1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 if (action->secondary && action->secondary->thread) 198 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 199 } 200 } 201 202 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 203 static void irq_validate_effective_affinity(struct irq_data *data) 204 { 205 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 206 struct irq_chip *chip = irq_data_get_irq_chip(data); 207 208 if (!cpumask_empty(m)) 209 return; 210 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 211 chip->name, data->irq); 212 } 213 #else 214 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 215 #endif 216 217 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 218 bool force) 219 { 220 struct irq_desc *desc = irq_data_to_desc(data); 221 struct irq_chip *chip = irq_data_get_irq_chip(data); 222 const struct cpumask *prog_mask; 223 int ret; 224 225 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 226 static struct cpumask tmp_mask; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 raw_spin_lock(&tmp_mask_lock); 232 /* 233 * If this is a managed interrupt and housekeeping is enabled on 234 * it check whether the requested affinity mask intersects with 235 * a housekeeping CPU. If so, then remove the isolated CPUs from 236 * the mask and just keep the housekeeping CPU(s). This prevents 237 * the affinity setter from routing the interrupt to an isolated 238 * CPU to avoid that I/O submitted from a housekeeping CPU causes 239 * interrupts on an isolated one. 240 * 241 * If the masks do not intersect or include online CPU(s) then 242 * keep the requested mask. The isolated target CPUs are only 243 * receiving interrupts when the I/O operation was submitted 244 * directly from them. 245 * 246 * If all housekeeping CPUs in the affinity mask are offline, the 247 * interrupt will be migrated by the CPU hotplug code once a 248 * housekeeping CPU which belongs to the affinity mask comes 249 * online. 250 */ 251 if (irqd_affinity_is_managed(data) && 252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 253 const struct cpumask *hk_mask; 254 255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 256 257 cpumask_and(&tmp_mask, mask, hk_mask); 258 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 259 prog_mask = mask; 260 else 261 prog_mask = &tmp_mask; 262 } else { 263 prog_mask = mask; 264 } 265 266 /* 267 * Make sure we only provide online CPUs to the irqchip, 268 * unless we are being asked to force the affinity (in which 269 * case we do as we are told). 270 */ 271 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 272 if (!force && !cpumask_empty(&tmp_mask)) 273 ret = chip->irq_set_affinity(data, &tmp_mask, force); 274 else if (force) 275 ret = chip->irq_set_affinity(data, mask, force); 276 else 277 ret = -EINVAL; 278 279 raw_spin_unlock(&tmp_mask_lock); 280 281 switch (ret) { 282 case IRQ_SET_MASK_OK: 283 case IRQ_SET_MASK_OK_DONE: 284 cpumask_copy(desc->irq_common_data.affinity, mask); 285 fallthrough; 286 case IRQ_SET_MASK_OK_NOCOPY: 287 irq_validate_effective_affinity(data); 288 irq_set_thread_affinity(desc); 289 ret = 0; 290 } 291 292 return ret; 293 } 294 295 #ifdef CONFIG_GENERIC_PENDING_IRQ 296 static inline int irq_set_affinity_pending(struct irq_data *data, 297 const struct cpumask *dest) 298 { 299 struct irq_desc *desc = irq_data_to_desc(data); 300 301 irqd_set_move_pending(data); 302 irq_copy_pending(desc, dest); 303 return 0; 304 } 305 #else 306 static inline int irq_set_affinity_pending(struct irq_data *data, 307 const struct cpumask *dest) 308 { 309 return -EBUSY; 310 } 311 #endif 312 313 static int irq_try_set_affinity(struct irq_data *data, 314 const struct cpumask *dest, bool force) 315 { 316 int ret = irq_do_set_affinity(data, dest, force); 317 318 /* 319 * In case that the underlying vector management is busy and the 320 * architecture supports the generic pending mechanism then utilize 321 * this to avoid returning an error to user space. 322 */ 323 if (ret == -EBUSY && !force) 324 ret = irq_set_affinity_pending(data, dest); 325 return ret; 326 } 327 328 static bool irq_set_affinity_deactivated(struct irq_data *data, 329 const struct cpumask *mask) 330 { 331 struct irq_desc *desc = irq_data_to_desc(data); 332 333 /* 334 * Handle irq chips which can handle affinity only in activated 335 * state correctly 336 * 337 * If the interrupt is not yet activated, just store the affinity 338 * mask and do not call the chip driver at all. On activation the 339 * driver has to make sure anyway that the interrupt is in a 340 * usable state so startup works. 341 */ 342 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 343 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 344 return false; 345 346 cpumask_copy(desc->irq_common_data.affinity, mask); 347 irq_data_update_effective_affinity(data, mask); 348 irqd_set(data, IRQD_AFFINITY_SET); 349 return true; 350 } 351 352 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 353 bool force) 354 { 355 struct irq_chip *chip = irq_data_get_irq_chip(data); 356 struct irq_desc *desc = irq_data_to_desc(data); 357 int ret = 0; 358 359 if (!chip || !chip->irq_set_affinity) 360 return -EINVAL; 361 362 if (irq_set_affinity_deactivated(data, mask)) 363 return 0; 364 365 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 366 ret = irq_try_set_affinity(data, mask, force); 367 } else { 368 irqd_set_move_pending(data); 369 irq_copy_pending(desc, mask); 370 } 371 372 if (desc->affinity_notify) { 373 kref_get(&desc->affinity_notify->kref); 374 if (!schedule_work(&desc->affinity_notify->work)) { 375 /* Work was already scheduled, drop our extra ref */ 376 kref_put(&desc->affinity_notify->kref, 377 desc->affinity_notify->release); 378 } 379 } 380 irqd_set(data, IRQD_AFFINITY_SET); 381 382 return ret; 383 } 384 385 /** 386 * irq_update_affinity_desc - Update affinity management for an interrupt 387 * @irq: The interrupt number to update 388 * @affinity: Pointer to the affinity descriptor 389 * 390 * This interface can be used to configure the affinity management of 391 * interrupts which have been allocated already. 392 * 393 * There are certain limitations on when it may be used - attempts to use it 394 * for when the kernel is configured for generic IRQ reservation mode (in 395 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 396 * managed/non-managed interrupt accounting. In addition, attempts to use it on 397 * an interrupt which is already started or which has already been configured 398 * as managed will also fail, as these mean invalid init state or double init. 399 */ 400 int irq_update_affinity_desc(unsigned int irq, 401 struct irq_affinity_desc *affinity) 402 { 403 struct irq_desc *desc; 404 unsigned long flags; 405 bool activated; 406 int ret = 0; 407 408 /* 409 * Supporting this with the reservation scheme used by x86 needs 410 * some more thought. Fail it for now. 411 */ 412 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 413 return -EOPNOTSUPP; 414 415 desc = irq_get_desc_buslock(irq, &flags, 0); 416 if (!desc) 417 return -EINVAL; 418 419 /* Requires the interrupt to be shut down */ 420 if (irqd_is_started(&desc->irq_data)) { 421 ret = -EBUSY; 422 goto out_unlock; 423 } 424 425 /* Interrupts which are already managed cannot be modified */ 426 if (irqd_affinity_is_managed(&desc->irq_data)) { 427 ret = -EBUSY; 428 goto out_unlock; 429 } 430 431 /* 432 * Deactivate the interrupt. That's required to undo 433 * anything an earlier activation has established. 434 */ 435 activated = irqd_is_activated(&desc->irq_data); 436 if (activated) 437 irq_domain_deactivate_irq(&desc->irq_data); 438 439 if (affinity->is_managed) { 440 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 441 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 442 } 443 444 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 445 446 /* Restore the activation state */ 447 if (activated) 448 irq_domain_activate_irq(&desc->irq_data, false); 449 450 out_unlock: 451 irq_put_desc_busunlock(desc, flags); 452 return ret; 453 } 454 455 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 456 bool force) 457 { 458 struct irq_desc *desc = irq_to_desc(irq); 459 unsigned long flags; 460 int ret; 461 462 if (!desc) 463 return -EINVAL; 464 465 raw_spin_lock_irqsave(&desc->lock, flags); 466 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 467 raw_spin_unlock_irqrestore(&desc->lock, flags); 468 return ret; 469 } 470 471 /** 472 * irq_set_affinity - Set the irq affinity of a given irq 473 * @irq: Interrupt to set affinity 474 * @cpumask: cpumask 475 * 476 * Fails if cpumask does not contain an online CPU 477 */ 478 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 479 { 480 return __irq_set_affinity(irq, cpumask, false); 481 } 482 EXPORT_SYMBOL_GPL(irq_set_affinity); 483 484 /** 485 * irq_force_affinity - Force the irq affinity of a given irq 486 * @irq: Interrupt to set affinity 487 * @cpumask: cpumask 488 * 489 * Same as irq_set_affinity, but without checking the mask against 490 * online cpus. 491 * 492 * Solely for low level cpu hotplug code, where we need to make per 493 * cpu interrupts affine before the cpu becomes online. 