optimistically disable an interrupt from atomic context
739  *	the return value must be checked.
740  *
741  *	Returns: false if a threaded handler is active.
742  *
743  *	This function may be called - with care - from IRQ context.
744  */
745 bool disable_hardirq(unsigned int irq)
746 {
747 	if (!__disable_irq_nosync(irq))
748 		return synchronize_hardirq(irq);
749 
750 	return false;
751 }
752 EXPORT_SYMBOL_GPL(disable_hardirq);
753 
754 /**
755  *	disable_nmi_nosync - disable an nmi without waiting
756  *	@irq: Interrupt to disable
757  *
758  *	Disable the selected interrupt line. Disables and enables are
759  *	nested.
760  *	The interrupt to disable must have been requested through request_nmi.
761  *	Unlike disable_nmi(), this function does not ensure existing
762  *	instances of the IRQ handler have completed before returning.
763  */
764 void disable_nmi_nosync(unsigned int irq)
765 {
766 	disable_irq_nosync(irq);
767 }
768 
769 void __enable_irq(struct irq_desc *desc)
770 {
771 	switch (desc->depth) {
772 	case 0:
773  err_out:
774 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
775 		     irq_desc_get_irq(desc));
776 		break;
777 	case 1: {
778 		if (desc->istate & IRQS_SUSPENDED)
779 			goto err_out;
780 		/* Prevent probing on this irq: */
781 		irq_settings_set_noprobe(desc);
782 		/*
783 		 * Call irq_startup() not irq_enable() here because the
784 		 * interrupt might be marked NOAUTOEN. So irq_startup()
785 		 * needs to be invoked when it gets enabled the first
786 		 * time. If it was already started up, then irq_startup()
787 		 * will invoke irq_enable() under the hood.
788 		 */
789 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
790 		break;
791 	}
792 	default:
793 		desc->depth--;
794 	}
795 }
796 
797 /**
798  *	enable_irq - enable handling of an irq
799  *	@irq: Interrupt to enable
800  *
801  *	Undoes the effect of one call to disable_irq().  If this
802  *	matches the last disable, processing of interrupts on this
803  *	IRQ line is re-enabled.
804  *
805  *	This function may be called from IRQ context only when
806  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
807  */
808 void enable_irq(unsigned int irq)
809 {
810 	unsigned long flags;
811 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
812 
813 	if (!desc)
814 		return;
815 	if (WARN(!desc->irq_data.chip,
816 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
817 		goto out;
818 
819 	__enable_irq(desc);
820 out:
821 	irq_put_desc_busunlock(desc, flags);
822 }
823 EXPORT_SYMBOL(enable_irq);
824 
825 /**
826  *	enable_nmi - enable handling of an nmi
827  *	@irq: Interrupt to enable
828  *
829  *	The interrupt to enable must have been requested through request_nmi.
830  *	Undoes the effect of one call to disable_nmi(). If this
831  *	matches the last disable, processing of interrupts on this
832  *	IRQ line is re-enabled.
833  */
834 void enable_nmi(unsigned int irq)
835 {
836 	enable_irq(irq);
837 }
838 
839 static int set_irq_wake_real(unsigned int irq, unsigned int on)
840 {
841 	struct irq_desc *desc = irq_to_desc(irq);
842 	int ret = -ENXIO;
843 
844 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
845 		return 0;
846 
847 	if (desc->irq_data.chip->irq_set_wake)
848 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
849 
850 	return ret;
851 }
852 
853 /**
854  *	irq_set_irq_wake - control irq power management wakeup
855  *	@irq:	interrupt to control
856  *	@on:	enable/disable power management wakeup
857  *
858  *	Enable/disable power management wakeup mode, which is
859  *	disabled by default.  Enables and disables must match,
860  *	just as they match for non-wakeup mode support.
861  *
862  *	Wakeup mode lets this IRQ wake the system from sleep
863  *	states like "suspend to RAM".
864  *
865  *	Note: irq enable/disable state is completely orthogonal
866  *	to the enable/disable state of irq wake. An irq can be
867  *	disabled with disable_irq() and still wake the system as
868  *	long as the irq has wake enabled. If this does not hold,
869  *	then the underlying irq chip and the related driver need
870  *	to be investigated.
871  */
872 int irq_set_irq_wake(unsigned int irq, unsigned int on)
873 {
874 	unsigned long flags;
875 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
876 	int ret = 0;
877 
878 	if (!desc)
879 		return -EINVAL;
880 
881 	/* Don't use NMIs as wake up interrupts please */
882 	if (desc->istate & IRQS_NMI) {
883 		ret = -EINVAL;
884 		goto out_unlock;
885 	}
886 
887 	/* wakeup-capable irqs can be shared between drivers that
888 	 * don't need to have the same sleep mode behaviors.
889 	 */
890 	if (on) {
891 		if (desc->wake_depth++ == 0) {
892 			ret = set_irq_wake_real(irq, on);
893 			if (ret)
894 				desc->wake_depth = 0;
895 			else
896 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
897 		}
898 	} else {
899 		if (desc->wake_depth == 0) {
900 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
901 		} else if (--desc->wake_depth == 0) {
902 			ret = set_irq_wake_real(irq, on);
903 			if (ret)
904 				desc->wake_depth = 1;
905 			else
906 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
907 		}
908 	}
909 
910 out_unlock:
911 	irq_put_desc_busunlock(desc, flags);
912 	return ret;
913 }
914 EXPORT_SYMBOL(irq_set_irq_wake);
915 
916 /*
917  * Internal function that tells the architecture code whether a
918  * particular irq has been exclusively allocated or is available
919  * for driver use.
920  */
921 int can_request_irq(unsigned int irq, unsigned long irqflags)
922 {
923 	unsigned long flags;
924 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
925 	int canrequest = 0;
926 
927 	if (!desc)
928 		return 0;
929 
930 	if (irq_settings_can_request(desc)) {
931 		if (!desc->action ||
932 		    irqflags & desc->action->flags & IRQF_SHARED)
933 			canrequest = 1;
934 	}
935 	irq_put_desc_unlock(desc, flags);
936 	return canrequest;
937 }
938 
939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
940 {
941 	struct irq_chip *chip = desc->irq_data.chip;
942 	int ret, unmask = 0;
943 
944 	if (!chip || !chip->irq_set_type) {
945 		/*
946 		 * IRQF_TRIGGER_* but the PIC does not support multiple
947 		 * flow-types?
948 		 */
949 		pr_debug("No set_type function for IRQ %d (%s)\n",
950 			 irq_desc_get_irq(desc),
951 			 chip ? (chip->name ? : "unknown") : "unknown");
952 		return 0;
953 	}
954 
955 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
956 		if (!irqd_irq_masked(&desc->irq_data))
957 			mask_irq(desc);
958 		if (!irqd_irq_disabled(&desc->irq_data))
959 			unmask = 1;
960 	}
961 
962 	/* Mask all flags except trigger mode */
963 	flags &= IRQ_TYPE_SENSE_MASK;
964 	ret = chip->irq_set_type(&desc->irq_data, flags);
965 
966 	switch (ret) {
967 	case IRQ_SET_MASK_OK:
968 	case IRQ_SET_MASK_OK_DONE:
969 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
970 		irqd_set(&desc->irq_data, flags);
971 		fallthrough;
972 
973 	case IRQ_SET_MASK_OK_NOCOPY:
974 		flags = irqd_get_trigger_type(&desc->irq_data);
975 		irq_settings_set_trigger_mask(desc, flags);
976 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
977 		irq_settings_clr_level(desc);
978 		if (flags & IRQ_TYPE_LEVEL_MASK) {
979 			irq_settings_set_level(desc);
980 			irqd_set(&desc->irq_data, IRQD_LEVEL);
981 		}
982 
983 		ret = 0;
984 		break;
985 	default:
986 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
987 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
988 	}
989 	if (unmask)
990 		unmask_irq(desc);
991 	return ret;
992 }
993 
994 #ifdef CONFIG_HARDIRQS_SW_RESEND
995 int irq_set_parent(int irq, int parent_irq)
996 {
997 	unsigned long flags;
998 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
999 
1000 	if (!desc)
1001 		return -EINVAL;
1002 
1003 	desc->parent_irq = parent_irq;
1004 
1005 	irq_put_desc_unlock(desc, flags);
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(irq_set_parent);
1009 #endif
1010 
1011 /*
1012  * Default primary interrupt handler for threaded interrupts. Is
1013  * assigned as primary handler when request_threaded_irq is called
1014  * with handler == NULL. Useful for oneshot interrupts.
