xref: /openbmc/linux/kernel/irq/manage.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 					   const struct cpumask *dest)
211 {
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 
214 	irqd_set_move_pending(data);
215 	irq_copy_pending(desc, dest);
216 	return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 					   const struct cpumask *dest)
221 {
222 	return -EBUSY;
223 }
224 #endif
225 
226 static int irq_try_set_affinity(struct irq_data *data,
227 				const struct cpumask *dest, bool force)
228 {
229 	int ret = irq_do_set_affinity(data, dest, force);
230 
231 	/*
232 	 * In case that the underlying vector management is busy and the
233 	 * architecture supports the generic pending mechanism then utilize
234 	 * this to avoid returning an error to user space.
235 	 */
236 	if (ret == -EBUSY && !force)
237 		ret = irq_set_affinity_pending(data, dest);
238 	return ret;
239 }
240 
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 			    bool force)
243 {
244 	struct irq_chip *chip = irq_data_get_irq_chip(data);
245 	struct irq_desc *desc = irq_data_to_desc(data);
246 	int ret = 0;
247 
248 	if (!chip || !chip->irq_set_affinity)
249 		return -EINVAL;
250 
251 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 		ret = irq_try_set_affinity(data, mask, force);
253 	} else {
254 		irqd_set_move_pending(data);
255 		irq_copy_pending(desc, mask);
256 	}
257 
258 	if (desc->affinity_notify) {
259 		kref_get(&desc->affinity_notify->kref);
260 		schedule_work(&desc->affinity_notify->work);
261 	}
262 	irqd_set(data, IRQD_AFFINITY_SET);
263 
264 	return ret;
265 }
266 
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 	struct irq_desc *desc = irq_to_desc(irq);
270 	unsigned long flags;
271 	int ret;
272 
273 	if (!desc)
274 		return -EINVAL;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 	raw_spin_unlock_irqrestore(&desc->lock, flags);
279 	return ret;
280 }
281 
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 	unsigned long flags;
285 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286 
287 	if (!desc)
288 		return -EINVAL;
289 	desc->affinity_hint = m;
290 	irq_put_desc_unlock(desc, flags);
291 	/* set the initial affinity to prevent every interrupt being on CPU0 */
292 	if (m)
293 		__irq_set_affinity(irq, m, false);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297 
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 	struct irq_affinity_notify *notify =
301 		container_of(work, struct irq_affinity_notify, work);
302 	struct irq_desc *desc = irq_to_desc(notify->irq);
303 	cpumask_var_t cpumask;
304 	unsigned long flags;
305 
306 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 		goto out;
308 
309 	raw_spin_lock_irqsave(&desc->lock, flags);
310 	if (irq_move_pending(&desc->irq_data))
311 		irq_get_pending(cpumask, desc);
312 	else
313 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 	raw_spin_unlock_irqrestore(&desc->lock, flags);
315 
316 	notify->notify(notify, cpumask);
317 
318 	free_cpumask_var(cpumask);
319 out:
320 	kref_put(&notify->kref, notify->release);
321 }
322 
323 /**
324  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *	@irq:		Interrupt for which to enable/disable notification
326  *	@notify:	Context for notification, or %NULL to disable
327  *			notification.  Function pointers must be initialised;
328  *			the other fields will be initialised by this function.
329  *
330  *	Must be called in process context.  Notification may only be enabled
331  *	after the IRQ is allocated and must be disabled before the IRQ is
332  *	freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	struct irq_affinity_notify *old_notify;
339 	unsigned long flags;
340 
341 	/* The release function is promised process context */
342 	might_sleep();
343 
344 	if (!desc)
345 		return -EINVAL;
346 
347 	/* Complete initialisation of *notify */
348 	if (notify) {
349 		notify->irq = irq;
350 		kref_init(&notify->kref);
351 		INIT_WORK(&notify->work, irq_affinity_notify);
352 	}
353 
354 	raw_spin_lock_irqsave(&desc->lock, flags);
355 	old_notify = desc->affinity_notify;
356 	desc->affinity_notify = notify;
357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
358 
359 	if (old_notify)
360 		kref_put(&old_notify->kref, old_notify->release);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365 
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 	struct cpumask *set = irq_default_affinity;
373 	int ret, node = irq_desc_get_node(desc);
374 	static DEFINE_RAW_SPINLOCK(mask_lock);
375 	static struct cpumask mask;
376 
377 	/* Excludes PER_CPU and NO_BALANCE interrupts */
378 	if (!__irq_can_set_affinity(desc))
379 		return 0;
380 
381 	raw_spin_lock(&mask_lock);
382 	/*
383 	 * Preserve the managed affinity setting and a userspace affinity
384 	 * setup, but make sure that one of the targets is online.
385 	 */
386 	if (irqd_affinity_is_managed(&desc->irq_data) ||
387 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 		if (cpumask_intersects(desc->irq_common_data.affinity,
389 				       cpu_online_mask))
390 			set = desc->irq_common_data.affinity;
391 		else
392 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 	}
394 
395 	cpumask_and(&mask, cpu_online_mask, set);
396 	if (node != NUMA_NO_NODE) {
397 		const struct cpumask *nodemask = cpumask_of_node(node);
398 
399 		/* make sure at least one of the cpus in nodemask is online */
400 		if (cpumask_intersects(&mask, nodemask))
401 			cpumask_and(&mask, &mask, nodemask);
402 	}
403 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404 	raw_spin_unlock(&mask_lock);
405 	return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411 	return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414 
415 /*
416  * Called when a bogus affinity is set via /proc/irq
417  */
418 int irq_select_affinity_usr(unsigned int irq)
419 {
420 	struct irq_desc *desc = irq_to_desc(irq);
421 	unsigned long flags;
422 	int ret;
423 
424 	raw_spin_lock_irqsave(&desc->lock, flags);
425 	ret = irq_setup_affinity(desc);
426 	raw_spin_unlock_irqrestore(&desc->lock, flags);
427 	return ret;
428 }
429 #endif
430 
431 /**
432  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433  *	@irq: interrupt number to set affinity
434  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435  *	            specific data for percpu_devid interrupts
436  *
437  *	This function uses the vCPU specific data to set the vCPU
438  *	affinity for an irq. The vCPU specific data is passed from
439  *	outside, such as KVM. One example code path is as below:
440  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
441  */
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444 	unsigned long flags;
445 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446 	struct irq_data *data;
447 	struct irq_chip *chip;
448 	int ret = -ENOSYS;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	data = irq_desc_get_irq_data(desc);
454 	do {
455 		chip = irq_data_get_irq_chip(data);
456 		if (chip && chip->irq_set_vcpu_affinity)
457 			break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459 		data = data->parent_data;
460 #else
461 		data = NULL;
462 #endif
463 	} while (data);
464 
465 	if (data)
466 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467 	irq_put_desc_unlock(desc, flags);
468 
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472 
473 void __disable_irq(struct irq_desc *desc)
474 {
475 	if (!desc->depth++)
476 		irq_disable(desc);
477 }
478 
479 static int __disable_irq_nosync(unsigned int irq)
480 {
481 	unsigned long flags;
482 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483 
484 	if (!desc)
485 		return -EINVAL;
486 	__disable_irq(desc);
487 	irq_put_desc_busunlock(desc, flags);
488 	return 0;
489 }
490 
491 /**
492  *	disable_irq_nosync - disable an irq without waiting
493  *	@irq: Interrupt to disable
494  *
495  *	Disable the selected interrupt line.  Disables and Enables are
496  *	nested.
497  *	Unlike disable_irq(), this function does not ensure existing
498  *	instances of the IRQ handler have completed before returning.
499  *
500  *	This function may be called from IRQ context.