494 */ 495 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 496 { 497 return __irq_set_affinity(irq, cpumask, true); 498 } 499 EXPORT_SYMBOL_GPL(irq_force_affinity); 500 501 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 502 bool setaffinity) 503 { 504 unsigned long flags; 505 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 506 507 if (!desc) 508 return -EINVAL; 509 desc->affinity_hint = m; 510 irq_put_desc_unlock(desc, flags); 511 if (m && setaffinity) 512 __irq_set_affinity(irq, m, false); 513 return 0; 514 } 515 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 516 517 static void irq_affinity_notify(struct work_struct *work) 518 { 519 struct irq_affinity_notify *notify = 520 container_of(work, struct irq_affinity_notify, work); 521 struct irq_desc *desc = irq_to_desc(notify->irq); 522 cpumask_var_t cpumask; 523 unsigned long flags; 524 525 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 526 goto out; 527 528 raw_spin_lock_irqsave(&desc->lock, flags); 529 if (irq_move_pending(&desc->irq_data)) 530 irq_get_pending(cpumask, desc); 531 else 532 cpumask_copy(cpumask, desc->irq_common_data.affinity); 533 raw_spin_unlock_irqrestore(&desc->lock, flags); 534 535 notify->notify(notify, cpumask); 536 537 free_cpumask_var(cpumask); 538 out: 539 kref_put(¬ify->kref, notify->release); 540 } 541 542 /** 543 * irq_set_affinity_notifier - control notification of IRQ affinity changes 544 * @irq: Interrupt for which to enable/disable notification 545 * @notify: Context for notification, or %NULL to disable 546 * notification. Function pointers must be initialised; 547 * the other fields will be initialised by this function. 548 * 549 * Must be called in process context. Notification may only be enabled 550 * after the IRQ is allocated and must be disabled before the IRQ is 551 * freed using free_irq(). 552 */ 553 int 554 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 555 { 556 struct irq_desc *desc = irq_to_desc(irq); 557 struct irq_affinity_notify *old_notify; 558 unsigned long flags; 559 560 /* The release function is promised process context */ 561 might_sleep(); 562 563 if (!desc || desc->istate & IRQS_NMI) 564 return -EINVAL; 565 566 /* Complete initialisation of *notify */ 567 if (notify) { 568 notify->irq = irq; 569 kref_init(¬ify->kref); 570 INIT_WORK(¬ify->work, irq_affinity_notify); 571 } 572 573 raw_spin_lock_irqsave(&desc->lock, flags); 574 old_notify = desc->affinity_notify; 575 desc->affinity_notify = notify; 576 raw_spin_unlock_irqrestore(&desc->lock, flags); 577 578 if (old_notify) { 579 if (cancel_work_sync(&old_notify->work)) { 580 /* Pending work had a ref, put that one too */ 581 kref_put(&old_notify->kref, old_notify->release); 582 } 583 kref_put(&old_notify->kref, old_notify->release); 584 } 585 586 return 0; 587 } 588 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 589 590 #ifndef CONFIG_AUTO_IRQ_AFFINITY 591 /* 592 * Generic version of the affinity autoselector. 593 */ 594 int irq_setup_affinity(struct irq_desc *desc) 595 { 596 struct cpumask *set = irq_default_affinity; 597 int ret, node = irq_desc_get_node(desc); 598 static DEFINE_RAW_SPINLOCK(mask_lock); 599 static struct cpumask mask; 600 601 /* Excludes PER_CPU and NO_BALANCE interrupts */ 602 if (!__irq_can_set_affinity(desc)) 603 return 0; 604 605 raw_spin_lock(&mask_lock); 606 /* 607 * Preserve the managed affinity setting and a userspace affinity 608 * setup, but make sure that one of the targets is online. 609 */ 610 if (irqd_affinity_is_managed(&desc->irq_data) || 611 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 612 if (cpumask_intersects(desc->irq_common_data.affinity, 613 cpu_online_mask)) 614 set = desc->irq_common_data.affinity; 615 else 616 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 617 } 618 619 cpumask_and(&mask, cpu_online_mask, set); 620 if (cpumask_empty(&mask)) 621 cpumask_copy(&mask, cpu_online_mask); 622 623 if (node != NUMA_NO_NODE) { 624 const struct cpumask *nodemask = cpumask_of_node(node); 625 626 /* make sure at least one of the cpus in nodemask is online */ 627 if (cpumask_intersects(&mask, nodemask)) 628 cpumask_and(&mask, &mask, nodemask); 629 } 630 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 631 raw_spin_unlock(&mask_lock); 632 return ret; 633 } 634 #else 635 /* Wrapper for ALPHA specific affinity selector magic */ 636 int irq_setup_affinity(struct irq_desc *desc) 637 { 638 return irq_select_affinity(irq_desc_get_irq(desc)); 639 } 640 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 641 #endif /* CONFIG_SMP */ 642 643 644 /** 645 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 646 * @irq: interrupt number to set affinity 647 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 648 * specific data for percpu_devid interrupts 649 * 650 * This function uses the vCPU specific data to set the vCPU 651 * affinity for an irq. The vCPU specific data is passed from 652 * outside, such as KVM. One example code path is as below: 653 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 654 */ 655 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 656 { 657 unsigned long flags; 658 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 659 struct irq_data *data; 660 struct irq_chip *chip; 661 int ret = -ENOSYS; 662 663 if (!desc) 664 return -EINVAL; 665 666 data = irq_desc_get_irq_data(desc); 667 do { 668 chip = irq_data_get_irq_chip(data); 669 if (chip && chip->irq_set_vcpu_affinity) 670 break; 671 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 672 data = data->parent_data; 673 #else 674 data = NULL; 675 #endif 676 } while (data); 677 678 if (data) 679 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 680 irq_put_desc_unlock(desc, flags); 681 682 return ret; 683 } 684 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 685 686 void __disable_irq(struct irq_desc *desc) 687 { 688 if (!desc->depth++) 689 irq_disable(desc); 690 } 691 692 static int __disable_irq_nosync(unsigned int irq) 693 { 694 unsigned long flags; 695 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 696 697 if (!desc) 698 return -EINVAL; 699 __disable_irq(desc); 700 irq_put_desc_busunlock(desc, flags); 701 return 0; 702 } 703 704 /** 705 * disable_irq_nosync - disable an irq without waiting 706 * @irq: Interrupt to disable 707 * 708 * Disable the selected interrupt line. Disables and Enables are 709 * nested. 710 * Unlike disable_irq(), this function does not ensure existing 711 * instances of the IRQ handler have completed before returning. 712 * 713 * This function may be called from IRQ context. 714 */ 715 void disable_irq_nosync(unsigned int irq) 716 { 717 __disable_irq_nosync(irq); 718 } 719 EXPORT_SYMBOL(disable_irq_nosync); 720 721 /** 722 * disable_irq - disable an irq and wait for completion 723 * @irq: Interrupt to disable 724 * 725 * Disable the selected interrupt line. Enables and Disables are 726 * nested. 727 * This function waits for any pending IRQ handlers for this interrupt 728 * to complete before returning. If you use this function while 729 * holding a resource the IRQ handler may need you will deadlock. 730 * 731 * Can only be called from preemptible code as it might sleep when 732 * an interrupt thread is associated to @irq. 733 * 734 */ 735 void disable_irq(unsigned int irq) 736 { 737 might_sleep(); 738 if (!__disable_irq_nosync(irq)) 739 synchronize_irq(irq); 740 } 741 EXPORT_SYMBOL(disable_irq); 742 743 /** 744 * disable_hardirq - disables an irq and waits for hardirq completion 745 * @irq: Interrupt to disable 746 * 747 * Disable the selected interrupt line. Enables and Disables are 748 * nested. 749 * This function waits for any pending hard IRQ handlers for this 750 * interrupt to complete before returning. If you use this function while 751 * holding a resource the hard IRQ handler may need you will deadlock. 752 * 753 * When used to optimistically disable an interrupt from atomic context 754 * the return value must be checked. 755 * 756 * Returns: false if a threaded handler is active. 757 * 758 * This function may be called - with care - from IRQ context. 759 */ 760 bool disable_hardirq(unsigned int irq) 761 { 762 if (!__disable_irq_nosync(irq)) 763 return synchronize_hardirq(irq); 764 765 return false; 766 } 767 EXPORT_SYMBOL_GPL(disable_hardirq); 768 769 /** 770 * disable_nmi_nosync - disable an nmi without waiting 771 * @irq: Interrupt to disable 772 * 773 * Disable the selected interrupt line. Disables and enables are 774 * nested. 775 * The interrupt to disable must have been requested through request_nmi. 776 * Unlike disable_nmi(), this function does not ensure existing 777 * instances of the IRQ handler have completed before returning. 778 */ 779 void disable_nmi_nosync(unsigned int irq) 780 { 781 disable_irq_nosync(irq); 782 } 783 784 void __enable_irq(struct irq_desc *desc) 785 { 786 switch (desc->depth) { 787 case 0: 788 err_out: 789 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 790 irq_desc_get_irq(desc)); 791 break; 792 case 1: { 793 if (desc->istate & IRQS_SUSPENDED) 794 goto err_out; 795 /* Prevent probing on this irq: */ 796 irq_settings_set_noprobe(desc); 797 /* 798 * Call irq_startup() not irq_enable() here because the 799 * interrupt might be marked NOAUTOEN so irq_startup() 800 * needs to be invoked when it gets enabled the first time. 801 * This is also required when __enable_irq() is invoked for 802 * a managed and shutdown interrupt from the S3 resume 803 * path. 804 * 805 * If it was already started up, then irq_startup() will 806 * invoke irq_enable() under the hood. 807 */ 808 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 809 break; 810 } 811 default: 812 desc->depth--; 813 } 814 } 815 816 /** 817 * enable_irq - enable handling of an irq 818 * @irq: Interrupt to enable 819 * 820 * Undoes the effect of one call to disable_irq(). If this 821 * matches the last disable, processing of interrupts on this 822 * IRQ line is re-enabled. 823 * 824 * This function may be called from IRQ context only when 825 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 826 */ 827 void enable_irq(unsigned int irq) 828 { 829 unsigned long flags; 830 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 831 832 if (!desc) 833 return; 834 if (WARN(!desc->irq_data.chip, 835 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 836 goto out; 837 838 __enable_irq(desc); 839 out: 840 irq_put_desc_busunlock(desc, flags); 841 } 842 EXPORT_SYMBOL(enable_irq); 843 844 /** 845 * enable_nmi - enable handling of an nmi 846 * @irq: Interrupt to enable 847 * 848 * The interrupt to enable must have been requested through request_nmi. 849 * Undoes the effect of one call to disable_nmi(). If this 850 * matches the last disable, processing of interrupts on this 851 * IRQ line is re-enabled. 