1015  */
1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1017 {
1018 	return IRQ_WAKE_THREAD;
1019 }
1020 
1021 /*
1022  * Primary handler for nested threaded interrupts. Should never be
1023  * called.
1024  */
1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1026 {
1027 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1028 	return IRQ_NONE;
1029 }
1030 
1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1032 {
1033 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1034 	return IRQ_NONE;
1035 }
1036 
1037 static int irq_wait_for_interrupt(struct irqaction *action)
1038 {
1039 	for (;;) {
1040 		set_current_state(TASK_INTERRUPTIBLE);
1041 
1042 		if (kthread_should_stop()) {
1043 			/* may need to run one last time */
1044 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1045 					       &action->thread_flags)) {
1046 				__set_current_state(TASK_RUNNING);
1047 				return 0;
1048 			}
1049 			__set_current_state(TASK_RUNNING);
1050 			return -1;
1051 		}
1052 
1053 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1054 				       &action->thread_flags)) {
1055 			__set_current_state(TASK_RUNNING);
1056 			return 0;
1057 		}
1058 		schedule();
1059 	}
1060 }
1061 
1062 /*
1063  * Oneshot interrupts keep the irq line masked until the threaded
1064  * handler finished. unmask if the interrupt has not been disabled and
1065  * is marked MASKED.
1066  */
1067 static void irq_finalize_oneshot(struct irq_desc *desc,
1068 				 struct irqaction *action)
1069 {
1070 	if (!(desc->istate & IRQS_ONESHOT) ||
1071 	    action->handler == irq_forced_secondary_handler)
1072 		return;
1073 again:
1074 	chip_bus_lock(desc);
1075 	raw_spin_lock_irq(&desc->lock);
1076 
1077 	/*
1078 	 * Implausible though it may be we need to protect us against
1079 	 * the following scenario:
1080 	 *
1081 	 * The thread is faster done than the hard interrupt handler
1082 	 * on the other CPU. If we unmask the irq line then the
1083 	 * interrupt can come in again and masks the line, leaves due
1084 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1085 	 *
1086 	 * This also serializes the state of shared oneshot handlers
1087 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1088 	 * irq_wake_thread(). See the comment there which explains the
1089 	 * serialization.
1090 	 */
1091 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1092 		raw_spin_unlock_irq(&desc->lock);
1093 		chip_bus_sync_unlock(desc);
1094 		cpu_relax();
1095 		goto again;
1096 	}
1097 
1098 	/*
1099 	 * Now check again, whether the thread should run. Otherwise
1100 	 * we would clear the threads_oneshot bit of this thread which
1101 	 * was just set.
1102 	 */
1103 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1104 		goto out_unlock;
1105 
1106 	desc->threads_oneshot &= ~action->thread_mask;
1107 
1108 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1109 	    irqd_irq_masked(&desc->irq_data))
1110 		unmask_threaded_irq(desc);
1111 
1112 out_unlock:
1113 	raw_spin_unlock_irq(&desc->lock);
1114 	chip_bus_sync_unlock(desc);
1115 }
1116 
1117 #ifdef CONFIG_SMP
1118 /*
1119  * Check whether we need to change the affinity of the interrupt thread.
1120  */
1121 static void
1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1123 {
1124 	cpumask_var_t mask;
1125 	bool valid = true;
1126 
1127 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1128 		return;
1129 
1130 	/*
1131 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1132 	 * try again next time
1133 	 */
1134 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1135 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1136 		return;
1137 	}
1138 
1139 	raw_spin_lock_irq(&desc->lock);
1140 	/*
1141 	 * This code is triggered unconditionally. Check the affinity
1142 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1143 	 */
1144 	if (cpumask_available(desc->irq_common_data.affinity)) {
1145 		const struct cpumask *m;
1146 
1147 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1148 		cpumask_copy(mask, m);
1149 	} else {
1150 		valid = false;
1151 	}
1152 	raw_spin_unlock_irq(&desc->lock);
1153 
1154 	if (valid)
1155 		set_cpus_allowed_ptr(current, mask);
1156 	free_cpumask_var(mask);
1157 }
1158 #else
1159 static inline void
1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1161 #endif
1162 
1163 /*
1164  * Interrupts which are not explicitly requested as threaded
1165  * interrupts rely on the implicit bh/preempt disable of the hard irq
1166  * context. So we need to disable bh here to avoid deadlocks and other
1167  * side effects.
1168  */
1169 static irqreturn_t
1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1171 {
1172 	irqreturn_t ret;
1173 
1174 	local_bh_disable();
1175 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1176 		local_irq_disable();
1177 	ret = action->thread_fn(action->irq, action->dev_id);
1178 	if (ret == IRQ_HANDLED)
1179 		atomic_inc(&desc->threads_handled);
1180 
1181 	irq_finalize_oneshot(desc, action);
1182 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183 		local_irq_enable();
1184 	local_bh_enable();
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Interrupts explicitly requested as threaded interrupts want to be
1190  * preemptible - many of them need to sleep and wait for slow busses to
1191  * complete.
1192  */
1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1194 		struct irqaction *action)
1195 {
1196 	irqreturn_t ret;
1197 
1198 	ret = action->thread_fn(action->irq, action->dev_id);
1199 	if (ret == IRQ_HANDLED)
1200 		atomic_inc(&desc->threads_handled);
1201 
1202 	irq_finalize_oneshot(desc, action);
1203 	return ret;
1204 }
1205 
1206 static void wake_threads_waitq(struct irq_desc *desc)
1207 {
1208 	if (atomic_dec_and_test(&desc->threads_active))
1209 		wake_up(&desc->wait_for_threads);
1210 }
1211 
1212 static void irq_thread_dtor(struct callback_head *unused)
1213 {
1214 	struct task_struct *tsk = current;
1215 	struct irq_desc *desc;
1216 	struct irqaction *action;
1217 
1218 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1219 		return;
1220 
1221 	action = kthread_data(tsk);
1222 
1223 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1224 	       tsk->comm, tsk->pid, action->irq);
1225 
1226 
1227 	desc = irq_to_desc(action->irq);
1228 	/*
1229 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1230 	 * desc->threads_active and wake possible waiters.
1231 	 */
1232 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1233 		wake_threads_waitq(desc);
1234 
1235 	/* Prevent a stale desc->threads_oneshot */
1236 	irq_finalize_oneshot(desc, action);
1237 }
1238 
1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1240 {
1241 	struct irqaction *secondary = action->secondary;
1242 
1243 	if (WARN_ON_ONCE(!secondary))
1244 		return;
1245 
1246 	raw_spin_lock_irq(&desc->lock);
1247 	__irq_wake_thread(desc, secondary);
1248 	raw_spin_unlock_irq(&desc->lock);
1249 }
1250 
1251 /*
1252  * Interrupt handler thread
1253  */
1254 static int irq_thread(void *data)
1255 {
1256 	struct callback_head on_exit_work;
1257 	struct irqaction *action = data;
1258 	struct irq_desc *desc = irq_to_desc(action->irq);
1259 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1260 			struct irqaction *action);
1261 
1262 	sched_set_fifo(current);
1263 
1264 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1265 					   &action->thread_flags))
1266 		handler_fn = irq_forced_thread_fn;
1267 	else
1268 		handler_fn = irq_thread_fn;
1269 
1270 	init_task_work(&on_exit_work, irq_thread_dtor);
1271 	task_work_add(current, &on_exit_work, TWA_NONE);
1272 
1273 	irq_thread_check_affinity(desc, action);
1274 
1275 	while (!irq_wait_for_interrupt(action)) {
1276 		irqreturn_t action_ret;
1277 
1278 		irq_thread_check_affinity(desc, action);
1279 
1280 		action_ret = handler_fn(desc, action);
1281 		if (action_ret == IRQ_WAKE_THREAD)
1282 			irq_wake_secondary(desc, action);
1283 
1284 		wake_threads_waitq(desc);
1285 	}
1286 
1287 	/*
1288 	 * This is the regular exit path. __free_irq() is stopping the
1289 	 * thread via kthread_stop() after calling
1290 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1291 	 * oneshot mask bit can be set.