501  */
502 void disable_irq_nosync(unsigned int irq)
503 {
504 	__disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507 
508 /**
509  *	disable_irq - disable an irq and wait for completion
510  *	@irq: Interrupt to disable
511  *
512  *	Disable the selected interrupt line.  Enables and Disables are
513  *	nested.
514  *	This function waits for any pending IRQ handlers for this interrupt
515  *	to complete before returning. If you use this function while
516  *	holding a resource the IRQ handler may need you will deadlock.
517  *
518  *	This function may be called - with care - from IRQ context.
519  */
520 void disable_irq(unsigned int irq)
521 {
522 	if (!__disable_irq_nosync(irq))
523 		synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526 
527 /**
528  *	disable_hardirq - disables an irq and waits for hardirq completion
529  *	@irq: Interrupt to disable
530  *
531  *	Disable the selected interrupt line.  Enables and Disables are
532  *	nested.
533  *	This function waits for any pending hard IRQ handlers for this
534  *	interrupt to complete before returning. If you use this function while
535  *	holding a resource the hard IRQ handler may need you will deadlock.
536  *
537  *	When used to optimistically disable an interrupt from atomic context
538  *	the return value must be checked.
539  *
540  *	Returns: false if a threaded handler is active.
541  *
542  *	This function may be called - with care - from IRQ context.
543  */
544 bool disable_hardirq(unsigned int irq)
545 {
546 	if (!__disable_irq_nosync(irq))
547 		return synchronize_hardirq(irq);
548 
549 	return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552 
553 void __enable_irq(struct irq_desc *desc)
554 {
555 	switch (desc->depth) {
556 	case 0:
557  err_out:
558 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559 		     irq_desc_get_irq(desc));
560 		break;
561 	case 1: {
562 		if (desc->istate & IRQS_SUSPENDED)
563 			goto err_out;
564 		/* Prevent probing on this irq: */
565 		irq_settings_set_noprobe(desc);
566 		/*
567 		 * Call irq_startup() not irq_enable() here because the
568 		 * interrupt might be marked NOAUTOEN. So irq_startup()
569 		 * needs to be invoked when it gets enabled the first
570 		 * time. If it was already started up, then irq_startup()
571 		 * will invoke irq_enable() under the hood.
572 		 */
573 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574 		break;
575 	}
576 	default:
577 		desc->depth--;
578 	}
579 }
580 
581 /**
582  *	enable_irq - enable handling of an irq
583  *	@irq: Interrupt to enable
584  *
585  *	Undoes the effect of one call to disable_irq().  If this
586  *	matches the last disable, processing of interrupts on this
587  *	IRQ line is re-enabled.
588  *
589  *	This function may be called from IRQ context only when
590  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591  */
592 void enable_irq(unsigned int irq)
593 {
594 	unsigned long flags;
595 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596 
597 	if (!desc)
598 		return;
599 	if (WARN(!desc->irq_data.chip,
600 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601 		goto out;
602 
603 	__enable_irq(desc);
604 out:
605 	irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608 
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611 	struct irq_desc *desc = irq_to_desc(irq);
612 	int ret = -ENXIO;
613 
614 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
615 		return 0;
616 
617 	if (desc->irq_data.chip->irq_set_wake)
618 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619 
620 	return ret;
621 }
622 
623 /**
624  *	irq_set_irq_wake - control irq power management wakeup
625  *	@irq:	interrupt to control
626  *	@on:	enable/disable power management wakeup
627  *
628  *	Enable/disable power management wakeup mode, which is
629  *	disabled by default.  Enables and disables must match,
630  *	just as they match for non-wakeup mode support.
631  *
632  *	Wakeup mode lets this IRQ wake the system from sleep
633  *	states like "suspend to RAM".
634  */
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637 	unsigned long flags;
638 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639 	int ret = 0;
640 
641 	if (!desc)
642 		return -EINVAL;
643 
644 	/* wakeup-capable irqs can be shared between drivers that
645 	 * don't need to have the same sleep mode behaviors.
646 	 */
647 	if (on) {
648 		if (desc->wake_depth++ == 0) {
649 			ret = set_irq_wake_real(irq, on);
650 			if (ret)
651 				desc->wake_depth = 0;
652 			else
653 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654 		}
655 	} else {
656 		if (desc->wake_depth == 0) {
657 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658 		} else if (--desc->wake_depth == 0) {
659 			ret = set_irq_wake_real(irq, on);
660 			if (ret)
661 				desc->wake_depth = 1;
662 			else
663 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664 		}
665 	}
666 	irq_put_desc_busunlock(desc, flags);
667 	return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670 
671 /*
672  * Internal function that tells the architecture code whether a
673  * particular irq has been exclusively allocated or is available
674  * for driver use.
675  */
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678 	unsigned long flags;
679 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680 	int canrequest = 0;
681 
682 	if (!desc)
683 		return 0;
684 
685 	if (irq_settings_can_request(desc)) {
686 		if (!desc->action ||
687 		    irqflags & desc->action->flags & IRQF_SHARED)
688 			canrequest = 1;
689 	}
690 	irq_put_desc_unlock(desc, flags);
691 	return canrequest;
692 }
693 
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696 	struct irq_chip *chip = desc->irq_data.chip;
697 	int ret, unmask = 0;
698 
699 	if (!chip || !chip->irq_set_type) {
700 		/*
701 		 * IRQF_TRIGGER_* but the PIC does not support multiple
702 		 * flow-types?
703 		 */
704 		pr_debug("No set_type function for IRQ %d (%s)\n",
705 			 irq_desc_get_irq(desc),
706 			 chip ? (chip->name ? : "unknown") : "unknown");
707 		return 0;
708 	}
709 
710 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711 		if (!irqd_irq_masked(&desc->irq_data))
712 			mask_irq(desc);
713 		if (!irqd_irq_disabled(&desc->irq_data))
714 			unmask = 1;
715 	}
716 
717 	/* Mask all flags except trigger mode */
718 	flags &= IRQ_TYPE_SENSE_MASK;
719 	ret = chip->irq_set_type(&desc->irq_data, flags);
720 
721 	switch (ret) {
722 	case IRQ_SET_MASK_OK:
723 	case IRQ_SET_MASK_OK_DONE:
724 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725 		irqd_set(&desc->irq_data, flags);
726 
727 	case IRQ_SET_MASK_OK_NOCOPY:
728 		flags = irqd_get_trigger_type(&desc->irq_data);
729 		irq_settings_set_trigger_mask(desc, flags);
730 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
731 		irq_settings_clr_level(desc);
732 		if (flags & IRQ_TYPE_LEVEL_MASK) {
733 			irq_settings_set_level(desc);
734 			irqd_set(&desc->irq_data, IRQD_LEVEL);
735 		}
736 
737 		ret = 0;
738 		break;
739 	default:
740 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
742 	}
743 	if (unmask)
744 		unmask_irq(desc);
745 	return ret;
746 }
747 
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
750 {
751 	unsigned long flags;
752 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753 
754 	if (!desc)
755 		return -EINVAL;
756 
757 	desc->parent_irq = parent_irq;
758 
759 	irq_put_desc_unlock(desc, flags);
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764 
765 /*
766  * Default primary interrupt handler for threaded interrupts. Is
767  * assigned as primary handler when request_threaded_irq is called
768  * with handler == NULL. Useful for oneshot interrupts.
769  */
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772 	return IRQ_WAKE_THREAD;
773 }
774 
775 /*
776  * Primary handler for nested threaded interrupts. Should never be
777  * called.