852 */ 853 void enable_nmi(unsigned int irq) 854 { 855 enable_irq(irq); 856 } 857 858 static int set_irq_wake_real(unsigned int irq, unsigned int on) 859 { 860 struct irq_desc *desc = irq_to_desc(irq); 861 int ret = -ENXIO; 862 863 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 864 return 0; 865 866 if (desc->irq_data.chip->irq_set_wake) 867 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 868 869 return ret; 870 } 871 872 /** 873 * irq_set_irq_wake - control irq power management wakeup 874 * @irq: interrupt to control 875 * @on: enable/disable power management wakeup 876 * 877 * Enable/disable power management wakeup mode, which is 878 * disabled by default. Enables and disables must match, 879 * just as they match for non-wakeup mode support. 880 * 881 * Wakeup mode lets this IRQ wake the system from sleep 882 * states like "suspend to RAM". 883 * 884 * Note: irq enable/disable state is completely orthogonal 885 * to the enable/disable state of irq wake. An irq can be 886 * disabled with disable_irq() and still wake the system as 887 * long as the irq has wake enabled. If this does not hold, 888 * then the underlying irq chip and the related driver need 889 * to be investigated. 890 */ 891 int irq_set_irq_wake(unsigned int irq, unsigned int on) 892 { 893 unsigned long flags; 894 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 895 int ret = 0; 896 897 if (!desc) 898 return -EINVAL; 899 900 /* Don't use NMIs as wake up interrupts please */ 901 if (desc->istate & IRQS_NMI) { 902 ret = -EINVAL; 903 goto out_unlock; 904 } 905 906 /* wakeup-capable irqs can be shared between drivers that 907 * don't need to have the same sleep mode behaviors. 908 */ 909 if (on) { 910 if (desc->wake_depth++ == 0) { 911 ret = set_irq_wake_real(irq, on); 912 if (ret) 913 desc->wake_depth = 0; 914 else 915 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 916 } 917 } else { 918 if (desc->wake_depth == 0) { 919 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 920 } else if (--desc->wake_depth == 0) { 921 ret = set_irq_wake_real(irq, on); 922 if (ret) 923 desc->wake_depth = 1; 924 else 925 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 926 } 927 } 928 929 out_unlock: 930 irq_put_desc_busunlock(desc, flags); 931 return ret; 932 } 933 EXPORT_SYMBOL(irq_set_irq_wake); 934 935 /* 936 * Internal function that tells the architecture code whether a 937 * particular irq has been exclusively allocated or is available 938 * for driver use. 939 */ 940 int can_request_irq(unsigned int irq, unsigned long irqflags) 941 { 942 unsigned long flags; 943 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 944 int canrequest = 0; 945 946 if (!desc) 947 return 0; 948 949 if (irq_settings_can_request(desc)) { 950 if (!desc->action || 951 irqflags & desc->action->flags & IRQF_SHARED) 952 canrequest = 1; 953 } 954 irq_put_desc_unlock(desc, flags); 955 return canrequest; 956 } 957 958 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 959 { 960 struct irq_chip *chip = desc->irq_data.chip; 961 int ret, unmask = 0; 962 963 if (!chip || !chip->irq_set_type) { 964 /* 965 * IRQF_TRIGGER_* but the PIC does not support multiple 966 * flow-types? 967 */ 968 pr_debug("No set_type function for IRQ %d (%s)\n", 969 irq_desc_get_irq(desc), 970 chip ? (chip->name ? : "unknown") : "unknown"); 971 return 0; 972 } 973 974 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 975 if (!irqd_irq_masked(&desc->irq_data)) 976 mask_irq(desc); 977 if (!irqd_irq_disabled(&desc->irq_data)) 978 unmask = 1; 979 } 980 981 /* Mask all flags except trigger mode */ 982 flags &= IRQ_TYPE_SENSE_MASK; 983 ret = chip->irq_set_type(&desc->irq_data, flags); 984 985 switch (ret) { 986 case IRQ_SET_MASK_OK: 987 case IRQ_SET_MASK_OK_DONE: 988 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 989 irqd_set(&desc->irq_data, flags); 990 fallthrough; 991 992 case IRQ_SET_MASK_OK_NOCOPY: 993 flags = irqd_get_trigger_type(&desc->irq_data); 994 irq_settings_set_trigger_mask(desc, flags); 995 irqd_clear(&desc->irq_data, IRQD_LEVEL); 996 irq_settings_clr_level(desc); 997 if (flags & IRQ_TYPE_LEVEL_MASK) { 998 irq_settings_set_level(desc); 999 irqd_set(&desc->irq_data, IRQD_LEVEL); 1000 } 1001 1002 ret = 0; 1003 break; 1004 default: 1005 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1006 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1007 } 1008 if (unmask) 1009 unmask_irq(desc); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_HARDIRQS_SW_RESEND 1014 int irq_set_parent(int irq, int parent_irq) 1015 { 1016 unsigned long flags; 1017 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1018 1019 if (!desc) 1020 return -EINVAL; 1021 1022 desc->parent_irq = parent_irq; 1023 1024 irq_put_desc_unlock(desc, flags); 1025 return 0; 1026 } 1027 EXPORT_SYMBOL_GPL(irq_set_parent); 1028 #endif 1029 1030 /* 1031 * Default primary interrupt handler for threaded interrupts. Is 1032 * assigned as primary handler when request_threaded_irq is called 1033 * with handler == NULL. Useful for oneshot interrupts. 1034 */ 1035 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1036 { 1037 return IRQ_WAKE_THREAD; 1038 } 1039 1040 /* 1041 * Primary handler for nested threaded interrupts. Should never be 1042 * called. 1043 */ 1044 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1045 { 1046 WARN(1, "Primary handler called for nested irq %d\n", irq); 1047 return IRQ_NONE; 1048 } 1049 1050 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1051 { 1052 WARN(1, "Secondary action handler called for irq %d\n", irq); 1053 return IRQ_NONE; 1054 } 1055 1056 static int irq_wait_for_interrupt(struct irqaction *action) 1057 { 1058 for (;;) { 1059 set_current_state(TASK_INTERRUPTIBLE); 1060 1061 if (kthread_should_stop()) { 1062 /* may need to run one last time */ 1063 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1064 &action->thread_flags)) { 1065 __set_current_state(TASK_RUNNING); 1066 return 0; 1067 } 1068 __set_current_state(TASK_RUNNING); 1069 return -1; 1070 } 1071 1072 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1073 &action->thread_flags)) { 1074 __set_current_state(TASK_RUNNING); 1075 return 0; 1076 } 1077 schedule(); 1078 } 1079 } 1080 1081 /* 1082 * Oneshot interrupts keep the irq line masked until the threaded 1083 * handler finished. unmask if the interrupt has not been disabled and 1084 * is marked MASKED. 1085 */ 1086 static void irq_finalize_oneshot(struct irq_desc *desc, 1087 struct irqaction *action) 1088 { 1089 if (!(desc->istate & IRQS_ONESHOT) || 1090 action->handler == irq_forced_secondary_handler) 1091 return; 1092 again: 1093 chip_bus_lock(desc); 1094 raw_spin_lock_irq(&desc->lock); 1095 1096 /* 1097 * Implausible though it may be we need to protect us against 1098 * the following scenario: 1099 * 1100 * The thread is faster done than the hard interrupt handler 1101 * on the other CPU. If we unmask the irq line then the 1102 * interrupt can come in again and masks the line, leaves due 1103 * to IRQS_INPROGRESS and the irq line is masked forever. 1104 * 1105 * This also serializes the state of shared oneshot handlers 1106 * versus "desc->threads_oneshot |= action->thread_mask;" in 1107 * irq_wake_thread(). See the comment there which explains the 1108 * serialization. 1109 */ 1110 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1111 raw_spin_unlock_irq(&desc->lock); 1112 chip_bus_sync_unlock(desc); 1113 cpu_relax(); 1114 goto again; 1115 } 1116 1117 /* 1118 * Now check again, whether the thread should run. Otherwise 1119 * we would clear the threads_oneshot bit of this thread which 1120 * was just set. 1121 */ 1122 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1123 goto out_unlock; 1124 1125 desc->threads_oneshot &= ~action->thread_mask; 1126 1127 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1128 irqd_irq_masked(&desc->irq_data)) 1129 unmask_threaded_irq(desc); 1130 1131 out_unlock: 1132 raw_spin_unlock_irq(&desc->lock); 1133 chip_bus_sync_unlock(desc); 1134 } 1135 1136 #ifdef CONFIG_SMP 1137 /* 1138 * Check whether we need to change the affinity of the interrupt thread. 1139 */ 1140 static void 1141 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1142 { 1143 cpumask_var_t mask; 1144 bool valid = true; 1145 1146 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1147 return; 1148 1149 /* 1150 * In case we are out of memory we set IRQTF_AFFINITY again and 1151 * try again next time 1152 */ 1153 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1154 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1155 return; 1156 } 1157 1158 raw_spin_lock_irq(&desc->lock); 1159 /* 1160 * This code is triggered unconditionally. Check the affinity 1161 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1162 */ 1163 if (cpumask_available(desc->irq_common_data.affinity)) { 1164 const struct cpumask *m; 1165 1166 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1167 cpumask_copy(mask, m); 1168 } else { 1169 valid = false; 1170 } 1171 raw_spin_unlock_irq(&desc->lock); 1172 1173 if (valid) 1174 set_cpus_allowed_ptr(current, mask); 1175 free_cpumask_var(mask); 1176 } 1177 #else 1178 static inline void 1179 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1180 #endif 1181 1182 /* 1183 * Interrupts which are not explicitly requested as threaded 1184 * interrupts rely on the implicit bh/preempt disable of the hard irq 1185 * context. So we need to disable bh here to avoid deadlocks and other 1186 * side effects. 