1292 	 */
1293 	task_work_cancel(current, irq_thread_dtor);
1294 	return 0;
1295 }
1296 
1297 /**
1298  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1299  *	@irq:		Interrupt line
1300  *	@dev_id:	Device identity for which the thread should be woken
1301  *
1302  */
1303 void irq_wake_thread(unsigned int irq, void *dev_id)
1304 {
1305 	struct irq_desc *desc = irq_to_desc(irq);
1306 	struct irqaction *action;
1307 	unsigned long flags;
1308 
1309 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1310 		return;
1311 
1312 	raw_spin_lock_irqsave(&desc->lock, flags);
1313 	for_each_action_of_desc(desc, action) {
1314 		if (action->dev_id == dev_id) {
1315 			if (action->thread)
1316 				__irq_wake_thread(desc, action);
1317 			break;
1318 		}
1319 	}
1320 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1321 }
1322 EXPORT_SYMBOL_GPL(irq_wake_thread);
1323 
1324 static int irq_setup_forced_threading(struct irqaction *new)
1325 {
1326 	if (!force_irqthreads())
1327 		return 0;
1328 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1329 		return 0;
1330 
1331 	/*
1332 	 * No further action required for interrupts which are requested as
1333 	 * threaded interrupts already
1334 	 */
1335 	if (new->handler == irq_default_primary_handler)
1336 		return 0;
1337 
1338 	new->flags |= IRQF_ONESHOT;
1339 
1340 	/*
1341 	 * Handle the case where we have a real primary handler and a
1342 	 * thread handler. We force thread them as well by creating a
1343 	 * secondary action.
1344 	 */
1345 	if (new->handler && new->thread_fn) {
1346 		/* Allocate the secondary action */
1347 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1348 		if (!new->secondary)
1349 			return -ENOMEM;
1350 		new->secondary->handler = irq_forced_secondary_handler;
1351 		new->secondary->thread_fn = new->thread_fn;
1352 		new->secondary->dev_id = new->dev_id;
1353 		new->secondary->irq = new->irq;
1354 		new->secondary->name = new->name;
1355 	}
1356 	/* Deal with the primary handler */
1357 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1358 	new->thread_fn = new->handler;
1359 	new->handler = irq_default_primary_handler;
1360 	return 0;
1361 }
1362 
1363 static int irq_request_resources(struct irq_desc *desc)
1364 {
1365 	struct irq_data *d = &desc->irq_data;
1366 	struct irq_chip *c = d->chip;
1367 
1368 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1369 }
1370 
1371 static void irq_release_resources(struct irq_desc *desc)
1372 {
1373 	struct irq_data *d = &desc->irq_data;
1374 	struct irq_chip *c = d->chip;
1375 
1376 	if (c->irq_release_resources)
1377 		c->irq_release_resources(d);
1378 }
1379 
1380 static bool irq_supports_nmi(struct irq_desc *desc)
1381 {
1382 	struct irq_data *d = irq_desc_get_irq_data(desc);
1383 
1384 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1385 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1386 	if (d->parent_data)
1387 		return false;
1388 #endif
1389 	/* Don't support NMIs for chips behind a slow bus */
1390 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1391 		return false;
1392 
1393 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1394 }
1395 
1396 static int irq_nmi_setup(struct irq_desc *desc)
1397 {
1398 	struct irq_data *d = irq_desc_get_irq_data(desc);
1399 	struct irq_chip *c = d->chip;
1400 
1401 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1402 }
1403 
1404 static void irq_nmi_teardown(struct irq_desc *desc)
1405 {
1406 	struct irq_data *d = irq_desc_get_irq_data(desc);
1407 	struct irq_chip *c = d->chip;
1408 
1409 	if (c->irq_nmi_teardown)
1410 		c->irq_nmi_teardown(d);
1411 }
1412 
1413 static int
1414 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1415 {
1416 	struct task_struct *t;
1417 
1418 	if (!secondary) {
1419 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1420 				   new->name);
1421 	} else {
1422 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1423 				   new->name);
1424 	}
1425 
1426 	if (IS_ERR(t))
1427 		return PTR_ERR(t);
1428 
1429 	/*
1430 	 * We keep the reference to the task struct even if
1431 	 * the thread dies to avoid that the interrupt code
1432 	 * references an already freed task_struct.
1433 	 */
1434 	new->thread = get_task_struct(t);
1435 	/*
1436 	 * Tell the thread to set its affinity. This is
1437 	 * important for shared interrupt handlers as we do
1438 	 * not invoke setup_affinity() for the secondary
1439 	 * handlers as everything is already set up. Even for
1440 	 * interrupts marked with IRQF_NO_BALANCE this is
1441 	 * correct as we want the thread to move to the cpu(s)
1442 	 * on which the requesting code placed the interrupt.
1443 	 */
1444 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Internal function to register an irqaction - typically used to
1450  * allocate special interrupts that are part of the architecture.
1451  *
1452  * Locking rules:
1453  *
1454  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1455  *   chip_bus_lock	Provides serialization for slow bus operations
1456  *     desc->lock	Provides serialization against hard interrupts
1457  *
1458  * chip_bus_lock and desc->lock are sufficient for all other management and
1459  * interrupt related functions. desc->request_mutex solely serializes
1460  * request/free_irq().
1461  */
1462 static int
1463 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1464 {
1465 	struct irqaction *old, **old_ptr;
1466 	unsigned long flags, thread_mask = 0;
1467 	int ret, nested, shared = 0;
1468 
1469 	if (!desc)
1470 		return -EINVAL;
1471 
1472 	if (desc->irq_data.chip == &no_irq_chip)
1473 		return -ENOSYS;
1474 	if (!try_module_get(desc->owner))
1475 		return -ENODEV;
1476 
1477 	new->irq = irq;
1478 
1479 	/*
1480 	 * If the trigger type is not specified by the caller,
1481 	 * then use the default for this interrupt.
1482 	 */
1483 	if (!(new->flags & IRQF_TRIGGER_MASK))
1484 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1485 
1486 	/*
1487 	 * Check whether the interrupt nests into another interrupt
1488 	 * thread.
1489 	 */
1490 	nested = irq_settings_is_nested_thread(desc);
1491 	if (nested) {
1492 		if (!new->thread_fn) {
1493 			ret = -EINVAL;
1494 			goto out_mput;
1495 		}
1496 		/*
1497 		 * Replace the primary handler which was provided from
1498 		 * the driver for non nested interrupt handling by the
1499 		 * dummy function which warns when called.
1500 		 */
1501 		new->handler = irq_nested_primary_handler;
1502 	} else {
1503 		if (irq_settings_can_thread(desc)) {
1504 			ret = irq_setup_forced_threading(new);
1505 			if (ret)
1506 				goto out_mput;
1507 		}
1508 	}
1509 
1510 	/*
1511 	 * Create a handler thread when a thread function is supplied
1512 	 * and the interrupt does not nest into another interrupt
1513 	 * thread.
1514 	 */
1515 	if (new->thread_fn && !nested) {
1516 		ret = setup_irq_thread(new, irq, false);
1517 		if (ret)
1518 			goto out_mput;
1519 		if (new->secondary) {
1520 			ret = setup_irq_thread(new->secondary, irq, true);
1521 			if (ret)
1522 				goto out_thread;
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * Drivers are often written to work w/o knowledge about the
1528 	 * underlying irq chip implementation, so a request for a
1529 	 * threaded irq without a primary hard irq context handler
1530 	 * requires the ONESHOT flag to be set. Some irq chips like
1531 	 * MSI based interrupts are per se one shot safe. Check the
1532 	 * chip flags, so we can avoid the unmask dance at the end of
1533 	 * the threaded handler for those.
1534 	 */
1535 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1536 		new->flags &= ~IRQF_ONESHOT;
1537 
1538 	/*
1539 	 * Protects against a concurrent __free_irq() call which might wait
1540 	 * for synchronize_hardirq() to complete without holding the optional
1541 	 * chip bus lock and desc->lock. Also protects against handing out
1542 	 * a recycled oneshot thread_mask bit while it's still in use by
1543 	 * its previous owner.
1544 	 */
1545 	mutex_lock(&desc->request_mutex);
1546 
1547 	/*
1548 	 * Acquire bus lock as the irq_request_resources() callback below
1549 	 * might rely on the serialization or the magic power management
1550 	 * functions which are abusing the irq_bus_lock() callback,
1551 	 */
1552 	chip_bus_lock(desc);
1553 
1554 	/* First installed action requests resources. */
1555 	if (!desc->action) {
1556 		ret = irq_request_resources(desc);
1557 		if (ret) {
1558 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1559 			       new->name, irq, desc->irq_data.chip->name);
1560 			goto out_bus_unlock;
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * The following block of code has to be executed atomically
1566 	 * protected against a concurrent interrupt and any of the other
1567 	 * management calls which are not serialized via
1568 	 * desc->request_mutex or the optional bus lock.