778  */
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781 	WARN(1, "Primary handler called for nested irq %d\n", irq);
782 	return IRQ_NONE;
783 }
784 
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787 	WARN(1, "Secondary action handler called for irq %d\n", irq);
788 	return IRQ_NONE;
789 }
790 
791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793 	for (;;) {
794 		set_current_state(TASK_INTERRUPTIBLE);
795 
796 		if (kthread_should_stop()) {
797 			/* may need to run one last time */
798 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
799 					       &action->thread_flags)) {
800 				__set_current_state(TASK_RUNNING);
801 				return 0;
802 			}
803 			__set_current_state(TASK_RUNNING);
804 			return -1;
805 		}
806 
807 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
808 				       &action->thread_flags)) {
809 			__set_current_state(TASK_RUNNING);
810 			return 0;
811 		}
812 		schedule();
813 	}
814 }
815 
816 /*
817  * Oneshot interrupts keep the irq line masked until the threaded
818  * handler finished. unmask if the interrupt has not been disabled and
819  * is marked MASKED.
820  */
821 static void irq_finalize_oneshot(struct irq_desc *desc,
822 				 struct irqaction *action)
823 {
824 	if (!(desc->istate & IRQS_ONESHOT) ||
825 	    action->handler == irq_forced_secondary_handler)
826 		return;
827 again:
828 	chip_bus_lock(desc);
829 	raw_spin_lock_irq(&desc->lock);
830 
831 	/*
832 	 * Implausible though it may be we need to protect us against
833 	 * the following scenario:
834 	 *
835 	 * The thread is faster done than the hard interrupt handler
836 	 * on the other CPU. If we unmask the irq line then the
837 	 * interrupt can come in again and masks the line, leaves due
838 	 * to IRQS_INPROGRESS and the irq line is masked forever.
839 	 *
840 	 * This also serializes the state of shared oneshot handlers
841 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
842 	 * irq_wake_thread(). See the comment there which explains the
843 	 * serialization.
844 	 */
845 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
846 		raw_spin_unlock_irq(&desc->lock);
847 		chip_bus_sync_unlock(desc);
848 		cpu_relax();
849 		goto again;
850 	}
851 
852 	/*
853 	 * Now check again, whether the thread should run. Otherwise
854 	 * we would clear the threads_oneshot bit of this thread which
855 	 * was just set.
856 	 */
857 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
858 		goto out_unlock;
859 
860 	desc->threads_oneshot &= ~action->thread_mask;
861 
862 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
863 	    irqd_irq_masked(&desc->irq_data))
864 		unmask_threaded_irq(desc);
865 
866 out_unlock:
867 	raw_spin_unlock_irq(&desc->lock);
868 	chip_bus_sync_unlock(desc);
869 }
870 
871 #ifdef CONFIG_SMP
872 /*
873  * Check whether we need to change the affinity of the interrupt thread.
874  */
875 static void
876 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
877 {
878 	cpumask_var_t mask;
879 	bool valid = true;
880 
881 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
882 		return;
883 
884 	/*
885 	 * In case we are out of memory we set IRQTF_AFFINITY again and
886 	 * try again next time
887 	 */
888 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
889 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
890 		return;
891 	}
892 
893 	raw_spin_lock_irq(&desc->lock);
894 	/*
895 	 * This code is triggered unconditionally. Check the affinity
896 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
897 	 */
898 	if (cpumask_available(desc->irq_common_data.affinity)) {
899 		const struct cpumask *m;
900 
901 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
902 		cpumask_copy(mask, m);
903 	} else {
904 		valid = false;
905 	}
906 	raw_spin_unlock_irq(&desc->lock);
907 
908 	if (valid)
909 		set_cpus_allowed_ptr(current, mask);
910 	free_cpumask_var(mask);
911 }
912 #else
913 static inline void
914 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
915 #endif
916 
917 /*
918  * Interrupts which are not explicitely requested as threaded
919  * interrupts rely on the implicit bh/preempt disable of the hard irq
920  * context. So we need to disable bh here to avoid deadlocks and other
921  * side effects.
922  */
923 static irqreturn_t
924 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
925 {
926 	irqreturn_t ret;
927 
928 	local_bh_disable();
929 	ret = action->thread_fn(action->irq, action->dev_id);
930 	irq_finalize_oneshot(desc, action);
931 	local_bh_enable();
932 	return ret;
933 }
934 
935 /*
936  * Interrupts explicitly requested as threaded interrupts want to be
937  * preemtible - many of them need to sleep and wait for slow busses to
938  * complete.
939  */
940 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
941 		struct irqaction *action)
942 {
943 	irqreturn_t ret;
944 
945 	ret = action->thread_fn(action->irq, action->dev_id);
946 	irq_finalize_oneshot(desc, action);
947 	return ret;
948 }
949 
950 static void wake_threads_waitq(struct irq_desc *desc)
951 {
952 	if (atomic_dec_and_test(&desc->threads_active))
953 		wake_up(&desc->wait_for_threads);
954 }
955 
956 static void irq_thread_dtor(struct callback_head *unused)
957 {
958 	struct task_struct *tsk = current;
959 	struct irq_desc *desc;
960 	struct irqaction *action;
961 
962 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
963 		return;
964 
965 	action = kthread_data(tsk);
966 
967 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
968 	       tsk->comm, tsk->pid, action->irq);
969 
970 
971 	desc = irq_to_desc(action->irq);
972 	/*
973 	 * If IRQTF_RUNTHREAD is set, we need to decrement
974 	 * desc->threads_active and wake possible waiters.
975 	 */
976 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
977 		wake_threads_waitq(desc);
978 
979 	/* Prevent a stale desc->threads_oneshot */
980 	irq_finalize_oneshot(desc, action);
981 }
982 
983 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
984 {
985 	struct irqaction *secondary = action->secondary;
986 
987 	if (WARN_ON_ONCE(!secondary))
988 		return;
989 
990 	raw_spin_lock_irq(&desc->lock);
991 	__irq_wake_thread(desc, secondary);
992 	raw_spin_unlock_irq(&desc->lock);
993 }
994 
995 /*
996  * Interrupt handler thread
997  */
998 static int irq_thread(void *data)
999 {
1000 	struct callback_head on_exit_work;
1001 	struct irqaction *action = data;
1002 	struct irq_desc *desc = irq_to_desc(action->irq);
1003 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1004 			struct irqaction *action);
1005 
1006 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1007 					&action->thread_flags))
1008 		handler_fn = irq_forced_thread_fn;
1009 	else
1010 		handler_fn = irq_thread_fn;
1011 
1012 	init_task_work(&on_exit_work, irq_thread_dtor);
1013 	task_work_add(current, &on_exit_work, false);
1014 
1015 	irq_thread_check_affinity(desc, action);
1016 
1017 	while (!irq_wait_for_interrupt(action)) {
1018 		irqreturn_t action_ret;
1019 
1020 		irq_thread_check_affinity(desc, action);
1021 
1022 		action_ret = handler_fn(desc, action);
1023 		if (action_ret == IRQ_HANDLED)
1024 			atomic_inc(&desc->threads_handled);
1025 		if (action_ret == IRQ_WAKE_THREAD)
1026 			irq_wake_secondary(desc, action);
1027 
1028 		wake_threads_waitq(desc);
1029 	}
1030 
1031 	/*
1032 	 * This is the regular exit path. __free_irq() is stopping the
1033 	 * thread via kthread_stop() after calling
1034 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1035 	 * oneshot mask bit can be set.
1036 	 */
1037 	task_work_cancel(current, irq_thread_dtor);
1038 	return 0;
1039 }
1040 
1041 /**
1042  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1043  *	@irq:		Interrupt line
1044  *	@dev_id:	Device identity for which the thread should be woken
1045  *
1046  */
1047 void irq_wake_thread(unsigned int irq, void *dev_id)
1048 {
1049 	struct irq_desc *desc = irq_to_desc(irq);
1050 	struct irqaction *action;
1051 	unsigned long flags;
1052 
1053 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1054 		return;
1055 
1056 	raw_spin_lock_irqsave(&desc->lock, flags);
1057 	for_each_action_of_desc(desc, action) {
1058 		if (action->dev_id == dev_id) {
1059 			if (action->thread)
1060 				__irq_wake_thread(desc, action);
1061 			break;
1062 		}
1063 	}
1064 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1065 }
1066 EXPORT_SYMBOL_GPL(irq_wake_thread);
1067 
1068 static int irq_setup_forced_threading(struct irqaction *new)
1069 {
1070 	if (!force_irqthreads)
1071 		return 0;
1072 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1073 		return 0;
1074 
1075 	/*
1076 	 * No further action required for interrupts which are requested as
1077 	 * threaded interrupts already
1078 	 */
1079 	if (new->handler == irq_default_primary_handler)
1080 		return 0;
1081 
1082 	new->flags |= IRQF_ONESHOT;
1083 
1084 	/*
1085 	 * Handle the case where we have a real primary handler and a
1086 	 * thread handler. We force thread them as well by creating a
1087 	 * secondary action.