1187 */ 1188 static irqreturn_t 1189 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1190 { 1191 irqreturn_t ret; 1192 1193 local_bh_disable(); 1194 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1195 local_irq_disable(); 1196 ret = action->thread_fn(action->irq, action->dev_id); 1197 if (ret == IRQ_HANDLED) 1198 atomic_inc(&desc->threads_handled); 1199 1200 irq_finalize_oneshot(desc, action); 1201 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1202 local_irq_enable(); 1203 local_bh_enable(); 1204 return ret; 1205 } 1206 1207 /* 1208 * Interrupts explicitly requested as threaded interrupts want to be 1209 * preemptible - many of them need to sleep and wait for slow busses to 1210 * complete. 1211 */ 1212 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1213 struct irqaction *action) 1214 { 1215 irqreturn_t ret; 1216 1217 ret = action->thread_fn(action->irq, action->dev_id); 1218 if (ret == IRQ_HANDLED) 1219 atomic_inc(&desc->threads_handled); 1220 1221 irq_finalize_oneshot(desc, action); 1222 return ret; 1223 } 1224 1225 void wake_threads_waitq(struct irq_desc *desc) 1226 { 1227 if (atomic_dec_and_test(&desc->threads_active)) 1228 wake_up(&desc->wait_for_threads); 1229 } 1230 1231 static void irq_thread_dtor(struct callback_head *unused) 1232 { 1233 struct task_struct *tsk = current; 1234 struct irq_desc *desc; 1235 struct irqaction *action; 1236 1237 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1238 return; 1239 1240 action = kthread_data(tsk); 1241 1242 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1243 tsk->comm, tsk->pid, action->irq); 1244 1245 1246 desc = irq_to_desc(action->irq); 1247 /* 1248 * If IRQTF_RUNTHREAD is set, we need to decrement 1249 * desc->threads_active and wake possible waiters. 1250 */ 1251 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1252 wake_threads_waitq(desc); 1253 1254 /* Prevent a stale desc->threads_oneshot */ 1255 irq_finalize_oneshot(desc, action); 1256 } 1257 1258 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1259 { 1260 struct irqaction *secondary = action->secondary; 1261 1262 if (WARN_ON_ONCE(!secondary)) 1263 return; 1264 1265 raw_spin_lock_irq(&desc->lock); 1266 __irq_wake_thread(desc, secondary); 1267 raw_spin_unlock_irq(&desc->lock); 1268 } 1269 1270 /* 1271 * Internal function to notify that a interrupt thread is ready. 1272 */ 1273 static void irq_thread_set_ready(struct irq_desc *desc, 1274 struct irqaction *action) 1275 { 1276 set_bit(IRQTF_READY, &action->thread_flags); 1277 wake_up(&desc->wait_for_threads); 1278 } 1279 1280 /* 1281 * Internal function to wake up a interrupt thread and wait until it is 1282 * ready. 1283 */ 1284 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1285 struct irqaction *action) 1286 { 1287 if (!action || !action->thread) 1288 return; 1289 1290 wake_up_process(action->thread); 1291 wait_event(desc->wait_for_threads, 1292 test_bit(IRQTF_READY, &action->thread_flags)); 1293 } 1294 1295 /* 1296 * Interrupt handler thread 1297 */ 1298 static int irq_thread(void *data) 1299 { 1300 struct callback_head on_exit_work; 1301 struct irqaction *action = data; 1302 struct irq_desc *desc = irq_to_desc(action->irq); 1303 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1304 struct irqaction *action); 1305 1306 irq_thread_set_ready(desc, action); 1307 1308 sched_set_fifo(current); 1309 1310 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1311 &action->thread_flags)) 1312 handler_fn = irq_forced_thread_fn; 1313 else 1314 handler_fn = irq_thread_fn; 1315 1316 init_task_work(&on_exit_work, irq_thread_dtor); 1317 task_work_add(current, &on_exit_work, TWA_NONE); 1318 1319 irq_thread_check_affinity(desc, action); 1320 1321 while (!irq_wait_for_interrupt(action)) { 1322 irqreturn_t action_ret; 1323 1324 irq_thread_check_affinity(desc, action); 1325 1326 action_ret = handler_fn(desc, action); 1327 if (action_ret == IRQ_WAKE_THREAD) 1328 irq_wake_secondary(desc, action); 1329 1330 wake_threads_waitq(desc); 1331 } 1332 1333 /* 1334 * This is the regular exit path. __free_irq() is stopping the 1335 * thread via kthread_stop() after calling 1336 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1337 * oneshot mask bit can be set. 1338 */ 1339 task_work_cancel_func(current, irq_thread_dtor); 1340 return 0; 1341 } 1342 1343 /** 1344 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1345 * @irq: Interrupt line 1346 * @dev_id: Device identity for which the thread should be woken 1347 * 1348 */ 1349 void irq_wake_thread(unsigned int irq, void *dev_id) 1350 { 1351 struct irq_desc *desc = irq_to_desc(irq); 1352 struct irqaction *action; 1353 unsigned long flags; 1354 1355 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1356 return; 1357 1358 raw_spin_lock_irqsave(&desc->lock, flags); 1359 for_each_action_of_desc(desc, action) { 1360 if (action->dev_id == dev_id) { 1361 if (action->thread) 1362 __irq_wake_thread(desc, action); 1363 break; 1364 } 1365 } 1366 raw_spin_unlock_irqrestore(&desc->lock, flags); 1367 } 1368 EXPORT_SYMBOL_GPL(irq_wake_thread); 1369 1370 static int irq_setup_forced_threading(struct irqaction *new) 1371 { 1372 if (!force_irqthreads()) 1373 return 0; 1374 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1375 return 0; 1376 1377 /* 1378 * No further action required for interrupts which are requested as 1379 * threaded interrupts already 1380 */ 1381 if (new->handler == irq_default_primary_handler) 1382 return 0; 1383 1384 new->flags |= IRQF_ONESHOT; 1385 1386 /* 1387 * Handle the case where we have a real primary handler and a 1388 * thread handler. We force thread them as well by creating a 1389 * secondary action. 1390 */ 1391 if (new->handler && new->thread_fn) { 1392 /* Allocate the secondary action */ 1393 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1394 if (!new->secondary) 1395 return -ENOMEM; 1396 new->secondary->handler = irq_forced_secondary_handler; 1397 new->secondary->thread_fn = new->thread_fn; 1398 new->secondary->dev_id = new->dev_id; 1399 new->secondary->irq = new->irq; 1400 new->secondary->name = new->name; 1401 } 1402 /* Deal with the primary handler */ 1403 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1404 new->thread_fn = new->handler; 1405 new->handler = irq_default_primary_handler; 1406 return 0; 1407 } 1408 1409 static int irq_request_resources(struct irq_desc *desc) 1410 { 1411 struct irq_data *d = &desc->irq_data; 1412 struct irq_chip *c = d->chip; 1413 1414 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1415 } 1416 1417 static void irq_release_resources(struct irq_desc *desc) 1418 { 1419 struct irq_data *d = &desc->irq_data; 1420 struct irq_chip *c = d->chip; 1421 1422 if (c->irq_release_resources) 1423 c->irq_release_resources(d); 1424 } 1425 1426 static bool irq_supports_nmi(struct irq_desc *desc) 1427 { 1428 struct irq_data *d = irq_desc_get_irq_data(desc); 1429 1430 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1431 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1432 if (d->parent_data) 1433 return false; 1434 #endif 1435 /* Don't support NMIs for chips behind a slow bus */ 1436 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1437 return false; 1438 1439 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1440 } 1441 1442 static int irq_nmi_setup(struct irq_desc *desc) 1443 { 1444 struct irq_data *d = irq_desc_get_irq_data(desc); 1445 struct irq_chip *c = d->chip; 1446 1447 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1448 } 1449 1450 static void irq_nmi_teardown(struct irq_desc *desc) 1451 { 1452 struct irq_data *d = irq_desc_get_irq_data(desc); 1453 struct irq_chip *c = d->chip; 1454 1455 if (c->irq_nmi_teardown) 1456 c->irq_nmi_teardown(d); 1457 } 1458 1459 static int 1460 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1461 { 1462 struct task_struct *t; 1463 1464 if (!secondary) { 1465 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1466 new->name); 1467 } else { 1468 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1469 new->name); 1470 } 1471 1472 if (IS_ERR(t)) 1473 return PTR_ERR(t); 1474 1475 /* 1476 * We keep the reference to the task struct even if 1477 * the thread dies to avoid that the interrupt code 1478 * references an already freed task_struct. 1479 */ 1480 new->thread = get_task_struct(t); 1481 /* 1482 * Tell the thread to set its affinity. This is 1483 * important for shared interrupt handlers as we do 1484 * not invoke setup_affinity() for the secondary 1485 * handlers as everything is already set up. Even for 1486 * interrupts marked with IRQF_NO_BALANCE this is 1487 * correct as we want the thread to move to the cpu(s) 1488 * on which the requesting code placed the interrupt. 1489 */ 1490 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1491 return 0; 1492 } 1493 1494 /* 1495 * Internal function to register an irqaction - typically used to 1496 * allocate special interrupts that are part of the architecture. 1497 * 1498 * Locking rules: 1499 * 1500 * desc->request_mutex Provides serialization against a concurrent free_irq() 1501 * chip_bus_lock Provides serialization for slow bus operations 1502 * desc->lock Provides serialization against hard interrupts 1503 * 1504 * chip_bus_lock and desc->lock are sufficient for all other management and 1505 * interrupt related functions. desc->request_mutex solely serializes 1506 * request/free_irq(). 1507 */ 1508 static int 1509 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1510 { 1511 struct irqaction *old, **old_ptr; 1512 unsigned long flags, thread_mask = 0; 1513 int ret, nested, shared = 0; 1514 1515 if (!desc) 1516 return -EINVAL; 1517 1518 if (desc->irq_data.chip == &no_irq_chip) 1519 return -ENOSYS; 1520 if (!try_module_get(desc->owner)) 1521 return -ENODEV; 1522 1523 new->irq = irq; 1524 1525 /* 1526 * If the trigger type is not specified by the caller, 1527 * then use the default for this interrupt. 1528 */ 1529 if (!