1569 	 */
1570 	raw_spin_lock_irqsave(&desc->lock, flags);
1571 	old_ptr = &desc->action;
1572 	old = *old_ptr;
1573 	if (old) {
1574 		/*
1575 		 * Can't share interrupts unless both agree to and are
1576 		 * the same type (level, edge, polarity). So both flag
1577 		 * fields must have IRQF_SHARED set and the bits which
1578 		 * set the trigger type must match. Also all must
1579 		 * agree on ONESHOT.
1580 		 * Interrupt lines used for NMIs cannot be shared.
1581 		 */
1582 		unsigned int oldtype;
1583 
1584 		if (desc->istate & IRQS_NMI) {
1585 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1586 				new->name, irq, desc->irq_data.chip->name);
1587 			ret = -EINVAL;
1588 			goto out_unlock;
1589 		}
1590 
1591 		/*
1592 		 * If nobody did set the configuration before, inherit
1593 		 * the one provided by the requester.
1594 		 */
1595 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1596 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1597 		} else {
1598 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1599 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1600 		}
1601 
1602 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1603 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1604 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1605 			goto mismatch;
1606 
1607 		/* All handlers must agree on per-cpuness */
1608 		if ((old->flags & IRQF_PERCPU) !=
1609 		    (new->flags & IRQF_PERCPU))
1610 			goto mismatch;
1611 
1612 		/* add new interrupt at end of irq queue */
1613 		do {
1614 			/*
1615 			 * Or all existing action->thread_mask bits,
1616 			 * so we can find the next zero bit for this
1617 			 * new action.
1618 			 */
1619 			thread_mask |= old->thread_mask;
1620 			old_ptr = &old->next;
1621 			old = *old_ptr;
1622 		} while (old);
1623 		shared = 1;
1624 	}
1625 
1626 	/*
1627 	 * Setup the thread mask for this irqaction for ONESHOT. For
1628 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1629 	 * conditional in irq_wake_thread().
1630 	 */
1631 	if (new->flags & IRQF_ONESHOT) {
1632 		/*
1633 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1634 		 * but who knows.
1635 		 */
1636 		if (thread_mask == ~0UL) {
1637 			ret = -EBUSY;
1638 			goto out_unlock;
1639 		}
1640 		/*
1641 		 * The thread_mask for the action is or'ed to
1642 		 * desc->thread_active to indicate that the
1643 		 * IRQF_ONESHOT thread handler has been woken, but not
1644 		 * yet finished. The bit is cleared when a thread
1645 		 * completes. When all threads of a shared interrupt
1646 		 * line have completed desc->threads_active becomes
1647 		 * zero and the interrupt line is unmasked. See
1648 		 * handle.c:irq_wake_thread() for further information.
1649 		 *
1650 		 * If no thread is woken by primary (hard irq context)
1651 		 * interrupt handlers, then desc->threads_active is
1652 		 * also checked for zero to unmask the irq line in the
1653 		 * affected hard irq flow handlers
1654 		 * (handle_[fasteoi|level]_irq).
1655 		 *
1656 		 * The new action gets the first zero bit of
1657 		 * thread_mask assigned. See the loop above which or's
1658 		 * all existing action->thread_mask bits.
1659 		 */
1660 		new->thread_mask = 1UL << ffz(thread_mask);
1661 
1662 	} else if (new->handler == irq_default_primary_handler &&
1663 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1664 		/*
1665 		 * The interrupt was requested with handler = NULL, so
1666 		 * we use the default primary handler for it. But it
1667 		 * does not have the oneshot flag set. In combination
1668 		 * with level interrupts this is deadly, because the
1669 		 * default primary handler just wakes the thread, then
1670 		 * the irq lines is reenabled, but the device still
1671 		 * has the level irq asserted. Rinse and repeat....
1672 		 *
1673 		 * While this works for edge type interrupts, we play
1674 		 * it safe and reject unconditionally because we can't
1675 		 * say for sure which type this interrupt really
1676 		 * has. The type flags are unreliable as the
1677 		 * underlying chip implementation can override them.
1678 		 */
1679 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1680 		       new->name, irq);
1681 		ret = -EINVAL;
1682 		goto out_unlock;
1683 	}
1684 
1685 	if (!shared) {
1686 		init_waitqueue_head(&desc->wait_for_threads);
1687 
1688 		/* Setup the type (level, edge polarity) if configured: */
1689 		if (new->flags & IRQF_TRIGGER_MASK) {
1690 			ret = __irq_set_trigger(desc,
1691 						new->flags & IRQF_TRIGGER_MASK);
1692 
1693 			if (ret)
1694 				goto out_unlock;
1695 		}
1696 
1697 		/*
1698 		 * Activate the interrupt. That activation must happen
1699 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1700 		 * and the callers are supposed to handle
1701 		 * that. enable_irq() of an interrupt requested with
1702 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1703 		 * keeps it in shutdown mode, it merily associates
1704 		 * resources if necessary and if that's not possible it
1705 		 * fails. Interrupts which are in managed shutdown mode
1706 		 * will simply ignore that activation request.
1707 		 */
1708 		ret = irq_activate(desc);
1709 		if (ret)
1710 			goto out_unlock;
1711 
1712 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1713 				  IRQS_ONESHOT | IRQS_WAITING);
1714 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1715 
1716 		if (new->flags & IRQF_PERCPU) {
1717 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1718 			irq_settings_set_per_cpu(desc);
1719 			if (new->flags & IRQF_NO_DEBUG)
1720 				irq_settings_set_no_debug(desc);
1721 		}
1722 
1723 		if (noirqdebug)
1724 			irq_settings_set_no_debug(desc);
1725 
1726 		if (new->flags & IRQF_ONESHOT)
1727 			desc->istate |= IRQS_ONESHOT;
1728 
1729 		/* Exclude IRQ from balancing if requested */
1730 		if (new->flags & IRQF_NOBALANCING) {
1731 			irq_settings_set_no_balancing(desc);
1732 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1733 		}
1734 
1735 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1736 		    irq_settings_can_autoenable(desc)) {
1737 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1738 		} else {
1739 			/*
1740 			 * Shared interrupts do not go well with disabling
1741 			 * auto enable. The sharing interrupt might request
1742 			 * it while it's still disabled and then wait for
1743 			 * interrupts forever.
1744 			 */
1745 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1746 			/* Undo nested disables: */
1747 			desc->depth = 1;
1748 		}
1749 
1750 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1751 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1752 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1753 
1754 		if (nmsk != omsk)
1755 			/* hope the handler works with current  trigger mode */
1756 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1757 				irq, omsk, nmsk);
1758 	}
1759 
1760 	*old_ptr = new;
1761 
1762 	irq_pm_install_action(desc, new);
1763 
1764 	/* Reset broken irq detection when installing new handler */
1765 	desc->irq_count = 0;
1766 	desc->irqs_unhandled = 0;
1767 
1768 	/*
1769 	 * Check whether we disabled the irq via the spurious handler
1770 	 * before. Reenable it and give it another chance.
1771 	 */
1772 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1773 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1774 		__enable_irq(desc);
1775 	}
1776 
1777 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1778 	chip_bus_sync_unlock(desc);
1779 	mutex_unlock(&desc->request_mutex);
1780 
1781 	irq_setup_timings(desc, new);
1782 
1783 	/*
1784 	 * Strictly no need to wake it up, but hung_task complains
1785 	 * when no hard interrupt wakes the thread up.
1786 	 */
1787 	if (new->thread)
1788 		wake_up_process(new->thread);
1789 	if (new->secondary)
1790 		wake_up_process(new->secondary->thread);
1791 
1792 	register_irq_proc(irq, desc);
1793 	new->dir = NULL;
1794 	register_handler_proc(irq, new);
1795 	return 0;
1796 
1797 mismatch:
1798 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1799 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1800 		       irq, new->flags, new->name, old->flags, old->name);
1801 #ifdef CONFIG_DEBUG_SHIRQ
1802 		dump_stack();
1803 #endif
1804 	}
1805 	ret = -EBUSY;
1806 
1807 out_unlock:
1808 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1809 
1810 	if (!desc->action)
1811 		irq_release_resources(desc);
1812 out_bus_unlock:
1813 	chip_bus_sync_unlock(desc);
1814 	mutex_unlock(&desc->request_mutex);
1815 
1816 out_thread:
1817 	if (new->thread) {
1818 		struct task_struct *t = new->thread;
1819 
1820 		new->thread = NULL;
1821 		kthread_stop(t);
1822 		put_task_struct(t);
1823 	}
1824 	if (new->secondary && new->secondary->thread) {
1825 		struct task_struct *t = new->secondary->thread;
1826 
1827 		new->secondary->thread = NULL;
1828 		kthread_stop(t);
1829 		put_task_struct(t);
1830 	}
1831 out_mput:
1832 	module_put(desc->owner);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Internal function to unregister an irqaction - used to free
1838  * regular and special interrupts that are part of the architecture.