1088 	 */
1089 	if (new->handler && new->thread_fn) {
1090 		/* Allocate the secondary action */
1091 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1092 		if (!new->secondary)
1093 			return -ENOMEM;
1094 		new->secondary->handler = irq_forced_secondary_handler;
1095 		new->secondary->thread_fn = new->thread_fn;
1096 		new->secondary->dev_id = new->dev_id;
1097 		new->secondary->irq = new->irq;
1098 		new->secondary->name = new->name;
1099 	}
1100 	/* Deal with the primary handler */
1101 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1102 	new->thread_fn = new->handler;
1103 	new->handler = irq_default_primary_handler;
1104 	return 0;
1105 }
1106 
1107 static int irq_request_resources(struct irq_desc *desc)
1108 {
1109 	struct irq_data *d = &desc->irq_data;
1110 	struct irq_chip *c = d->chip;
1111 
1112 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1113 }
1114 
1115 static void irq_release_resources(struct irq_desc *desc)
1116 {
1117 	struct irq_data *d = &desc->irq_data;
1118 	struct irq_chip *c = d->chip;
1119 
1120 	if (c->irq_release_resources)
1121 		c->irq_release_resources(d);
1122 }
1123 
1124 static int
1125 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1126 {
1127 	struct task_struct *t;
1128 	struct sched_param param = {
1129 		.sched_priority = MAX_USER_RT_PRIO/2,
1130 	};
1131 
1132 	if (!secondary) {
1133 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1134 				   new->name);
1135 	} else {
1136 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1137 				   new->name);
1138 		param.sched_priority -= 1;
1139 	}
1140 
1141 	if (IS_ERR(t))
1142 		return PTR_ERR(t);
1143 
1144 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1145 
1146 	/*
1147 	 * We keep the reference to the task struct even if
1148 	 * the thread dies to avoid that the interrupt code
1149 	 * references an already freed task_struct.
1150 	 */
1151 	get_task_struct(t);
1152 	new->thread = t;
1153 	/*
1154 	 * Tell the thread to set its affinity. This is
1155 	 * important for shared interrupt handlers as we do
1156 	 * not invoke setup_affinity() for the secondary
1157 	 * handlers as everything is already set up. Even for
1158 	 * interrupts marked with IRQF_NO_BALANCE this is
1159 	 * correct as we want the thread to move to the cpu(s)
1160 	 * on which the requesting code placed the interrupt.
1161 	 */
1162 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Internal function to register an irqaction - typically used to
1168  * allocate special interrupts that are part of the architecture.
1169  *
1170  * Locking rules:
1171  *
1172  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1173  *   chip_bus_lock	Provides serialization for slow bus operations
1174  *     desc->lock	Provides serialization against hard interrupts
1175  *
1176  * chip_bus_lock and desc->lock are sufficient for all other management and
1177  * interrupt related functions. desc->request_mutex solely serializes
1178  * request/free_irq().
1179  */
1180 static int
1181 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1182 {
1183 	struct irqaction *old, **old_ptr;
1184 	unsigned long flags, thread_mask = 0;
1185 	int ret, nested, shared = 0;
1186 
1187 	if (!desc)
1188 		return -EINVAL;
1189 
1190 	if (desc->irq_data.chip == &no_irq_chip)
1191 		return -ENOSYS;
1192 	if (!try_module_get(desc->owner))
1193 		return -ENODEV;
1194 
1195 	new->irq = irq;
1196 
1197 	/*
1198 	 * If the trigger type is not specified by the caller,
1199 	 * then use the default for this interrupt.
1200 	 */
1201 	if (!(new->flags & IRQF_TRIGGER_MASK))
1202 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1203 
1204 	/*
1205 	 * Check whether the interrupt nests into another interrupt
1206 	 * thread.
1207 	 */
1208 	nested = irq_settings_is_nested_thread(desc);
1209 	if (nested) {
1210 		if (!new->thread_fn) {
1211 			ret = -EINVAL;
1212 			goto out_mput;
1213 		}
1214 		/*
1215 		 * Replace the primary handler which was provided from
1216 		 * the driver for non nested interrupt handling by the
1217 		 * dummy function which warns when called.
1218 		 */
1219 		new->handler = irq_nested_primary_handler;
1220 	} else {
1221 		if (irq_settings_can_thread(desc)) {
1222 			ret = irq_setup_forced_threading(new);
1223 			if (ret)
1224 				goto out_mput;
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * Create a handler thread when a thread function is supplied
1230 	 * and the interrupt does not nest into another interrupt
1231 	 * thread.
1232 	 */
1233 	if (new->thread_fn && !nested) {
1234 		ret = setup_irq_thread(new, irq, false);
1235 		if (ret)
1236 			goto out_mput;
1237 		if (new->secondary) {
1238 			ret = setup_irq_thread(new->secondary, irq, true);
1239 			if (ret)
1240 				goto out_thread;
1241 		}
1242 	}
1243 
1244 	/*
1245 	 * Drivers are often written to work w/o knowledge about the
1246 	 * underlying irq chip implementation, so a request for a
1247 	 * threaded irq without a primary hard irq context handler
1248 	 * requires the ONESHOT flag to be set. Some irq chips like
1249 	 * MSI based interrupts are per se one shot safe. Check the
1250 	 * chip flags, so we can avoid the unmask dance at the end of
1251 	 * the threaded handler for those.
1252 	 */
1253 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1254 		new->flags &= ~IRQF_ONESHOT;
1255 
1256 	/*
1257 	 * Protects against a concurrent __free_irq() call which might wait
1258 	 * for synchronize_hardirq() to complete without holding the optional
1259 	 * chip bus lock and desc->lock. Also protects against handing out
1260 	 * a recycled oneshot thread_mask bit while it's still in use by
1261 	 * its previous owner.
1262 	 */
1263 	mutex_lock(&desc->request_mutex);
1264 
1265 	/*
1266 	 * Acquire bus lock as the irq_request_resources() callback below
1267 	 * might rely on the serialization or the magic power management
1268 	 * functions which are abusing the irq_bus_lock() callback,
1269 	 */
1270 	chip_bus_lock(desc);
1271 
1272 	/* First installed action requests resources. */
1273 	if (!desc->action) {
1274 		ret = irq_request_resources(desc);
1275 		if (ret) {
1276 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1277 			       new->name, irq, desc->irq_data.chip->name);
1278 			goto out_bus_unlock;
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * The following block of code has to be executed atomically
1284 	 * protected against a concurrent interrupt and any of the other
1285 	 * management calls which are not serialized via
1286 	 * desc->request_mutex or the optional bus lock.
1287 	 */
1288 	raw_spin_lock_irqsave(&desc->lock, flags);
1289 	old_ptr = &desc->action;
1290 	old = *old_ptr;
1291 	if (old) {
1292 		/*
1293 		 * Can't share interrupts unless both agree to and are
1294 		 * the same type (level, edge, polarity). So both flag
1295 		 * fields must have IRQF_SHARED set and the bits which
1296 		 * set the trigger type must match. Also all must
1297 		 * agree on ONESHOT.