(new->flags & IRQF_TRIGGER_MASK)) 1530 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1531 1532 /* 1533 * Check whether the interrupt nests into another interrupt 1534 * thread. 1535 */ 1536 nested = irq_settings_is_nested_thread(desc); 1537 if (nested) { 1538 if (!new->thread_fn) { 1539 ret = -EINVAL; 1540 goto out_mput; 1541 } 1542 /* 1543 * Replace the primary handler which was provided from 1544 * the driver for non nested interrupt handling by the 1545 * dummy function which warns when called. 1546 */ 1547 new->handler = irq_nested_primary_handler; 1548 } else { 1549 if (irq_settings_can_thread(desc)) { 1550 ret = irq_setup_forced_threading(new); 1551 if (ret) 1552 goto out_mput; 1553 } 1554 } 1555 1556 /* 1557 * Create a handler thread when a thread function is supplied 1558 * and the interrupt does not nest into another interrupt 1559 * thread. 1560 */ 1561 if (new->thread_fn && !nested) { 1562 ret = setup_irq_thread(new, irq, false); 1563 if (ret) 1564 goto out_mput; 1565 if (new->secondary) { 1566 ret = setup_irq_thread(new->secondary, irq, true); 1567 if (ret) 1568 goto out_thread; 1569 } 1570 } 1571 1572 /* 1573 * Drivers are often written to work w/o knowledge about the 1574 * underlying irq chip implementation, so a request for a 1575 * threaded irq without a primary hard irq context handler 1576 * requires the ONESHOT flag to be set. Some irq chips like 1577 * MSI based interrupts are per se one shot safe. Check the 1578 * chip flags, so we can avoid the unmask dance at the end of 1579 * the threaded handler for those. 1580 */ 1581 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1582 new->flags &= ~IRQF_ONESHOT; 1583 1584 /* 1585 * Protects against a concurrent __free_irq() call which might wait 1586 * for synchronize_hardirq() to complete without holding the optional 1587 * chip bus lock and desc->lock. Also protects against handing out 1588 * a recycled oneshot thread_mask bit while it's still in use by 1589 * its previous owner. 1590 */ 1591 mutex_lock(&desc->request_mutex); 1592 1593 /* 1594 * Acquire bus lock as the irq_request_resources() callback below 1595 * might rely on the serialization or the magic power management 1596 * functions which are abusing the irq_bus_lock() callback, 1597 */ 1598 chip_bus_lock(desc); 1599 1600 /* First installed action requests resources. */ 1601 if (!desc->action) { 1602 ret = irq_request_resources(desc); 1603 if (ret) { 1604 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1605 new->name, irq, desc->irq_data.chip->name); 1606 goto out_bus_unlock; 1607 } 1608 } 1609 1610 /* 1611 * The following block of code has to be executed atomically 1612 * protected against a concurrent interrupt and any of the other 1613 * management calls which are not serialized via 1614 * desc->request_mutex or the optional bus lock. 1615 */ 1616 raw_spin_lock_irqsave(&desc->lock, flags); 1617 old_ptr = &desc->action; 1618 old = *old_ptr; 1619 if (old) { 1620 /* 1621 * Can't share interrupts unless both agree to and are 1622 * the same type (level, edge, polarity). So both flag 1623 * fields must have IRQF_SHARED set and the bits which 1624 * set the trigger type must match. Also all must 1625 * agree on ONESHOT. 1626 * Interrupt lines used for NMIs cannot be shared. 1627 */ 1628 unsigned int oldtype; 1629 1630 if (desc->istate & IRQS_NMI) { 1631 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1632 new->name, irq, desc->irq_data.chip->name); 1633 ret = -EINVAL; 1634 goto out_unlock; 1635 } 1636 1637 /* 1638 * If nobody did set the configuration before, inherit 1639 * the one provided by the requester. 1640 */ 1641 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1642 oldtype = irqd_get_trigger_type(&desc->irq_data); 1643 } else { 1644 oldtype = new->flags & IRQF_TRIGGER_MASK; 1645 irqd_set_trigger_type(&desc->irq_data, oldtype); 1646 } 1647 1648 if (!((old->flags & new->flags) & IRQF_SHARED) || 1649 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1650 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1651 goto mismatch; 1652 1653 /* All handlers must agree on per-cpuness */ 1654 if ((old->flags & IRQF_PERCPU) != 1655 (new->flags & IRQF_PERCPU)) 1656 goto mismatch; 1657 1658 /* add new interrupt at end of irq queue */ 1659 do { 1660 /* 1661 * Or all existing action->thread_mask bits, 1662 * so we can find the next zero bit for this 1663 * new action. 1664 */ 1665 thread_mask |= old->thread_mask; 1666 old_ptr = &old->next; 1667 old = *old_ptr; 1668 } while (old); 1669 shared = 1; 1670 } 1671 1672 /* 1673 * Setup the thread mask for this irqaction for ONESHOT. For 1674 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1675 * conditional in irq_wake_thread(). 1676 */ 1677 if (new->flags & IRQF_ONESHOT) { 1678 /* 1679 * Unlikely to have 32 resp 64 irqs sharing one line, 1680 * but who knows. 1681 */ 1682 if (thread_mask == ~0UL) { 1683 ret = -EBUSY; 1684 goto out_unlock; 1685 } 1686 /* 1687 * The thread_mask for the action is or'ed to 1688 * desc->thread_active to indicate that the 1689 * IRQF_ONESHOT thread handler has been woken, but not 1690 * yet finished. The bit is cleared when a thread 1691 * completes. When all threads of a shared interrupt 1692 * line have completed desc->threads_active becomes 1693 * zero and the interrupt line is unmasked. See 1694 * handle.c:irq_wake_thread() for further information. 1695 * 1696 * If no thread is woken by primary (hard irq context) 1697 * interrupt handlers, then desc->threads_active is 1698 * also checked for zero to unmask the irq line in the 1699 * affected hard irq flow handlers 1700 * (handle_[fasteoi|level]_irq). 1701 * 1702 * The new action gets the first zero bit of 1703 * thread_mask assigned. See the loop above which or's 1704 * all existing action->thread_mask bits. 1705 */ 1706 new->thread_mask = 1UL << ffz(thread_mask); 1707 1708 } else if (new->handler == irq_default_primary_handler && 1709 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1710 /* 1711 * The interrupt was requested with handler = NULL, so 1712 * we use the default primary handler for it. But it 1713 * does not have the oneshot flag set. In combination 1714 * with level interrupts this is deadly, because the 1715 * default primary handler just wakes the thread, then 1716 * the irq lines is reenabled, but the device still 1717 * has the level irq asserted. Rinse and repeat.... 1718 * 1719 * While this works for edge type interrupts, we play 1720 * it safe and reject unconditionally because we can't 1721 * say for sure which type this interrupt really 1722 * has. The type flags are unreliable as the 1723 * underlying chip implementation can override them. 1724 */ 1725 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1726 new->name, irq); 1727 ret = -EINVAL; 1728 goto out_unlock; 1729 } 1730 1731 if (!shared) { 1732 /* Setup the type (level, edge polarity) if configured: */ 1733 if (new->flags & IRQF_TRIGGER_MASK) { 1734 ret = __irq_set_trigger(desc, 1735 new->flags & IRQF_TRIGGER_MASK); 1736 1737 if (ret) 1738 goto out_unlock; 1739 } 1740 1741 /* 1742 * Activate the interrupt. That activation must happen 1743 * independently of IRQ_NOAUTOEN. request_irq() can fail 1744 * and the callers are supposed to handle 1745 * that. enable_irq() of an interrupt requested with 1746 * IRQ_NOAUTOEN is not supposed to fail. The activation 1747 * keeps it in shutdown mode, it merily associates 1748 * resources if necessary and if that's not possible it 1749 * fails. Interrupts which are in managed shutdown mode 1750 * will simply ignore that activation request. 1751 */ 1752 ret = irq_activate(desc); 1753 if (ret) 1754 goto out_unlock; 1755 1756 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1757 IRQS_ONESHOT | IRQS_WAITING); 1758 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1759 1760 if (new->flags & IRQF_PERCPU) { 1761 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1762 irq_settings_set_per_cpu(desc); 1763 if (new->flags & IRQF_NO_DEBUG) 1764 irq_settings_set_no_debug(desc); 1765 } 1766 1767 if (noirqdebug) 1768 irq_settings_set_no_debug(desc); 1769 1770 if (new->flags & IRQF_ONESHOT) 1771 desc->istate |= IRQS_ONESHOT; 1772 1773 /* Exclude IRQ from balancing if requested */ 1774 if (new->flags & IRQF_NOBALANCING) { 1775 irq_settings_set_no_balancing(desc); 1776 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1777 } 1778 1779 if (!(new->flags & IRQF_NO_AUTOEN) && 1780 irq_settings_can_autoenable(desc)) { 1781 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1782 } else { 1783 /* 1784 * Shared interrupts do not go well with disabling 1785 * auto enable. The sharing interrupt might request 1786 * it while it's still disabled and then wait for 1787 * interrupts forever. 1788 */ 1789 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1790 /* Undo nested disables: */ 1791 desc->depth = 1; 1792 } 1793 1794 } else if (new->flags & IRQF_TRIGGER_MASK) { 1795 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1796 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1797 1798 if (nmsk != omsk) 1799 /* hope the handler works with current trigger mode */ 1800 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1801 irq, omsk, nmsk); 1802 } 1803 1804 *old_ptr = new; 1805 1806 irq_pm_install_action(desc, new); 1807 1808 /* Reset broken irq detection when installing new handler */ 1809 desc->irq_count = 0; 1810 desc->irqs_unhandled = 0; 1811 1812 /* 1813 * Check whether we disabled the irq via the spurious handler 1814 * before. Reenable it and give it another chance. 1815 */ 1816 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1817 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1818 __enable_irq(desc); 1819 } 1820 1821 raw_spin_unlock_irqrestore(&desc->lock, flags); 1822 chip_bus_sync_unlock(desc); 1823 mutex_unlock(&desc->request_mutex); 1824 1825 irq_setup_timings(desc, new); 1826 1827 wake_up_and_wait_for_irq_thread_ready(desc, new); 1828 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1829 1830 register_irq_proc(irq, desc); 1831 new->dir = NULL; 1832 register_handler_proc(irq, new); 1833 return 0; 1834 1835 mismatch: 1836 if (!