1839  */
1840 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1841 {
1842 	unsigned irq = desc->irq_data.irq;
1843 	struct irqaction *action, **action_ptr;
1844 	unsigned long flags;
1845 
1846 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1847 
1848 	mutex_lock(&desc->request_mutex);
1849 	chip_bus_lock(desc);
1850 	raw_spin_lock_irqsave(&desc->lock, flags);
1851 
1852 	/*
1853 	 * There can be multiple actions per IRQ descriptor, find the right
1854 	 * one based on the dev_id:
1855 	 */
1856 	action_ptr = &desc->action;
1857 	for (;;) {
1858 		action = *action_ptr;
1859 
1860 		if (!action) {
1861 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1862 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1863 			chip_bus_sync_unlock(desc);
1864 			mutex_unlock(&desc->request_mutex);
1865 			return NULL;
1866 		}
1867 
1868 		if (action->dev_id == dev_id)
1869 			break;
1870 		action_ptr = &action->next;
1871 	}
1872 
1873 	/* Found it - now remove it from the list of entries: */
1874 	*action_ptr = action->next;
1875 
1876 	irq_pm_remove_action(desc, action);
1877 
1878 	/* If this was the last handler, shut down the IRQ line: */
1879 	if (!desc->action) {
1880 		irq_settings_clr_disable_unlazy(desc);
1881 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1882 		irq_shutdown(desc);
1883 	}
1884 
1885 #ifdef CONFIG_SMP
1886 	/* make sure affinity_hint is cleaned up */
1887 	if (WARN_ON_ONCE(desc->affinity_hint))
1888 		desc->affinity_hint = NULL;
1889 #endif
1890 
1891 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1892 	/*
1893 	 * Drop bus_lock here so the changes which were done in the chip
1894 	 * callbacks above are synced out to the irq chips which hang
1895 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1896 	 *
1897 	 * Aside of that the bus_lock can also be taken from the threaded
1898 	 * handler in irq_finalize_oneshot() which results in a deadlock
1899 	 * because kthread_stop() would wait forever for the thread to
1900 	 * complete, which is blocked on the bus lock.
1901 	 *
1902 	 * The still held desc->request_mutex() protects against a
1903 	 * concurrent request_irq() of this irq so the release of resources
1904 	 * and timing data is properly serialized.
1905 	 */
1906 	chip_bus_sync_unlock(desc);
1907 
1908 	unregister_handler_proc(irq, action);
1909 
1910 	/*
1911 	 * Make sure it's not being used on another CPU and if the chip
1912 	 * supports it also make sure that there is no (not yet serviced)
1913 	 * interrupt in flight at the hardware level.
1914 	 */
1915 	__synchronize_hardirq(desc, true);
1916 
1917 #ifdef CONFIG_DEBUG_SHIRQ
1918 	/*
1919 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1920 	 * event to happen even now it's being freed, so let's make sure that
1921 	 * is so by doing an extra call to the handler ....
1922 	 *
1923 	 * ( We do this after actually deregistering it, to make sure that a
1924 	 *   'real' IRQ doesn't run in parallel with our fake. )
1925 	 */
1926 	if (action->flags & IRQF_SHARED) {
1927 		local_irq_save(flags);
1928 		action->handler(irq, dev_id);
1929 		local_irq_restore(flags);
1930 	}
1931 #endif
1932 
1933 	/*
1934 	 * The action has already been removed above, but the thread writes
1935 	 * its oneshot mask bit when it completes. Though request_mutex is
1936 	 * held across this which prevents __setup_irq() from handing out
1937 	 * the same bit to a newly requested action.
1938 	 */
1939 	if (action->thread) {
1940 		kthread_stop(action->thread);
1941 		put_task_struct(action->thread);
1942 		if (action->secondary && action->secondary->thread) {
1943 			kthread_stop(action->secondary->thread);
1944 			put_task_struct(action->secondary->thread);
1945 		}
1946 	}
1947 
1948 	/* Last action releases resources */
1949 	if (!desc->action) {
1950 		/*
1951 		 * Reacquire bus lock as irq_release_resources() might
1952 		 * require it to deallocate resources over the slow bus.
1953 		 */
1954 		chip_bus_lock(desc);
1955 		/*
1956 		 * There is no interrupt on the fly anymore. Deactivate it
1957 		 * completely.
1958 		 */
1959 		raw_spin_lock_irqsave(&desc->lock, flags);
1960 		irq_domain_deactivate_irq(&desc->irq_data);
1961 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1962 
1963 		irq_release_resources(desc);
1964 		chip_bus_sync_unlock(desc);
1965 		irq_remove_timings(desc);
1966 	}
1967 
1968 	mutex_unlock(&desc->request_mutex);
1969 
1970 	irq_chip_pm_put(&desc->irq_data);
1971 	module_put(desc->owner);
1972 	kfree(action->secondary);
1973 	return action;
1974 }
1975 
1976 /**
1977  *	free_irq - free an interrupt allocated with request_irq
1978  *	@irq: Interrupt line to free
1979  *	@dev_id: Device identity to free
1980  *
1981  *	Remove an interrupt handler. The handler is removed and if the
1982  *	interrupt line is no longer in use by any driver it is disabled.
1983  *	On a shared IRQ the caller must ensure the interrupt is disabled
1984  *	on the card it drives before calling this function. The function
1985  *	does not return until any executing interrupts for this IRQ
1986  *	have completed.
1987  *
1988  *	This function must not be called from interrupt context.
1989  *
1990  *	Returns the devname argument passed to request_irq.
1991  */
1992 const void *free_irq(unsigned int irq, void *dev_id)
1993 {
1994 	struct irq_desc *desc = irq_to_desc(irq);
1995 	struct irqaction *action;
1996 	const char *devname;
1997 
1998 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1999 		return NULL;
2000 
2001 #ifdef CONFIG_SMP
2002 	if (WARN_ON(desc->affinity_notify))
2003 		desc->affinity_notify = NULL;
2004 #endif
2005 
2006 	action = __free_irq(desc, dev_id);
2007 
2008 	if (!action)
2009 		return NULL;
2010 
2011 	devname = action->name;
2012 	kfree(action);
2013 	return devname;
2014 }
2015 EXPORT_SYMBOL(free_irq);
2016 
2017 /* This function must be called with desc->lock held */
2018 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2019 {
2020 	const char *devname = NULL;
2021 
2022 	desc->istate &= ~IRQS_NMI;
2023 
2024 	if (!WARN_ON(desc->action == NULL)) {
2025 		irq_pm_remove_action(desc, desc->action);
2026 		devname = desc->action->name;
2027 		unregister_handler_proc(irq, desc->action);
2028 
2029 		kfree(desc->action);
2030 		desc->action = NULL;
2031 	}
2032 
2033 	irq_settings_clr_disable_unlazy(desc);
2034 	irq_shutdown_and_deactivate(desc);
2035 
2036 	irq_release_resources(desc);
2037 
2038 	irq_chip_pm_put(&desc->irq_data);
2039 	module_put(desc->owner);
2040 
2041 	return devname;
2042 }
2043 
2044 const void *free_nmi(unsigned int irq, void *dev_id)
2045 {
2046 	struct irq_desc *desc = irq_to_desc(irq);
2047 	unsigned long flags;
2048 	const void *devname;
2049 
2050 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2051 		return NULL;
2052 
2053 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2054 		return NULL;
2055 
2056 	/* NMI still enabled */
2057 	if (WARN_ON(desc->depth == 0))
2058 		disable_nmi_nosync(irq);
2059 
2060 	raw_spin_lock_irqsave(&desc->lock, flags);
2061 
2062 	irq_nmi_teardown(desc);
2063 	devname = __cleanup_nmi(irq, desc);
2064 
2065 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2066 
2067 	return devname;
2068 }
2069 
2070 /**
2071  *	request_threaded_irq - allocate an interrupt line
2072  *	@irq: Interrupt line to allocate
2073  *	@handler: Function to be called when the IRQ occurs.
2074  *		  Primary handler for threaded interrupts.
2075  *		  If handler is NULL and thread_fn != NULL
2076  *		  the default primary handler is installed.