1298 		 */
1299 		unsigned int oldtype;
1300 
1301 		/*
1302 		 * If nobody did set the configuration before, inherit
1303 		 * the one provided by the requester.
1304 		 */
1305 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1306 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1307 		} else {
1308 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1309 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1310 		}
1311 
1312 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1313 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1314 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1315 			goto mismatch;
1316 
1317 		/* All handlers must agree on per-cpuness */
1318 		if ((old->flags & IRQF_PERCPU) !=
1319 		    (new->flags & IRQF_PERCPU))
1320 			goto mismatch;
1321 
1322 		/* add new interrupt at end of irq queue */
1323 		do {
1324 			/*
1325 			 * Or all existing action->thread_mask bits,
1326 			 * so we can find the next zero bit for this
1327 			 * new action.
1328 			 */
1329 			thread_mask |= old->thread_mask;
1330 			old_ptr = &old->next;
1331 			old = *old_ptr;
1332 		} while (old);
1333 		shared = 1;
1334 	}
1335 
1336 	/*
1337 	 * Setup the thread mask for this irqaction for ONESHOT. For
1338 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1339 	 * conditional in irq_wake_thread().
1340 	 */
1341 	if (new->flags & IRQF_ONESHOT) {
1342 		/*
1343 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1344 		 * but who knows.
1345 		 */
1346 		if (thread_mask == ~0UL) {
1347 			ret = -EBUSY;
1348 			goto out_unlock;
1349 		}
1350 		/*
1351 		 * The thread_mask for the action is or'ed to
1352 		 * desc->thread_active to indicate that the
1353 		 * IRQF_ONESHOT thread handler has been woken, but not
1354 		 * yet finished. The bit is cleared when a thread
1355 		 * completes. When all threads of a shared interrupt
1356 		 * line have completed desc->threads_active becomes
1357 		 * zero and the interrupt line is unmasked. See
1358 		 * handle.c:irq_wake_thread() for further information.
1359 		 *
1360 		 * If no thread is woken by primary (hard irq context)
1361 		 * interrupt handlers, then desc->threads_active is
1362 		 * also checked for zero to unmask the irq line in the
1363 		 * affected hard irq flow handlers
1364 		 * (handle_[fasteoi|level]_irq).
1365 		 *
1366 		 * The new action gets the first zero bit of
1367 		 * thread_mask assigned. See the loop above which or's
1368 		 * all existing action->thread_mask bits.
1369 		 */
1370 		new->thread_mask = 1UL << ffz(thread_mask);
1371 
1372 	} else if (new->handler == irq_default_primary_handler &&
1373 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1374 		/*
1375 		 * The interrupt was requested with handler = NULL, so
1376 		 * we use the default primary handler for it. But it
1377 		 * does not have the oneshot flag set. In combination
1378 		 * with level interrupts this is deadly, because the
1379 		 * default primary handler just wakes the thread, then
1380 		 * the irq lines is reenabled, but the device still
1381 		 * has the level irq asserted. Rinse and repeat....
1382 		 *
1383 		 * While this works for edge type interrupts, we play
1384 		 * it safe and reject unconditionally because we can't
1385 		 * say for sure which type this interrupt really
1386 		 * has. The type flags are unreliable as the
1387 		 * underlying chip implementation can override them.
1388 		 */
1389 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1390 		       irq);
1391 		ret = -EINVAL;
1392 		goto out_unlock;
1393 	}
1394 
1395 	if (!shared) {
1396 		init_waitqueue_head(&desc->wait_for_threads);
1397 
1398 		/* Setup the type (level, edge polarity) if configured: */
1399 		if (new->flags & IRQF_TRIGGER_MASK) {
1400 			ret = __irq_set_trigger(desc,
1401 						new->flags & IRQF_TRIGGER_MASK);
1402 
1403 			if (ret)
1404 				goto out_unlock;
1405 		}
1406 
1407 		/*
1408 		 * Activate the interrupt. That activation must happen
1409 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1410 		 * and the callers are supposed to handle
1411 		 * that. enable_irq() of an interrupt requested with
1412 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1413 		 * keeps it in shutdown mode, it merily associates
1414 		 * resources if necessary and if that's not possible it
1415 		 * fails. Interrupts which are in managed shutdown mode
1416 		 * will simply ignore that activation request.
1417 		 */
1418 		ret = irq_activate(desc);
1419 		if (ret)
1420 			goto out_unlock;
1421 
1422 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1423 				  IRQS_ONESHOT | IRQS_WAITING);
1424 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1425 
1426 		if (new->flags & IRQF_PERCPU) {
1427 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1428 			irq_settings_set_per_cpu(desc);
1429 		}
1430 
1431 		if (new->flags & IRQF_ONESHOT)
1432 			desc->istate |= IRQS_ONESHOT;
1433 
1434 		/* Exclude IRQ from balancing if requested */
1435 		if (new->flags & IRQF_NOBALANCING) {
1436 			irq_settings_set_no_balancing(desc);
1437 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1438 		}
1439 
1440 		if (irq_settings_can_autoenable(desc)) {
1441 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1442 		} else {
1443 			/*
1444 			 * Shared interrupts do not go well with disabling
1445 			 * auto enable. The sharing interrupt might request
1446 			 * it while it's still disabled and then wait for
1447 			 * interrupts forever.
1448 			 */
1449 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1450 			/* Undo nested disables: */
1451 			desc->depth = 1;
1452 		}
1453 
1454 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1455 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1456 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1457 
1458 		if (nmsk != omsk)
1459 			/* hope the handler works with current  trigger mode */
1460 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1461 				irq, omsk, nmsk);
1462 	}
1463 
1464 	*old_ptr = new;
1465 
1466 	irq_pm_install_action(desc, new);
1467 
1468 	/* Reset broken irq detection when installing new handler */
1469 	desc->irq_count = 0;
1470 	desc->irqs_unhandled = 0;
1471 
1472 	/*
1473 	 * Check whether we disabled the irq via the spurious handler
1474 	 * before. Reenable it and give it another chance.
1475 	 */
1476 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1477 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1478 		__enable_irq(desc);
1479 	}
1480 
1481 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1482 	chip_bus_sync_unlock(desc);
1483 	mutex_unlock(&desc->request_mutex);
1484 
1485 	irq_setup_timings(desc, new);
1486 
1487 	/*
1488 	 * Strictly no need to wake it up, but hung_task complains
1489 	 * when no hard interrupt wakes the thread up.
1490 	 */
1491 	if (new->thread)
1492 		wake_up_process(new->thread);
1493 	if (new->secondary)
1494 		wake_up_process(new->secondary->thread);
1495 
1496 	register_irq_proc(irq, desc);
1497 	new->dir = NULL;
1498 	register_handler_proc(irq, new);
1499 	return 0;
1500 
1501 mismatch:
1502 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1503 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1504 		       irq, new->flags, new->name, old->flags, old->name);
1505 #ifdef CONFIG_DEBUG_SHIRQ
1506 		dump_stack();
1507 #endif
1508 	}
1509 	ret = -EBUSY;
1510 
1511 out_unlock:
1512 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1513 
1514 	if (!desc->action)
1515 		irq_release_resources(desc);
1516 out_bus_unlock:
1517 	chip_bus_sync_unlock(desc);
1518 	mutex_unlock(&desc->request_mutex);
1519 
1520 out_thread:
1521 	if (new->thread) {
1522 		struct task_struct *t = new->thread;
1523 
1524 		new->thread = NULL;
1525 		kthread_stop(t);
1526 		put_task_struct(t);
1527 	}
1528 	if (new->secondary && new->secondary->thread) {
1529 		struct task_struct *t = new->secondary->thread;
1530 
1531 		new->secondary->thread = NULL;
1532 		kthread_stop(t);
1533 		put_task_struct(t);
1534 	}
1535 out_mput:
1536 	module_put(desc->owner);
1537 	return ret;
1538 }
1539 
1540 /**
1541  *	setup_irq - setup an interrupt
1542  *	@irq: Interrupt line to setup
1543  *	@act: irqaction for the interrupt
1544  *
1545  * Used to statically setup interrupts in the early boot process.