(new->flags & IRQF_PROBE_SHARED)) { 1837 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1838 irq, new->flags, new->name, old->flags, old->name); 1839 #ifdef CONFIG_DEBUG_SHIRQ 1840 dump_stack(); 1841 #endif 1842 } 1843 ret = -EBUSY; 1844 1845 out_unlock: 1846 raw_spin_unlock_irqrestore(&desc->lock, flags); 1847 1848 if (!desc->action) 1849 irq_release_resources(desc); 1850 out_bus_unlock: 1851 chip_bus_sync_unlock(desc); 1852 mutex_unlock(&desc->request_mutex); 1853 1854 out_thread: 1855 if (new->thread) { 1856 struct task_struct *t = new->thread; 1857 1858 new->thread = NULL; 1859 kthread_stop_put(t); 1860 } 1861 if (new->secondary && new->secondary->thread) { 1862 struct task_struct *t = new->secondary->thread; 1863 1864 new->secondary->thread = NULL; 1865 kthread_stop_put(t); 1866 } 1867 out_mput: 1868 module_put(desc->owner); 1869 return ret; 1870 } 1871 1872 /* 1873 * Internal function to unregister an irqaction - used to free 1874 * regular and special interrupts that are part of the architecture. 1875 */ 1876 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1877 { 1878 unsigned irq = desc->irq_data.irq; 1879 struct irqaction *action, **action_ptr; 1880 unsigned long flags; 1881 1882 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1883 1884 mutex_lock(&desc->request_mutex); 1885 chip_bus_lock(desc); 1886 raw_spin_lock_irqsave(&desc->lock, flags); 1887 1888 /* 1889 * There can be multiple actions per IRQ descriptor, find the right 1890 * one based on the dev_id: 1891 */ 1892 action_ptr = &desc->action; 1893 for (;;) { 1894 action = *action_ptr; 1895 1896 if (!action) { 1897 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1898 raw_spin_unlock_irqrestore(&desc->lock, flags); 1899 chip_bus_sync_unlock(desc); 1900 mutex_unlock(&desc->request_mutex); 1901 return NULL; 1902 } 1903 1904 if (action->dev_id == dev_id) 1905 break; 1906 action_ptr = &action->next; 1907 } 1908 1909 /* Found it - now remove it from the list of entries: */ 1910 *action_ptr = action->next; 1911 1912 irq_pm_remove_action(desc, action); 1913 1914 /* If this was the last handler, shut down the IRQ line: */ 1915 if (!desc->action) { 1916 irq_settings_clr_disable_unlazy(desc); 1917 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1918 irq_shutdown(desc); 1919 } 1920 1921 #ifdef CONFIG_SMP 1922 /* make sure affinity_hint is cleaned up */ 1923 if (WARN_ON_ONCE(desc->affinity_hint)) 1924 desc->affinity_hint = NULL; 1925 #endif 1926 1927 raw_spin_unlock_irqrestore(&desc->lock, flags); 1928 /* 1929 * Drop bus_lock here so the changes which were done in the chip 1930 * callbacks above are synced out to the irq chips which hang 1931 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1932 * 1933 * Aside of that the bus_lock can also be taken from the threaded 1934 * handler in irq_finalize_oneshot() which results in a deadlock 1935 * because kthread_stop() would wait forever for the thread to 1936 * complete, which is blocked on the bus lock. 1937 * 1938 * The still held desc->request_mutex() protects against a 1939 * concurrent request_irq() of this irq so the release of resources 1940 * and timing data is properly serialized. 1941 */ 1942 chip_bus_sync_unlock(desc); 1943 1944 unregister_handler_proc(irq, action); 1945 1946 /* 1947 * Make sure it's not being used on another CPU and if the chip 1948 * supports it also make sure that there is no (not yet serviced) 1949 * interrupt in flight at the hardware level. 1950 */ 1951 __synchronize_irq(desc); 1952 1953 #ifdef CONFIG_DEBUG_SHIRQ 1954 /* 1955 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1956 * event to happen even now it's being freed, so let's make sure that 1957 * is so by doing an extra call to the handler .... 1958 * 1959 * ( We do this after actually deregistering it, to make sure that a 1960 * 'real' IRQ doesn't run in parallel with our fake. ) 1961 */ 1962 if (action->flags & IRQF_SHARED) { 1963 local_irq_save(flags); 1964 action->handler(irq, dev_id); 1965 local_irq_restore(flags); 1966 } 1967 #endif 1968 1969 /* 1970 * The action has already been removed above, but the thread writes 1971 * its oneshot mask bit when it completes. Though request_mutex is 1972 * held across this which prevents __setup_irq() from handing out 1973 * the same bit to a newly requested action. 1974 */ 1975 if (action->thread) { 1976 kthread_stop_put(action->thread); 1977 if (action->secondary && action->secondary->thread) 1978 kthread_stop_put(action->secondary->thread); 1979 } 1980 1981 /* Last action releases resources */ 1982 if (!desc->action) { 1983 /* 1984 * Reacquire bus lock as irq_release_resources() might 1985 * require it to deallocate resources over the slow bus. 1986 */ 1987 chip_bus_lock(desc); 1988 /* 1989 * There is no interrupt on the fly anymore. Deactivate it 1990 * completely. 1991 */ 1992 raw_spin_lock_irqsave(&desc->lock, flags); 1993 irq_domain_deactivate_irq(&desc->irq_data); 1994 raw_spin_unlock_irqrestore(&desc->lock, flags); 1995 1996 irq_release_resources(desc); 1997 chip_bus_sync_unlock(desc); 1998 irq_remove_timings(desc); 1999 } 2000 2001 mutex_unlock(&desc->request_mutex); 2002 2003 irq_chip_pm_put(&desc->irq_data); 2004 module_put(desc->owner); 2005 kfree(action->secondary); 2006 return action; 2007 } 2008 2009 /** 2010 * free_irq - free an interrupt allocated with request_irq 2011 * @irq: Interrupt line to free 2012 * @dev_id: Device identity to free 2013 * 2014 * Remove an interrupt handler. The handler is removed and if the 2015 * interrupt line is no longer in use by any driver it is disabled. 2016 * On a shared IRQ the caller must ensure the interrupt is disabled 2017 * on the card it drives before calling this function. The function 2018 * does not return until any executing interrupts for this IRQ 2019 * have completed. 2020 * 2021 * This function must not be called from interrupt context. 2022 * 2023 * Returns the devname argument passed to request_irq. 2024 */ 2025 const void *free_irq(unsigned int irq, void *dev_id) 2026 { 2027 struct irq_desc *desc = irq_to_desc(irq); 2028 struct irqaction *action; 2029 const char *devname; 2030 2031 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2032 return NULL; 2033 2034 #ifdef CONFIG_SMP 2035 if (WARN_ON(desc->affinity_notify)) 2036 desc->affinity_notify = NULL; 2037 #endif 2038 2039 action = __free_irq(desc, dev_id); 2040 2041 if (!action) 2042 return NULL; 2043 2044 devname = action->name; 2045 kfree(action); 2046 return devname; 2047 } 2048 EXPORT_SYMBOL(free_irq); 2049 2050 /* This function must be called with desc->lock held */ 2051 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2052 { 2053 const char *devname = NULL; 2054 2055 desc->istate &= ~IRQS_NMI; 2056 2057 if (!WARN_ON(desc->action == NULL)) { 2058 irq_pm_remove_action(desc, desc->action); 2059 devname = desc->action->name; 2060 unregister_handler_proc(irq, desc->action); 2061 2062 kfree(desc->action); 2063 desc->action = NULL; 2064 } 2065 2066 irq_settings_clr_disable_unlazy(desc); 2067 irq_shutdown_and_deactivate(desc); 2068 2069 irq_release_resources(desc); 2070 2071 irq_chip_pm_put(&desc->irq_data); 2072 module_put(desc->owner); 2073 2074 return devname; 2075 } 2076 2077 const void *free_nmi(unsigned int irq, void *dev_id) 2078 { 2079 struct irq_desc *desc = irq_to_desc(irq); 2080 unsigned long flags; 2081 const void *devname; 2082 2083 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2084 return NULL; 2085 2086 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2087 return NULL; 2088 2089 /* NMI still enabled */ 2090 if (WARN_ON(desc->depth == 0)) 2091 disable_nmi_nosync(irq); 2092 2093 raw_spin_lock_irqsave(&desc->lock, flags); 2094 2095 irq_nmi_teardown(desc); 2096 devname = __cleanup_nmi(irq, desc); 2097 2098 raw_spin_unlock_irqrestore(&desc->lock, flags); 2099 2100 return devname; 2101 } 2102 2103 /** 2104 * request_threaded_irq - allocate an interrupt line 2105 * @irq: Interrupt line to allocate 2106 * @handler: Function to be called when the IRQ occurs. 2107 * Primary handler for threaded interrupts. 2108 * If handler is NULL and thread_fn != NULL 2109 * the default primary handler is installed. 2110 * @thread_fn: Function called from the irq handler thread 2111 * If NULL, no irq thread is created 2112 * @irqflags: Interrupt type flags 2113 * @devname: An ascii name for the claiming device 2114 * @dev_id: A cookie passed back to the handler function 2115 * 2116 * This call allocates interrupt resources and enables the 2117 * interrupt line and IRQ handling. From the point this 2118 * call is made your handler function may be invoked. Since 2119 * your handler function must clear any interrupt the board 2120 * raises, you must take care both to initialise your hardware 2121 * and to set up the interrupt handler in the right order. 2122 * 2123 * If you want to set up a threaded irq handler for your device 2124 * then you need to supply @handler and @thread_fn. @handler is 2125 * still called in hard interrupt context and has to check 2126 * whether the interrupt originates from the device. If yes it 2127 * needs to disable the interrupt on the device and return 2128 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2129 * @thread_fn. This split handler design is necessary to support 2130 * shared interrupts. 2131 * 2132 * Dev_id must be globally unique. Normally the address of the 2133 * device data structure is used as the cookie. Since the handler 2134 * receives this value it makes sense to use it. 2135 * 2136 * If your interrupt is shared you must pass a non NULL dev_id 2137 * as this is required when freeing the interrupt. 