2077  *	@thread_fn: Function called from the irq handler thread
2078  *		    If NULL, no irq thread is created
2079  *	@irqflags: Interrupt type flags
2080  *	@devname: An ascii name for the claiming device
2081  *	@dev_id: A cookie passed back to the handler function
2082  *
2083  *	This call allocates interrupt resources and enables the
2084  *	interrupt line and IRQ handling. From the point this
2085  *	call is made your handler function may be invoked. Since
2086  *	your handler function must clear any interrupt the board
2087  *	raises, you must take care both to initialise your hardware
2088  *	and to set up the interrupt handler in the right order.
2089  *
2090  *	If you want to set up a threaded irq handler for your device
2091  *	then you need to supply @handler and @thread_fn. @handler is
2092  *	still called in hard interrupt context and has to check
2093  *	whether the interrupt originates from the device. If yes it
2094  *	needs to disable the interrupt on the device and return
2095  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2096  *	@thread_fn. This split handler design is necessary to support
2097  *	shared interrupts.
2098  *
2099  *	Dev_id must be globally unique. Normally the address of the
2100  *	device data structure is used as the cookie. Since the handler
2101  *	receives this value it makes sense to use it.
2102  *
2103  *	If your interrupt is shared you must pass a non NULL dev_id
2104  *	as this is required when freeing the interrupt.
2105  *
2106  *	Flags:
2107  *
2108  *	IRQF_SHARED		Interrupt is shared
2109  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2110  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2111  */
2112 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2113 			 irq_handler_t thread_fn, unsigned long irqflags,
2114 			 const char *devname, void *dev_id)
2115 {
2116 	struct irqaction *action;
2117 	struct irq_desc *desc;
2118 	int retval;
2119 
2120 	if (irq == IRQ_NOTCONNECTED)
2121 		return -ENOTCONN;
2122 
2123 	/*
2124 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2125 	 * otherwise we'll have trouble later trying to figure out
2126 	 * which interrupt is which (messes up the interrupt freeing
2127 	 * logic etc).
2128 	 *
2129 	 * Also shared interrupts do not go well with disabling auto enable.
2130 	 * The sharing interrupt might request it while it's still disabled
2131 	 * and then wait for interrupts forever.
2132 	 *
2133 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2134 	 * it cannot be set along with IRQF_NO_SUSPEND.
2135 	 */
2136 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2137 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2138 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2139 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2140 		return -EINVAL;
2141 
2142 	desc = irq_to_desc(irq);
2143 	if (!desc)
2144 		return -EINVAL;
2145 
2146 	if (!irq_settings_can_request(desc) ||
2147 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2148 		return -EINVAL;
2149 
2150 	if (!handler) {
2151 		if (!thread_fn)
2152 			return -EINVAL;
2153 		handler = irq_default_primary_handler;
2154 	}
2155 
2156 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157 	if (!action)
2158 		return -ENOMEM;
2159 
2160 	action->handler = handler;
2161 	action->thread_fn = thread_fn;
2162 	action->flags = irqflags;
2163 	action->name = devname;
2164 	action->dev_id = dev_id;
2165 
2166 	retval = irq_chip_pm_get(&desc->irq_data);
2167 	if (retval < 0) {
2168 		kfree(action);
2169 		return retval;
2170 	}
2171 
2172 	retval = __setup_irq(irq, desc, action);
2173 
2174 	if (retval) {
2175 		irq_chip_pm_put(&desc->irq_data);
2176 		kfree(action->secondary);
2177 		kfree(action);
2178 	}
2179 
2180 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2181 	if (!retval && (irqflags & IRQF_SHARED)) {
2182 		/*
2183 		 * It's a shared IRQ -- the driver ought to be prepared for it
2184 		 * to happen immediately, so let's make sure....
2185 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2186 		 * run in parallel with our fake.
2187 		 */
2188 		unsigned long flags;
2189 
2190 		disable_irq(irq);
2191 		local_irq_save(flags);
2192 
2193 		handler(irq, dev_id);
2194 
2195 		local_irq_restore(flags);
2196 		enable_irq(irq);
2197 	}
2198 #endif
2199 	return retval;
2200 }
2201 EXPORT_SYMBOL(request_threaded_irq);
2202 
2203 /**
2204  *	request_any_context_irq - allocate an interrupt line
2205  *	@irq: Interrupt line to allocate
2206  *	@handler: Function to be called when the IRQ occurs.
2207  *		  Threaded handler for threaded interrupts.
2208  *	@flags: Interrupt type flags
2209  *	@name: An ascii name for the claiming device
2210  *	@dev_id: A cookie passed back to the handler function
2211  *
2212  *	This call allocates interrupt resources and enables the
2213  *	interrupt line and IRQ handling. It selects either a
2214  *	hardirq or threaded handling method depending on the
2215  *	context.
2216  *
2217  *	On failure, it returns a negative value. On success,
2218  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2219  */
2220 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2221 			    unsigned long flags, const char *name, void *dev_id)
2222 {
2223 	struct irq_desc *desc;
2224 	int ret;
2225 
2226 	if (irq == IRQ_NOTCONNECTED)
2227 		return -ENOTCONN;
2228 
2229 	desc = irq_to_desc(irq);
2230 	if (!desc)
2231 		return -EINVAL;
2232 
2233 	if (irq_settings_is_nested_thread(desc)) {
2234 		ret = request_threaded_irq(irq, NULL, handler,
2235 					   flags, name, dev_id);
2236 		return !ret ? IRQC_IS_NESTED : ret;
2237 	}
2238 
2239 	ret = request_irq(irq, handler, flags, name, dev_id);
2240 	return !ret ? IRQC_IS_HARDIRQ : ret;
2241 }
2242 EXPORT_SYMBOL_GPL(request_any_context_irq);
2243 
2244 /**
2245  *	request_nmi - allocate an interrupt line for NMI delivery
2246  *	@irq: Interrupt line to allocate
2247  *	@handler: Function to be called when the IRQ occurs.
2248  *		  Threaded handler for threaded interrupts.
2249  *	@irqflags: Interrupt type flags
2250  *	@name: An ascii name for the claiming device
2251  *	@dev_id: A cookie passed back to the handler function
2252  *
2253  *	This call allocates interrupt resources and enables the
2254  *	interrupt line and IRQ handling. It sets up the IRQ line
2255  *	to be handled as an NMI.
2256  *
2257  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2258  *	cannot be threaded.
2259  *
2260  *	Interrupt lines requested for NMI delivering must produce per cpu
2261  *	interrupts and have auto enabling setting disabled.
2262  *
2263  *	Dev_id must be globally unique. Normally the address of the
2264  *	device data structure is used as the cookie. Since the handler
2265  *	receives this value it makes sense to use it.
2266  *
2267  *	If the interrupt line cannot be used to deliver NMIs, function
2268  *	will fail and return a negative value.
2269  */
2270 int request_nmi(unsigned int irq, irq_handler_t handler,
2271 		unsigned long irqflags, const char *name, void *dev_id)
2272 {
2273 	struct irqaction *action;
2274 	struct irq_desc *desc;
2275 	unsigned long flags;
2276 	int retval;
2277 
2278 	if (irq == IRQ_NOTCONNECTED)
2279 		return -ENOTCONN;
2280 
2281 	/* NMI cannot be shared, used for Polling */
2282 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2283 		return -EINVAL;
2284 
2285 	if (!(irqflags & IRQF_PERCPU))
2286 		return -EINVAL;
2287 
2288 	if (!handler)
2289 		return -EINVAL;
2290 
2291 	desc = irq_to_desc(irq);
2292 
2293 	if (!desc || (irq_settings_can_autoenable(desc) &&
2294 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2295 	    !irq_settings_can_request(desc) ||
2296 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2297 	    !irq_supports_nmi(desc))
2298 		return -EINVAL;
2299 
2300 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2301 	if (!action)
2302 		return -ENOMEM;
2303 
2304 	action->handler = handler;
2305 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2306 	action->name = name;
2307 	action->dev_id = dev_id;
2308 
2309 	retval = irq_chip_pm_get(&desc->irq_data);
2310 	if (retval < 0)
2311 		goto err_out;
2312 
2313 	retval = __setup_irq(irq, desc, action);
2314 	if (retval)
2315 		goto err_irq_setup;
2316 
2317 	raw_spin_lock_irqsave(&desc->lock, flags);
2318 
2319 	/* Setup NMI state */
2320 	desc->istate |= IRQS_NMI;
2321 	retval = irq_nmi_setup(desc);
2322 	if (retval) {
2323 		__cleanup_nmi(irq, desc);
2324 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2325 		return -EINVAL;
2326 	}
2327 
2328 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2329 
2330 	return 0;
2331 
2332 err_irq_setup:
2333 	irq_chip_pm_put(&desc->irq_data);
2334 err_out:
2335 	kfree(action);
2336 
2337 	return retval;
2338 }
2339 
2340 void enable_percpu_irq(unsigned int irq, unsigned int type)
2341 {
2342 	unsigned int cpu = smp_processor_id();
2343 	unsigned long flags;
2344 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2345 
2346 	if (!desc)
2347 		return;
2348 
2349 	/*
2350 	 * If the trigger type is not specified by the caller, then
2351 	 * use the default for this interrupt.