1546  */
1547 int setup_irq(unsigned int irq, struct irqaction *act)
1548 {
1549 	int retval;
1550 	struct irq_desc *desc = irq_to_desc(irq);
1551 
1552 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1553 		return -EINVAL;
1554 
1555 	retval = irq_chip_pm_get(&desc->irq_data);
1556 	if (retval < 0)
1557 		return retval;
1558 
1559 	retval = __setup_irq(irq, desc, act);
1560 
1561 	if (retval)
1562 		irq_chip_pm_put(&desc->irq_data);
1563 
1564 	return retval;
1565 }
1566 EXPORT_SYMBOL_GPL(setup_irq);
1567 
1568 /*
1569  * Internal function to unregister an irqaction - used to free
1570  * regular and special interrupts that are part of the architecture.
1571  */
1572 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1573 {
1574 	unsigned irq = desc->irq_data.irq;
1575 	struct irqaction *action, **action_ptr;
1576 	unsigned long flags;
1577 
1578 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1579 
1580 	mutex_lock(&desc->request_mutex);
1581 	chip_bus_lock(desc);
1582 	raw_spin_lock_irqsave(&desc->lock, flags);
1583 
1584 	/*
1585 	 * There can be multiple actions per IRQ descriptor, find the right
1586 	 * one based on the dev_id:
1587 	 */
1588 	action_ptr = &desc->action;
1589 	for (;;) {
1590 		action = *action_ptr;
1591 
1592 		if (!action) {
1593 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1594 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1595 			chip_bus_sync_unlock(desc);
1596 			mutex_unlock(&desc->request_mutex);
1597 			return NULL;
1598 		}
1599 
1600 		if (action->dev_id == dev_id)
1601 			break;
1602 		action_ptr = &action->next;
1603 	}
1604 
1605 	/* Found it - now remove it from the list of entries: */
1606 	*action_ptr = action->next;
1607 
1608 	irq_pm_remove_action(desc, action);
1609 
1610 	/* If this was the last handler, shut down the IRQ line: */
1611 	if (!desc->action) {
1612 		irq_settings_clr_disable_unlazy(desc);
1613 		irq_shutdown(desc);
1614 	}
1615 
1616 #ifdef CONFIG_SMP
1617 	/* make sure affinity_hint is cleaned up */
1618 	if (WARN_ON_ONCE(desc->affinity_hint))
1619 		desc->affinity_hint = NULL;
1620 #endif
1621 
1622 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1623 	/*
1624 	 * Drop bus_lock here so the changes which were done in the chip
1625 	 * callbacks above are synced out to the irq chips which hang
1626 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1627 	 *
1628 	 * Aside of that the bus_lock can also be taken from the threaded
1629 	 * handler in irq_finalize_oneshot() which results in a deadlock
1630 	 * because kthread_stop() would wait forever for the thread to
1631 	 * complete, which is blocked on the bus lock.
1632 	 *
1633 	 * The still held desc->request_mutex() protects against a
1634 	 * concurrent request_irq() of this irq so the release of resources
1635 	 * and timing data is properly serialized.
1636 	 */
1637 	chip_bus_sync_unlock(desc);
1638 
1639 	unregister_handler_proc(irq, action);
1640 
1641 	/* Make sure it's not being used on another CPU: */
1642 	synchronize_hardirq(irq);
1643 
1644 #ifdef CONFIG_DEBUG_SHIRQ
1645 	/*
1646 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1647 	 * event to happen even now it's being freed, so let's make sure that
1648 	 * is so by doing an extra call to the handler ....
1649 	 *
1650 	 * ( We do this after actually deregistering it, to make sure that a
1651 	 *   'real' IRQ doesn't run in parallel with our fake. )
1652 	 */
1653 	if (action->flags & IRQF_SHARED) {
1654 		local_irq_save(flags);
1655 		action->handler(irq, dev_id);
1656 		local_irq_restore(flags);
1657 	}
1658 #endif
1659 
1660 	/*
1661 	 * The action has already been removed above, but the thread writes
1662 	 * its oneshot mask bit when it completes. Though request_mutex is
1663 	 * held across this which prevents __setup_irq() from handing out
1664 	 * the same bit to a newly requested action.
1665 	 */
1666 	if (action->thread) {
1667 		kthread_stop(action->thread);
1668 		put_task_struct(action->thread);
1669 		if (action->secondary && action->secondary->thread) {
1670 			kthread_stop(action->secondary->thread);
1671 			put_task_struct(action->secondary->thread);
1672 		}
1673 	}
1674 
1675 	/* Last action releases resources */
1676 	if (!desc->action) {
1677 		/*
1678 		 * Reaquire bus lock as irq_release_resources() might
1679 		 * require it to deallocate resources over the slow bus.
1680 		 */
1681 		chip_bus_lock(desc);
1682 		irq_release_resources(desc);
1683 		chip_bus_sync_unlock(desc);
1684 		irq_remove_timings(desc);
1685 	}
1686 
1687 	mutex_unlock(&desc->request_mutex);
1688 
1689 	irq_chip_pm_put(&desc->irq_data);
1690 	module_put(desc->owner);
1691 	kfree(action->secondary);
1692 	return action;
1693 }
1694 
1695 /**
1696  *	remove_irq - free an interrupt
1697  *	@irq: Interrupt line to free
1698  *	@act: irqaction for the interrupt
1699  *
1700  * Used to remove interrupts statically setup by the early boot process.
1701  */
1702 void remove_irq(unsigned int irq, struct irqaction *act)
1703 {
1704 	struct irq_desc *desc = irq_to_desc(irq);
1705 
1706 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1707 		__free_irq(desc, act->dev_id);
1708 }
1709 EXPORT_SYMBOL_GPL(remove_irq);
1710 
1711 /**
1712  *	free_irq - free an interrupt allocated with request_irq
1713  *	@irq: Interrupt line to free
1714  *	@dev_id: Device identity to free
1715  *
1716  *	Remove an interrupt handler. The handler is removed and if the
1717  *	interrupt line is no longer in use by any driver it is disabled.
1718  *	On a shared IRQ the caller must ensure the interrupt is disabled
1719  *	on the card it drives before calling this function. The function
1720  *	does not return until any executing interrupts for this IRQ
1721  *	have completed.
1722  *
1723  *	This function must not be called from interrupt context.
1724  *
1725  *	Returns the devname argument passed to request_irq.
1726  */
1727 const void *free_irq(unsigned int irq, void *dev_id)
1728 {
1729 	struct irq_desc *desc = irq_to_desc(irq);
1730 	struct irqaction *action;
1731 	const char *devname;
1732 
1733 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1734 		return NULL;
1735 
1736 #ifdef CONFIG_SMP
1737 	if (WARN_ON(desc->affinity_notify))
1738 		desc->affinity_notify = NULL;
1739 #endif
1740 
1741 	action = __free_irq(desc, dev_id);
1742 
1743 	if (!action)
1744 		return NULL;
1745 
1746 	devname = action->name;
1747 	kfree(action);
1748 	return devname;
1749 }
1750 EXPORT_SYMBOL(free_irq);
1751 
1752 /**
1753  *	request_threaded_irq - allocate an interrupt line
1754  *	@irq: Interrupt line to allocate
1755  *	@handler: Function to be called when the IRQ occurs.