2138 * 2139 * Flags: 2140 * 2141 * IRQF_SHARED Interrupt is shared 2142 * IRQF_TRIGGER_* Specify active edge(s) or level 2143 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2144 */ 2145 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2146 irq_handler_t thread_fn, unsigned long irqflags, 2147 const char *devname, void *dev_id) 2148 { 2149 struct irqaction *action; 2150 struct irq_desc *desc; 2151 int retval; 2152 2153 if (irq == IRQ_NOTCONNECTED) 2154 return -ENOTCONN; 2155 2156 /* 2157 * Sanity-check: shared interrupts must pass in a real dev-ID, 2158 * otherwise we'll have trouble later trying to figure out 2159 * which interrupt is which (messes up the interrupt freeing 2160 * logic etc). 2161 * 2162 * Also shared interrupts do not go well with disabling auto enable. 2163 * The sharing interrupt might request it while it's still disabled 2164 * and then wait for interrupts forever. 2165 * 2166 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2167 * it cannot be set along with IRQF_NO_SUSPEND. 2168 */ 2169 if (((irqflags & IRQF_SHARED) && !dev_id) || 2170 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2171 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2172 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2173 return -EINVAL; 2174 2175 desc = irq_to_desc(irq); 2176 if (!desc) 2177 return -EINVAL; 2178 2179 if (!irq_settings_can_request(desc) || 2180 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2181 return -EINVAL; 2182 2183 if (!handler) { 2184 if (!thread_fn) 2185 return -EINVAL; 2186 handler = irq_default_primary_handler; 2187 } 2188 2189 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2190 if (!action) 2191 return -ENOMEM; 2192 2193 action->handler = handler; 2194 action->thread_fn = thread_fn; 2195 action->flags = irqflags; 2196 action->name = devname; 2197 action->dev_id = dev_id; 2198 2199 retval = irq_chip_pm_get(&desc->irq_data); 2200 if (retval < 0) { 2201 kfree(action); 2202 return retval; 2203 } 2204 2205 retval = __setup_irq(irq, desc, action); 2206 2207 if (retval) { 2208 irq_chip_pm_put(&desc->irq_data); 2209 kfree(action->secondary); 2210 kfree(action); 2211 } 2212 2213 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2214 if (!retval && (irqflags & IRQF_SHARED)) { 2215 /* 2216 * It's a shared IRQ -- the driver ought to be prepared for it 2217 * to happen immediately, so let's make sure.... 2218 * We disable the irq to make sure that a 'real' IRQ doesn't 2219 * run in parallel with our fake. 2220 */ 2221 unsigned long flags; 2222 2223 disable_irq(irq); 2224 local_irq_save(flags); 2225 2226 handler(irq, dev_id); 2227 2228 local_irq_restore(flags); 2229 enable_irq(irq); 2230 } 2231 #endif 2232 return retval; 2233 } 2234 EXPORT_SYMBOL(request_threaded_irq); 2235 2236 /** 2237 * request_any_context_irq - allocate an interrupt line 2238 * @irq: Interrupt line to allocate 2239 * @handler: Function to be called when the IRQ occurs. 2240 * Threaded handler for threaded interrupts. 2241 * @flags: Interrupt type flags 2242 * @name: An ascii name for the claiming device 2243 * @dev_id: A cookie passed back to the handler function 2244 * 2245 * This call allocates interrupt resources and enables the 2246 * interrupt line and IRQ handling. It selects either a 2247 * hardirq or threaded handling method depending on the 2248 * context. 2249 * 2250 * On failure, it returns a negative value. On success, 2251 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2252 */ 2253 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2254 unsigned long flags, const char *name, void *dev_id) 2255 { 2256 struct irq_desc *desc; 2257 int ret; 2258 2259 if (irq == IRQ_NOTCONNECTED) 2260 return -ENOTCONN; 2261 2262 desc = irq_to_desc(irq); 2263 if (!desc) 2264 return -EINVAL; 2265 2266 if (irq_settings_is_nested_thread(desc)) { 2267 ret = request_threaded_irq(irq, NULL, handler, 2268 flags, name, dev_id); 2269 return !ret ? IRQC_IS_NESTED : ret; 2270 } 2271 2272 ret = request_irq(irq, handler, flags, name, dev_id); 2273 return !ret ? IRQC_IS_HARDIRQ : ret; 2274 } 2275 EXPORT_SYMBOL_GPL(request_any_context_irq); 2276 2277 /** 2278 * request_nmi - allocate an interrupt line for NMI delivery 2279 * @irq: Interrupt line to allocate 2280 * @handler: Function to be called when the IRQ occurs. 2281 * Threaded handler for threaded interrupts. 2282 * @irqflags: Interrupt type flags 2283 * @name: An ascii name for the claiming device 2284 * @dev_id: A cookie passed back to the handler function 2285 * 2286 * This call allocates interrupt resources and enables the 2287 * interrupt line and IRQ handling. It sets up the IRQ line 2288 * to be handled as an NMI. 2289 * 2290 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2291 * cannot be threaded. 2292 * 2293 * Interrupt lines requested for NMI delivering must produce per cpu 2294 * interrupts and have auto enabling setting disabled. 2295 * 2296 * Dev_id must be globally unique. Normally the address of the 2297 * device data structure is used as the cookie. Since the handler 2298 * receives this value it makes sense to use it. 2299 * 2300 * If the interrupt line cannot be used to deliver NMIs, function 2301 * will fail and return a negative value. 2302 */ 2303 int request_nmi(unsigned int irq, irq_handler_t handler, 2304 unsigned long irqflags, const char *name, void *dev_id) 2305 { 2306 struct irqaction *action; 2307 struct irq_desc *desc; 2308 unsigned long flags; 2309 int retval; 2310 2311 if (irq == IRQ_NOTCONNECTED) 2312 return -ENOTCONN; 2313 2314 /* NMI cannot be shared, used for Polling */ 2315 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2316 return -EINVAL; 2317 2318 if (!(irqflags & IRQF_PERCPU)) 2319 return -EINVAL; 2320 2321 if (!handler) 2322 return -EINVAL; 2323 2324 desc = irq_to_desc(irq); 2325 2326 if (!desc || (irq_settings_can_autoenable(desc) && 2327 !(irqflags & IRQF_NO_AUTOEN)) || 2328 !irq_settings_can_request(desc) || 2329 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2330 !irq_supports_nmi(desc)) 2331 return -EINVAL; 2332 2333 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2334 if (!action) 2335 return -ENOMEM; 2336 2337 action->handler = handler; 2338 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2339 action->name = name; 2340 action->dev_id = dev_id; 2341 2342 retval = irq_chip_pm_get(&desc->irq_data); 2343 if (retval < 0) 2344 goto err_out; 2345 2346 retval = __setup_irq(irq, desc, action); 2347 if (retval) 2348 goto err_irq_setup; 2349 2350 raw_spin_lock_irqsave(&desc->lock, flags); 2351 2352 /* Setup NMI state */ 2353 desc->istate |= IRQS_NMI; 2354 retval = irq_nmi_setup(desc); 2355 if (retval) { 2356 __cleanup_nmi(irq, desc); 2357 raw_spin_unlock_irqrestore(&desc->lock, flags); 2358 return -EINVAL; 2359 } 2360 2361 raw_spin_unlock_irqrestore(&desc->lock, flags); 2362 2363 return 0; 2364 2365 err_irq_setup: 2366 irq_chip_pm_put(&desc->irq_data); 2367 err_out: 2368 kfree(action); 2369 2370 return retval; 2371 } 2372 2373 void enable_percpu_irq(unsigned int irq, unsigned int type) 2374 { 2375 unsigned int cpu = smp_processor_id(); 2376 unsigned long flags; 2377 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2378 2379 if (!desc) 2380 return; 2381 2382 /* 2383 * If the trigger type is not specified by the caller, then 2384 * use the default for this interrupt. 2385 */ 2386 type &= IRQ_TYPE_SENSE_MASK; 2387 if (type == IRQ_TYPE_NONE) 2388 type = irqd_get_trigger_type(&desc->irq_data); 2389 2390 if (type != IRQ_TYPE_NONE) { 2391 int ret; 2392 2393 ret = __irq_set_trigger(desc, type); 2394 2395 if (ret) { 2396 WARN(1, "failed to set type for IRQ%d\n", irq); 2397 goto out; 2398 } 2399 } 2400 2401 irq_percpu_enable(desc, cpu); 2402 out: 2403 irq_put_desc_unlock(desc, flags); 2404 } 2405 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2406 2407 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2408 { 2409 enable_percpu_irq(irq, type); 2410 } 2411 2412 /** 2413 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2414 * @irq: Linux irq number to check for 2415 * 2416 * Must be called from a non migratable context. Returns the enable 2417 * state of a per cpu interrupt on the current cpu. 2418 */ 2419 bool irq_percpu_is_enabled(unsigned int irq) 2420 { 2421 unsigned int cpu = smp_processor_id(); 2422 struct irq_desc *desc; 2423 unsigned long flags; 2424 bool is_enabled; 2425 2426 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2427 if (!desc) 2428 return false; 2429 2430 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2431 irq_put_desc_unlock(desc, flags); 2432 2433 return is_enabled; 2434 } 2435 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2436 2437 void disable_percpu_irq(unsigned int irq) 2438 { 2439 unsigned int cpu = smp_processor_id(); 2440 unsigned long flags; 2441 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2442 2443 if (!desc) 2444 return; 2445 2446 irq_percpu_disable(desc, cpu); 2447 irq_put_desc_unlock(desc, flags); 2448 } 2449 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2450 2451 void disable_percpu_nmi(unsigned int irq) 2452 { 2453 disable_percpu_irq(irq); 2454 } 2455 2456 /* 2457 * Internal function to unregister a percpu irqaction. 