2352 	 */
2353 	type &= IRQ_TYPE_SENSE_MASK;
2354 	if (type == IRQ_TYPE_NONE)
2355 		type = irqd_get_trigger_type(&desc->irq_data);
2356 
2357 	if (type != IRQ_TYPE_NONE) {
2358 		int ret;
2359 
2360 		ret = __irq_set_trigger(desc, type);
2361 
2362 		if (ret) {
2363 			WARN(1, "failed to set type for IRQ%d\n", irq);
2364 			goto out;
2365 		}
2366 	}
2367 
2368 	irq_percpu_enable(desc, cpu);
2369 out:
2370 	irq_put_desc_unlock(desc, flags);
2371 }
2372 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2373 
2374 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2375 {
2376 	enable_percpu_irq(irq, type);
2377 }
2378 
2379 /**
2380  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2381  * @irq:	Linux irq number to check for
2382  *
2383  * Must be called from a non migratable context. Returns the enable
2384  * state of a per cpu interrupt on the current cpu.
2385  */
2386 bool irq_percpu_is_enabled(unsigned int irq)
2387 {
2388 	unsigned int cpu = smp_processor_id();
2389 	struct irq_desc *desc;
2390 	unsigned long flags;
2391 	bool is_enabled;
2392 
2393 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2394 	if (!desc)
2395 		return false;
2396 
2397 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2398 	irq_put_desc_unlock(desc, flags);
2399 
2400 	return is_enabled;
2401 }
2402 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2403 
2404 void disable_percpu_irq(unsigned int irq)
2405 {
2406 	unsigned int cpu = smp_processor_id();
2407 	unsigned long flags;
2408 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2409 
2410 	if (!desc)
2411 		return;
2412 
2413 	irq_percpu_disable(desc, cpu);
2414 	irq_put_desc_unlock(desc, flags);
2415 }
2416 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2417 
2418 void disable_percpu_nmi(unsigned int irq)
2419 {
2420 	disable_percpu_irq(irq);
2421 }
2422 
2423 /*
2424  * Internal function to unregister a percpu irqaction.
2425  */
2426 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2427 {
2428 	struct irq_desc *desc = irq_to_desc(irq);
2429 	struct irqaction *action;
2430 	unsigned long flags;
2431 
2432 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2433 
2434 	if (!desc)
2435 		return NULL;
2436 
2437 	raw_spin_lock_irqsave(&desc->lock, flags);
2438 
2439 	action = desc->action;
2440 	if (!action || action->percpu_dev_id != dev_id) {
2441 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2442 		goto bad;
2443 	}
2444 
2445 	if (!cpumask_empty(desc->percpu_enabled)) {
2446 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2447 		     irq, cpumask_first(desc->percpu_enabled));
2448 		goto bad;
2449 	}
2450 
2451 	/* Found it - now remove it from the list of entries: */
2452 	desc->action = NULL;
2453 
2454 	desc->istate &= ~IRQS_NMI;
2455 
2456 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2457 
2458 	unregister_handler_proc(irq, action);
2459 
2460 	irq_chip_pm_put(&desc->irq_data);
2461 	module_put(desc->owner);
2462 	return action;
2463 
2464 bad:
2465 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2466 	return NULL;
2467 }
2468 
2469 /**
2470  *	remove_percpu_irq - free a per-cpu interrupt
2471  *	@irq: Interrupt line to free
2472  *	@act: irqaction for the interrupt
2473  *
2474  * Used to remove interrupts statically setup by the early boot process.
2475  */
2476 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2477 {
2478 	struct irq_desc *desc = irq_to_desc(irq);
2479 
2480 	if (desc && irq_settings_is_per_cpu_devid(desc))
2481 	    __free_percpu_irq(irq, act->percpu_dev_id);
2482 }
2483 
2484 /**
2485  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2486  *	@irq: Interrupt line to free
2487  *	@dev_id: Device identity to free
2488  *
2489  *	Remove a percpu interrupt handler. The handler is removed, but
2490  *	the interrupt line is not disabled. This must be done on each
2491  *	CPU before calling this function. The function does not return
2492  *	until any executing interrupts for this IRQ have completed.
2493  *
2494  *	This function must not be called from interrupt context.
2495  */
2496 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2497 {
2498 	struct irq_desc *desc = irq_to_desc(irq);
2499 
2500 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2501 		return;
2502 
2503 	chip_bus_lock(desc);
2504 	kfree(__free_percpu_irq(irq, dev_id));
2505 	chip_bus_sync_unlock(desc);
2506 }
2507 EXPORT_SYMBOL_GPL(free_percpu_irq);
2508 
2509 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2510 {
2511 	struct irq_desc *desc = irq_to_desc(irq);
2512 
2513 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2514 		return;
2515 
2516 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2517 		return;
2518 
2519 	kfree(__free_percpu_irq(irq, dev_id));
2520 }
2521 
2522 /**
2523  *	setup_percpu_irq - setup a per-cpu interrupt
2524  *	@irq: Interrupt line to setup
2525  *	@act: irqaction for the interrupt
2526  *
2527  * Used to statically setup per-cpu interrupts in the early boot process.
2528  */
2529 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2530 {
2531 	struct irq_desc *desc = irq_to_desc(irq);
2532 	int retval;
2533 
2534 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535 		return -EINVAL;
2536 
2537 	retval = irq_chip_pm_get(&desc->irq_data);
2538 	if (retval < 0)
2539 		return retval;
2540 
2541 	retval = __setup_irq(irq, desc, act);
2542 
2543 	if (retval)
2544 		irq_chip_pm_put(&desc->irq_data);
2545 
2546 	return retval;
2547 }
2548 
2549 /**
2550  *	__request_percpu_irq - allocate a percpu interrupt line
2551  *	@irq: Interrupt line to allocate
2552  *	@handler: Function to be called when the IRQ occurs.
2553  *	@flags: Interrupt type flags (IRQF_TIMER only)
2554  *	@devname: An ascii name for the claiming device
2555  *	@dev_id: A percpu cookie passed back to the handler function
2556  *
2557  *	This call allocates interrupt resources and enables the
2558  *	interrupt on the local CPU. If the interrupt is supposed to be
2559  *	enabled on other CPUs, it has to be done on each CPU using
2560  *	enable_percpu_irq().
2561  *
2562  *	Dev_id must be globally unique. It is a per-cpu variable, and
2563  *	the handler gets called with the interrupted CPU's instance of
2564  *	that variable.
2565  */
2566 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2567 			 unsigned long flags, const char *devname,
2568 			 void __percpu *dev_id)
2569 {
2570 	struct irqaction *action;
2571 	struct irq_desc *desc;
2572 	int retval;
2573 
2574 	if (!dev_id)
2575 		return -EINVAL;
2576 
2577 	desc = irq_to_desc(irq);
2578 	if (!desc || !irq_settings_can_request(desc) ||
2579 	    !irq_settings_is_per_cpu_devid(desc))
2580 		return -EINVAL;
2581 
2582 	if (flags && flags != IRQF_TIMER)
2583 		return -EINVAL;
2584 
2585 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2586 	if (!action)
2587 		return -ENOMEM;
2588 
2589 	action->handler = handler;
2590 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2591 	action->name = devname;
2592 	action->percpu_dev_id = dev_id;
2593 
2594 	retval = irq_chip_pm_get(&desc->irq_data);
2595 	if (retval < 0) {
2596 		kfree(action);
2597 		return retval;
2598 	}
2599 
2600 	retval = __setup_irq(irq, desc, action);
2601 
2602 	if (retval) {
2603 		irq_chip_pm_put(&desc->irq_data);
2604 		kfree(action);
2605 	}
2606 
2607 	return retval;
2608 }
2609 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2610 
2611 /**
2612  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2613  *	@irq: Interrupt line to allocate
2614  *	@handler: Function to be called when the IRQ occurs.
2615  *	@name: An ascii name for the claiming device
2616  *	@dev_id: A percpu cookie passed back to the handler function
2617  *
2618  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2619  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2620  *	being enabled on the same CPU by using enable_percpu_nmi().