1756  *		  Primary handler for threaded interrupts
1757  *		  If NULL and thread_fn != NULL the default
1758  *		  primary handler is installed
1759  *	@thread_fn: Function called from the irq handler thread
1760  *		    If NULL, no irq thread is created
1761  *	@irqflags: Interrupt type flags
1762  *	@devname: An ascii name for the claiming device
1763  *	@dev_id: A cookie passed back to the handler function
1764  *
1765  *	This call allocates interrupt resources and enables the
1766  *	interrupt line and IRQ handling. From the point this
1767  *	call is made your handler function may be invoked. Since
1768  *	your handler function must clear any interrupt the board
1769  *	raises, you must take care both to initialise your hardware
1770  *	and to set up the interrupt handler in the right order.
1771  *
1772  *	If you want to set up a threaded irq handler for your device
1773  *	then you need to supply @handler and @thread_fn. @handler is
1774  *	still called in hard interrupt context and has to check
1775  *	whether the interrupt originates from the device. If yes it
1776  *	needs to disable the interrupt on the device and return
1777  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1778  *	@thread_fn. This split handler design is necessary to support
1779  *	shared interrupts.
1780  *
1781  *	Dev_id must be globally unique. Normally the address of the
1782  *	device data structure is used as the cookie. Since the handler
1783  *	receives this value it makes sense to use it.
1784  *
1785  *	If your interrupt is shared you must pass a non NULL dev_id
1786  *	as this is required when freeing the interrupt.
1787  *
1788  *	Flags:
1789  *
1790  *	IRQF_SHARED		Interrupt is shared
1791  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1792  *
1793  */
1794 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1795 			 irq_handler_t thread_fn, unsigned long irqflags,
1796 			 const char *devname, void *dev_id)
1797 {
1798 	struct irqaction *action;
1799 	struct irq_desc *desc;
1800 	int retval;
1801 
1802 	if (irq == IRQ_NOTCONNECTED)
1803 		return -ENOTCONN;
1804 
1805 	/*
1806 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1807 	 * otherwise we'll have trouble later trying to figure out
1808 	 * which interrupt is which (messes up the interrupt freeing
1809 	 * logic etc).
1810 	 *
1811 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1812 	 * it cannot be set along with IRQF_NO_SUSPEND.
1813 	 */
1814 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1815 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1816 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1817 		return -EINVAL;
1818 
1819 	desc = irq_to_desc(irq);
1820 	if (!desc)
1821 		return -EINVAL;
1822 
1823 	if (!irq_settings_can_request(desc) ||
1824 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1825 		return -EINVAL;
1826 
1827 	if (!handler) {
1828 		if (!thread_fn)
1829 			return -EINVAL;
1830 		handler = irq_default_primary_handler;
1831 	}
1832 
1833 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1834 	if (!action)
1835 		return -ENOMEM;
1836 
1837 	action->handler = handler;
1838 	action->thread_fn = thread_fn;
1839 	action->flags = irqflags;
1840 	action->name = devname;
1841 	action->dev_id = dev_id;
1842 
1843 	retval = irq_chip_pm_get(&desc->irq_data);
1844 	if (retval < 0) {
1845 		kfree(action);
1846 		return retval;
1847 	}
1848 
1849 	retval = __setup_irq(irq, desc, action);
1850 
1851 	if (retval) {
1852 		irq_chip_pm_put(&desc->irq_data);
1853 		kfree(action->secondary);
1854 		kfree(action);
1855 	}
1856 
1857 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1858 	if (!retval && (irqflags & IRQF_SHARED)) {
1859 		/*
1860 		 * It's a shared IRQ -- the driver ought to be prepared for it
1861 		 * to happen immediately, so let's make sure....
1862 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1863 		 * run in parallel with our fake.
1864 		 */
1865 		unsigned long flags;
1866 
1867 		disable_irq(irq);
1868 		local_irq_save(flags);
1869 
1870 		handler(irq, dev_id);
1871 
1872 		local_irq_restore(flags);
1873 		enable_irq(irq);
1874 	}
1875 #endif
1876 	return retval;
1877 }
1878 EXPORT_SYMBOL(request_threaded_irq);
1879 
1880 /**
1881  *	request_any_context_irq - allocate an interrupt line
1882  *	@irq: Interrupt line to allocate
1883  *	@handler: Function to be called when the IRQ occurs.
1884  *		  Threaded handler for threaded interrupts.
1885  *	@flags: Interrupt type flags
1886  *	@name: An ascii name for the claiming device
1887  *	@dev_id: A cookie passed back to the handler function
1888  *
1889  *	This call allocates interrupt resources and enables the
1890  *	interrupt line and IRQ handling. It selects either a
1891  *	hardirq or threaded handling method depending on the
1892  *	context.
1893  *
1894  *	On failure, it returns a negative value. On success,
1895  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1896  */
1897 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1898 			    unsigned long flags, const char *name, void *dev_id)
1899 {
1900 	struct irq_desc *desc;
1901 	int ret;
1902 
1903 	if (irq == IRQ_NOTCONNECTED)
1904 		return -ENOTCONN;
1905 
1906 	desc = irq_to_desc(irq);
1907 	if (!desc)
1908 		return -EINVAL;
1909 
1910 	if (irq_settings_is_nested_thread(desc)) {
1911 		ret = request_threaded_irq(irq, NULL, handler,
1912 					   flags, name, dev_id);
1913 		return !ret ? IRQC_IS_NESTED : ret;
1914 	}
1915 
1916 	ret = request_irq(irq, handler, flags, name, dev_id);
1917 	return !ret ? IRQC_IS_HARDIRQ : ret;
1918 }
1919 EXPORT_SYMBOL_GPL(request_any_context_irq);
1920 
1921 void enable_percpu_irq(unsigned int irq, unsigned int type)
1922 {
1923 	unsigned int cpu = smp_processor_id();
1924 	unsigned long flags;
1925 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1926 
1927 	if (!desc)
1928 		return;
1929 
1930 	/*
1931 	 * If the trigger type is not specified by the caller, then
1932 	 * use the default for this interrupt.
1933 	 */
1934 	type &= IRQ_TYPE_SENSE_MASK;
1935 	if (type == IRQ_TYPE_NONE)
1936 		type = irqd_get_trigger_type(&desc->irq_data);
1937 
1938 	if (type != IRQ_TYPE_NONE) {
1939 		int ret;
1940 
1941 		ret = __irq_set_trigger(desc, type);
1942 
1943 		if (ret) {
1944 			WARN(1, "failed to set type for IRQ%d\n", irq);
1945 			goto out;
1946 		}
1947 	}
1948 
1949 	irq_percpu_enable(desc, cpu);
1950 out:
1951 	irq_put_desc_unlock(desc, flags);
1952 }
1953 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1954 
1955 /**
1956  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1957  * @irq:	Linux irq number to check for
1958  *
1959  * Must be called from a non migratable context. Returns the enable
1960  * state of a per cpu interrupt on the current cpu.
1961  */
1962 bool irq_percpu_is_enabled(unsigned int irq)
1963 {
1964 	unsigned int cpu = smp_processor_id();
1965 	struct irq_desc *desc;
1966 	unsigned long flags;
1967 	bool is_enabled;
1968 
1969 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1970 	if (!desc)
1971 		return false;
1972 
1973 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1974 	irq_put_desc_unlock(desc, flags);
1975 
1976 	return is_enabled;
1977 }
1978 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1979 
1980 void disable_percpu_irq(unsigned int irq)
1981 {
1982 	unsigned int cpu = smp_processor_id();
1983 	unsigned long flags;
1984 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1985 
1986 	if (!desc)
1987 		return;
1988 
1989 	irq_percpu_disable(desc, cpu);
1990 	irq_put_desc_unlock(desc, flags);
1991 }
1992 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1993 
1994 /*
1995  * Internal function to unregister a percpu irqaction.