2621  *
2622  *	Dev_id must be globally unique. It is a per-cpu variable, and
2623  *	the handler gets called with the interrupted CPU's instance of
2624  *	that variable.
2625  *
2626  *	Interrupt lines requested for NMI delivering should have auto enabling
2627  *	setting disabled.
2628  *
2629  *	If the interrupt line cannot be used to deliver NMIs, function
2630  *	will fail returning a negative value.
2631  */
2632 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2633 		       const char *name, void __percpu *dev_id)
2634 {
2635 	struct irqaction *action;
2636 	struct irq_desc *desc;
2637 	unsigned long flags;
2638 	int retval;
2639 
2640 	if (!handler)
2641 		return -EINVAL;
2642 
2643 	desc = irq_to_desc(irq);
2644 
2645 	if (!desc || !irq_settings_can_request(desc) ||
2646 	    !irq_settings_is_per_cpu_devid(desc) ||
2647 	    irq_settings_can_autoenable(desc) ||
2648 	    !irq_supports_nmi(desc))
2649 		return -EINVAL;
2650 
2651 	/* The line cannot already be NMI */
2652 	if (desc->istate & IRQS_NMI)
2653 		return -EINVAL;
2654 
2655 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2656 	if (!action)
2657 		return -ENOMEM;
2658 
2659 	action->handler = handler;
2660 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2661 		| IRQF_NOBALANCING;
2662 	action->name = name;
2663 	action->percpu_dev_id = dev_id;
2664 
2665 	retval = irq_chip_pm_get(&desc->irq_data);
2666 	if (retval < 0)
2667 		goto err_out;
2668 
2669 	retval = __setup_irq(irq, desc, action);
2670 	if (retval)
2671 		goto err_irq_setup;
2672 
2673 	raw_spin_lock_irqsave(&desc->lock, flags);
2674 	desc->istate |= IRQS_NMI;
2675 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2676 
2677 	return 0;
2678 
2679 err_irq_setup:
2680 	irq_chip_pm_put(&desc->irq_data);
2681 err_out:
2682 	kfree(action);
2683 
2684 	return retval;
2685 }
2686 
2687 /**
2688  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2689  *	@irq: Interrupt line to prepare for NMI delivery
2690  *
2691  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2692  *	before that interrupt line gets enabled with enable_percpu_nmi().
2693  *
2694  *	As a CPU local operation, this should be called from non-preemptible
2695  *	context.
2696  *
2697  *	If the interrupt line cannot be used to deliver NMIs, function
2698  *	will fail returning a negative value.
2699  */
2700 int prepare_percpu_nmi(unsigned int irq)
2701 {
2702 	unsigned long flags;
2703 	struct irq_desc *desc;
2704 	int ret = 0;
2705 
2706 	WARN_ON(preemptible());
2707 
2708 	desc = irq_get_desc_lock(irq, &flags,
2709 				 IRQ_GET_DESC_CHECK_PERCPU);
2710 	if (!desc)
2711 		return -EINVAL;
2712 
2713 	if (WARN(!(desc->istate & IRQS_NMI),
2714 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2715 		 irq)) {
2716 		ret = -EINVAL;
2717 		goto out;
2718 	}
2719 
2720 	ret = irq_nmi_setup(desc);
2721 	if (ret) {
2722 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2723 		goto out;
2724 	}
2725 
2726 out:
2727 	irq_put_desc_unlock(desc, flags);
2728 	return ret;
2729 }
2730 
2731 /**
2732  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2733  *	@irq: Interrupt line from which CPU local NMI configuration should be
2734  *	      removed
2735  *
2736  *	This call undoes the setup done by prepare_percpu_nmi().
2737  *
2738  *	IRQ line should not be enabled for the current CPU.
2739  *
2740  *	As a CPU local operation, this should be called from non-preemptible
2741  *	context.
2742  */
2743 void teardown_percpu_nmi(unsigned int irq)
2744 {
2745 	unsigned long flags;
2746 	struct irq_desc *desc;
2747 
2748 	WARN_ON(preemptible());
2749 
2750 	desc = irq_get_desc_lock(irq, &flags,
2751 				 IRQ_GET_DESC_CHECK_PERCPU);
2752 	if (!desc)
2753 		return;
2754 
2755 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2756 		goto out;
2757 
2758 	irq_nmi_teardown(desc);
2759 out:
2760 	irq_put_desc_unlock(desc, flags);
2761 }
2762 
2763 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2764 			    bool *state)
2765 {
2766 	struct irq_chip *chip;
2767 	int err = -EINVAL;
2768 
2769 	do {
2770 		chip = irq_data_get_irq_chip(data);
2771 		if (WARN_ON_ONCE(!chip))
2772 			return -ENODEV;
2773 		if (chip->irq_get_irqchip_state)
2774 			break;
2775 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2776 		data = data->parent_data;
2777 #else
2778 		data = NULL;
2779 #endif
2780 	} while (data);
2781 
2782 	if (data)
2783 		err = chip->irq_get_irqchip_state(data, which, state);
2784 	return err;
2785 }
2786 
2787 /**
2788  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2789  *	@irq: Interrupt line that is forwarded to a VM
2790  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2791  *	@state: a pointer to a boolean where the state is to be stored
2792  *
2793  *	This call snapshots the internal irqchip state of an
2794  *	interrupt, returning into @state the bit corresponding to
2795  *	stage @which
2796  *
2797  *	This function should be called with preemption disabled if the
2798  *	interrupt controller has per-cpu registers.
2799  */
2800 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2801 			  bool *state)
2802 {
2803 	struct irq_desc *desc;
2804 	struct irq_data *data;
2805 	unsigned long flags;
2806 	int err = -EINVAL;
2807 
2808 	desc = irq_get_desc_buslock(irq, &flags, 0);
2809 	if (!desc)
2810 		return err;
2811 
2812 	data = irq_desc_get_irq_data(desc);
2813 
2814 	err = __irq_get_irqchip_state(data, which, state);
2815 
2816 	irq_put_desc_busunlock(desc, flags);
2817 	return err;
2818 }
2819 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2820 
2821 /**
2822  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2823  *	@irq: Interrupt line that is forwarded to a VM
2824  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2825  *	@val: Value corresponding to @which
2826  *
2827  *	This call sets the internal irqchip state of an interrupt,
2828  *	depending on the value of @which.
2829  *
2830  *	This function should be called with migration disabled if the
2831  *	interrupt controller has per-cpu registers.
2832  */
2833 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2834 			  bool val)
2835 {
2836 	struct irq_desc *desc;
2837 	struct irq_data *data;
2838 	struct irq_chip *chip;
2839 	unsigned long flags;
2840 	int err = -EINVAL;
2841 
2842 	desc = irq_get_desc_buslock(irq, &flags, 0);
2843 	if (!desc)
2844 		return err;
2845 
2846 	data = irq_desc_get_irq_data(desc);
2847 
2848 	do {
2849 		chip = irq_data_get_irq_chip(data);
2850 		if (WARN_ON_ONCE(!chip)) {
2851 			err = -ENODEV;
2852 			goto out_unlock;
2853 		}
2854 		if (chip->irq_set_irqchip_state)
2855 			break;
2856 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2857 		data = data->parent_data;
2858 #else
2859 		data = NULL;
2860 #endif
2861 	} while (data);
2862 
2863 	if (data)
2864 		err = chip->irq_set_irqchip_state(data, which, val);
2865 
2866 out_unlock:
2867 	irq_put_desc_busunlock(desc, flags);
2868 	return err;
2869 }
2870 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2871 
2872 /**
2873  * irq_has_action - Check whether an interrupt is requested
2874  * @irq:	The linux irq number
2875  *
2876  * Returns: A snapshot of the current state
2877  */
2878 bool irq_has_action(unsigned int irq)
2879 {
2880 	bool res;
2881 
2882 	rcu_read_lock();
2883 	res = irq_desc_has_action(irq_to_desc(irq));
2884 	rcu_read_unlock();
2885 	return res;
2886 }
2887 EXPORT_SYMBOL_GPL(irq_has_action);
2888 
2889 /**
2890  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2891  * @irq:	The linux irq number
2892  * @bitmask:	The bitmask to evaluate
2893  *
2894  * Returns: True if one of the bits in @bitmask is set
2895  */
2896 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2897 {
2898 	struct irq_desc *desc;
2899 	bool res = false;
2900 
2901 	rcu_read_lock();
2902 	desc = irq_to_desc(irq);
2903 	if (desc)
2904 		res = !!(desc->status_use_accessors & bitmask);
2905 	rcu_read_unlock();
2906 	return res;
2907 }
2908 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2909