1996  */
1997 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1998 {
1999 	struct irq_desc *desc = irq_to_desc(irq);
2000 	struct irqaction *action;
2001 	unsigned long flags;
2002 
2003 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2004 
2005 	if (!desc)
2006 		return NULL;
2007 
2008 	raw_spin_lock_irqsave(&desc->lock, flags);
2009 
2010 	action = desc->action;
2011 	if (!action || action->percpu_dev_id != dev_id) {
2012 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2013 		goto bad;
2014 	}
2015 
2016 	if (!cpumask_empty(desc->percpu_enabled)) {
2017 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2018 		     irq, cpumask_first(desc->percpu_enabled));
2019 		goto bad;
2020 	}
2021 
2022 	/* Found it - now remove it from the list of entries: */
2023 	desc->action = NULL;
2024 
2025 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2026 
2027 	unregister_handler_proc(irq, action);
2028 
2029 	irq_chip_pm_put(&desc->irq_data);
2030 	module_put(desc->owner);
2031 	return action;
2032 
2033 bad:
2034 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2035 	return NULL;
2036 }
2037 
2038 /**
2039  *	remove_percpu_irq - free a per-cpu interrupt
2040  *	@irq: Interrupt line to free
2041  *	@act: irqaction for the interrupt
2042  *
2043  * Used to remove interrupts statically setup by the early boot process.
2044  */
2045 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2046 {
2047 	struct irq_desc *desc = irq_to_desc(irq);
2048 
2049 	if (desc && irq_settings_is_per_cpu_devid(desc))
2050 	    __free_percpu_irq(irq, act->percpu_dev_id);
2051 }
2052 
2053 /**
2054  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2055  *	@irq: Interrupt line to free
2056  *	@dev_id: Device identity to free
2057  *
2058  *	Remove a percpu interrupt handler. The handler is removed, but
2059  *	the interrupt line is not disabled. This must be done on each
2060  *	CPU before calling this function. The function does not return
2061  *	until any executing interrupts for this IRQ have completed.
2062  *
2063  *	This function must not be called from interrupt context.
2064  */
2065 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2066 {
2067 	struct irq_desc *desc = irq_to_desc(irq);
2068 
2069 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2070 		return;
2071 
2072 	chip_bus_lock(desc);
2073 	kfree(__free_percpu_irq(irq, dev_id));
2074 	chip_bus_sync_unlock(desc);
2075 }
2076 EXPORT_SYMBOL_GPL(free_percpu_irq);
2077 
2078 /**
2079  *	setup_percpu_irq - setup a per-cpu interrupt
2080  *	@irq: Interrupt line to setup
2081  *	@act: irqaction for the interrupt
2082  *
2083  * Used to statically setup per-cpu interrupts in the early boot process.
2084  */
2085 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2086 {
2087 	struct irq_desc *desc = irq_to_desc(irq);
2088 	int retval;
2089 
2090 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2091 		return -EINVAL;
2092 
2093 	retval = irq_chip_pm_get(&desc->irq_data);
2094 	if (retval < 0)
2095 		return retval;
2096 
2097 	retval = __setup_irq(irq, desc, act);
2098 
2099 	if (retval)
2100 		irq_chip_pm_put(&desc->irq_data);
2101 
2102 	return retval;
2103 }
2104 
2105 /**
2106  *	__request_percpu_irq - allocate a percpu interrupt line
2107  *	@irq: Interrupt line to allocate
2108  *	@handler: Function to be called when the IRQ occurs.
2109  *	@flags: Interrupt type flags (IRQF_TIMER only)
2110  *	@devname: An ascii name for the claiming device
2111  *	@dev_id: A percpu cookie passed back to the handler function
2112  *
2113  *	This call allocates interrupt resources and enables the
2114  *	interrupt on the local CPU. If the interrupt is supposed to be
2115  *	enabled on other CPUs, it has to be done on each CPU using
2116  *	enable_percpu_irq().
2117  *
2118  *	Dev_id must be globally unique. It is a per-cpu variable, and
2119  *	the handler gets called with the interrupted CPU's instance of
2120  *	that variable.
2121  */
2122 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2123 			 unsigned long flags, const char *devname,
2124 			 void __percpu *dev_id)
2125 {
2126 	struct irqaction *action;
2127 	struct irq_desc *desc;
2128 	int retval;
2129 
2130 	if (!dev_id)
2131 		return -EINVAL;
2132 
2133 	desc = irq_to_desc(irq);
2134 	if (!desc || !irq_settings_can_request(desc) ||
2135 	    !irq_settings_is_per_cpu_devid(desc))
2136 		return -EINVAL;
2137 
2138 	if (flags && flags != IRQF_TIMER)
2139 		return -EINVAL;
2140 
2141 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2142 	if (!action)
2143 		return -ENOMEM;
2144 
2145 	action->handler = handler;
2146 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2147 	action->name = devname;
2148 	action->percpu_dev_id = dev_id;
2149 
2150 	retval = irq_chip_pm_get(&desc->irq_data);
2151 	if (retval < 0) {
2152 		kfree(action);
2153 		return retval;
2154 	}
2155 
2156 	retval = __setup_irq(irq, desc, action);
2157 
2158 	if (retval) {
2159 		irq_chip_pm_put(&desc->irq_data);
2160 		kfree(action);
2161 	}
2162 
2163 	return retval;
2164 }
2165 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2166 
2167 /**
2168  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2169  *	@irq: Interrupt line that is forwarded to a VM
2170  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2171  *	@state: a pointer to a boolean where the state is to be storeed
2172  *
2173  *	This call snapshots the internal irqchip state of an
2174  *	interrupt, returning into @state the bit corresponding to
2175  *	stage @which
2176  *
2177  *	This function should be called with preemption disabled if the
2178  *	interrupt controller has per-cpu registers.
2179  */
2180 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2181 			  bool *state)
2182 {
2183 	struct irq_desc *desc;
2184 	struct irq_data *data;
2185 	struct irq_chip *chip;
2186 	unsigned long flags;
2187 	int err = -EINVAL;
2188 
2189 	desc = irq_get_desc_buslock(irq, &flags, 0);
2190 	if (!desc)
2191 		return err;
2192 
2193 	data = irq_desc_get_irq_data(desc);
2194 
2195 	do {
2196 		chip = irq_data_get_irq_chip(data);
2197 		if (chip->irq_get_irqchip_state)
2198 			break;
2199 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2200 		data = data->parent_data;
2201 #else
2202 		data = NULL;
2203 #endif
2204 	} while (data);
2205 
2206 	if (data)
2207 		err = chip->irq_get_irqchip_state(data, which, state);
2208 
2209 	irq_put_desc_busunlock(desc, flags);
2210 	return err;
2211 }
2212 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2213 
2214 /**
2215  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2216  *	@irq: Interrupt line that is forwarded to a VM
2217  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2218  *	@val: Value corresponding to @which
2219  *
2220  *	This call sets the internal irqchip state of an interrupt,
2221  *	depending on the value of @which.
2222  *
2223  *	This function should be called with preemption disabled if the
2224  *	interrupt controller has per-cpu registers.
2225  */
2226 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2227 			  bool val)
2228 {
2229 	struct irq_desc *desc;
2230 	struct irq_data *data;
2231 	struct irq_chip *chip;
2232 	unsigned long flags;
2233 	int err = -EINVAL;
2234 
2235 	desc = irq_get_desc_buslock(irq, &flags, 0);
2236 	if (!desc)
2237 		return err;
2238 
2239 	data = irq_desc_get_irq_data(desc);
2240 
2241 	do {
2242 		chip = irq_data_get_irq_chip(data);
2243 		if (chip->irq_set_irqchip_state)
2244 			break;
2245 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2246 		data = data->parent_data;
2247 #else
2248 		data = NULL;
2249 #endif
2250 	} while (data);
2251 
2252 	if (data)
2253 		err = chip->irq_set_irqchip_state(data, which, val);
2254 
2255 	irq_put_desc_busunlock(desc, flags);
2256 	return err;
2257 }
2258 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2259