2458 */ 2459 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2460 { 2461 struct irq_desc *desc = irq_to_desc(irq); 2462 struct irqaction *action; 2463 unsigned long flags; 2464 2465 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2466 2467 if (!desc) 2468 return NULL; 2469 2470 raw_spin_lock_irqsave(&desc->lock, flags); 2471 2472 action = desc->action; 2473 if (!action || action->percpu_dev_id != dev_id) { 2474 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2475 goto bad; 2476 } 2477 2478 if (!cpumask_empty(desc->percpu_enabled)) { 2479 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2480 irq, cpumask_first(desc->percpu_enabled)); 2481 goto bad; 2482 } 2483 2484 /* Found it - now remove it from the list of entries: */ 2485 desc->action = NULL; 2486 2487 desc->istate &= ~IRQS_NMI; 2488 2489 raw_spin_unlock_irqrestore(&desc->lock, flags); 2490 2491 unregister_handler_proc(irq, action); 2492 2493 irq_chip_pm_put(&desc->irq_data); 2494 module_put(desc->owner); 2495 return action; 2496 2497 bad: 2498 raw_spin_unlock_irqrestore(&desc->lock, flags); 2499 return NULL; 2500 } 2501 2502 /** 2503 * remove_percpu_irq - free a per-cpu interrupt 2504 * @irq: Interrupt line to free 2505 * @act: irqaction for the interrupt 2506 * 2507 * Used to remove interrupts statically setup by the early boot process. 2508 */ 2509 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2510 { 2511 struct irq_desc *desc = irq_to_desc(irq); 2512 2513 if (desc && irq_settings_is_per_cpu_devid(desc)) 2514 __free_percpu_irq(irq, act->percpu_dev_id); 2515 } 2516 2517 /** 2518 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2519 * @irq: Interrupt line to free 2520 * @dev_id: Device identity to free 2521 * 2522 * Remove a percpu interrupt handler. The handler is removed, but 2523 * the interrupt line is not disabled. This must be done on each 2524 * CPU before calling this function. The function does not return 2525 * until any executing interrupts for this IRQ have completed. 2526 * 2527 * This function must not be called from interrupt context. 2528 */ 2529 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2530 { 2531 struct irq_desc *desc = irq_to_desc(irq); 2532 2533 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2534 return; 2535 2536 chip_bus_lock(desc); 2537 kfree(__free_percpu_irq(irq, dev_id)); 2538 chip_bus_sync_unlock(desc); 2539 } 2540 EXPORT_SYMBOL_GPL(free_percpu_irq); 2541 2542 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2543 { 2544 struct irq_desc *desc = irq_to_desc(irq); 2545 2546 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2547 return; 2548 2549 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2550 return; 2551 2552 kfree(__free_percpu_irq(irq, dev_id)); 2553 } 2554 2555 /** 2556 * setup_percpu_irq - setup a per-cpu interrupt 2557 * @irq: Interrupt line to setup 2558 * @act: irqaction for the interrupt 2559 * 2560 * Used to statically setup per-cpu interrupts in the early boot process. 2561 */ 2562 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2563 { 2564 struct irq_desc *desc = irq_to_desc(irq); 2565 int retval; 2566 2567 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2568 return -EINVAL; 2569 2570 retval = irq_chip_pm_get(&desc->irq_data); 2571 if (retval < 0) 2572 return retval; 2573 2574 retval = __setup_irq(irq, desc, act); 2575 2576 if (retval) 2577 irq_chip_pm_put(&desc->irq_data); 2578 2579 return retval; 2580 } 2581 2582 /** 2583 * __request_percpu_irq - allocate a percpu interrupt line 2584 * @irq: Interrupt line to allocate 2585 * @handler: Function to be called when the IRQ occurs. 2586 * @flags: Interrupt type flags (IRQF_TIMER only) 2587 * @devname: An ascii name for the claiming device 2588 * @dev_id: A percpu cookie passed back to the handler function 2589 * 2590 * This call allocates interrupt resources and enables the 2591 * interrupt on the local CPU. If the interrupt is supposed to be 2592 * enabled on other CPUs, it has to be done on each CPU using 2593 * enable_percpu_irq(). 2594 * 2595 * Dev_id must be globally unique. It is a per-cpu variable, and 2596 * the handler gets called with the interrupted CPU's instance of 2597 * that variable. 2598 */ 2599 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2600 unsigned long flags, const char *devname, 2601 void __percpu *dev_id) 2602 { 2603 struct irqaction *action; 2604 struct irq_desc *desc; 2605 int retval; 2606 2607 if (!dev_id) 2608 return -EINVAL; 2609 2610 desc = irq_to_desc(irq); 2611 if (!desc || !irq_settings_can_request(desc) || 2612 !irq_settings_is_per_cpu_devid(desc)) 2613 return -EINVAL; 2614 2615 if (flags && flags != IRQF_TIMER) 2616 return -EINVAL; 2617 2618 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2619 if (!action) 2620 return -ENOMEM; 2621 2622 action->handler = handler; 2623 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2624 action->name = devname; 2625 action->percpu_dev_id = dev_id; 2626 2627 retval = irq_chip_pm_get(&desc->irq_data); 2628 if (retval < 0) { 2629 kfree(action); 2630 return retval; 2631 } 2632 2633 retval = __setup_irq(irq, desc, action); 2634 2635 if (retval) { 2636 irq_chip_pm_put(&desc->irq_data); 2637 kfree(action); 2638 } 2639 2640 return retval; 2641 } 2642 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2643 2644 /** 2645 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2646 * @irq: Interrupt line to allocate 2647 * @handler: Function to be called when the IRQ occurs. 2648 * @name: An ascii name for the claiming device 2649 * @dev_id: A percpu cookie passed back to the handler function 2650 * 2651 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2652 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2653 * being enabled on the same CPU by using enable_percpu_nmi(). 2654 * 2655 * Dev_id must be globally unique. It is a per-cpu variable, and 2656 * the handler gets called with the interrupted CPU's instance of 2657 * that variable. 2658 * 2659 * Interrupt lines requested for NMI delivering should have auto enabling 2660 * setting disabled. 2661 * 2662 * If the interrupt line cannot be used to deliver NMIs, function 2663 * will fail returning a negative value. 2664 */ 2665 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2666 const char *name, void __percpu *dev_id) 2667 { 2668 struct irqaction *action; 2669 struct irq_desc *desc; 2670 unsigned long flags; 2671 int retval; 2672 2673 if (!handler) 2674 return -EINVAL; 2675 2676 desc = irq_to_desc(irq); 2677 2678 if (!desc || !irq_settings_can_request(desc) || 2679 !irq_settings_is_per_cpu_devid(desc) || 2680 irq_settings_can_autoenable(desc) || 2681 !irq_supports_nmi(desc)) 2682 return -EINVAL; 2683 2684 /* The line cannot already be NMI */ 2685 if (desc->istate & IRQS_NMI) 2686 return -EINVAL; 2687 2688 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2689 if (!action) 2690 return -ENOMEM; 2691 2692 action->handler = handler; 2693 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2694 | IRQF_NOBALANCING; 2695 action->name = name; 2696 action->percpu_dev_id = dev_id; 2697 2698 retval = irq_chip_pm_get(&desc->irq_data); 2699 if (retval < 0) 2700 goto err_out; 2701 2702 retval = __setup_irq(irq, desc, action); 2703 if (retval) 2704 goto err_irq_setup; 2705 2706 raw_spin_lock_irqsave(&desc->lock, flags); 2707 desc->istate |= IRQS_NMI; 2708 raw_spin_unlock_irqrestore(&desc->lock, flags); 2709 2710 return 0; 2711 2712 err_irq_setup: 2713 irq_chip_pm_put(&desc->irq_data); 2714 err_out: 2715 kfree(action); 2716 2717 return retval; 2718 } 2719 2720 /** 2721 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2722 * @irq: Interrupt line to prepare for NMI delivery 2723 * 2724 * This call prepares an interrupt line to deliver NMI on the current CPU, 2725 * before that interrupt line gets enabled with enable_percpu_nmi(). 2726 * 2727 * As a CPU local operation, this should be called from non-preemptible 2728 * context. 2729 * 2730 * If the interrupt line cannot be used to deliver NMIs, function 2731 * will fail returning a negative value. 2732 */ 2733 int prepare_percpu_nmi(unsigned int irq) 2734 { 2735 unsigned long flags; 2736 struct irq_desc *desc; 2737 int ret = 0; 2738 2739 WARN_ON(preemptible()); 2740 2741 desc = irq_get_desc_lock(irq, &flags, 2742 IRQ_GET_DESC_CHECK_PERCPU); 2743 if (!desc) 2744 return -EINVAL; 2745 2746 if (WARN(!(desc->istate & IRQS_NMI), 2747 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2748 irq)) { 2749 ret = -EINVAL; 2750 goto out; 2751 } 2752 2753 ret = irq_nmi_setup(desc); 2754 if (ret) { 2755 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2756 goto out; 2757 } 2758 2759 out: 2760 irq_put_desc_unlock(desc, flags); 2761 return ret; 2762 } 2763 2764 /** 2765 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2766 * @irq: Interrupt line from which CPU local NMI configuration should be 2767 * removed 2768 * 2769 * This call undoes the setup done by prepare_percpu_nmi(). 2770 * 2771 * IRQ line should not be enabled for the current CPU. 2772 * 2773 * As a CPU local operation, this should be called from non-preemptible 2774 * context. 2775 */ 2776 void teardown_percpu_nmi(unsigned int irq) 2777 { 2778 unsigned long flags; 2779 struct irq_desc *desc; 2780 2781 WARN_ON(preemptible()); 2782 2783 desc = irq_get_desc_lock(irq, &flags, 2784 IRQ_GET_DESC_CHECK_PERCPU); 2785 if (!desc) 2786 return; 2787 2788 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2789 goto out; 2790 2791 irq_nmi_teardown(desc); 2792 out: 2793 irq_put_desc_unlock(desc, flags); 2794 } 2795 2796 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2797 bool *state) 2798 { 2799 struct irq_chip *chip; 2800 int err = -EINVAL; 2801 2802 do { 2803 chip = irq_data_get_irq_chip(data); 2804 if (WARN_ON_ONCE(!chip)) 2805 return -ENODEV; 2806 if (chip->irq_get_irqchip_state) 2807 break; 2808 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2809 data = data->parent_data; 2810 #else 2811 data = NULL; 2812 #endif 2813 } while (data); 2814 2815 if (data) 2816 err = chip->irq_get_irqchip_state(data, which, state); 2817 return err; 2818 } 2819 2820 /** 2821 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2822 * @irq: Interrupt line that is forwarded to a VM 2823 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2824 * @state: a pointer to a boolean where the state is to be stored 2825 * 2826 * This call snapshots the internal irqchip state of an 2827 * interrupt, returning into @state the bit corresponding to 2828 * stage @which 2829 * 2830 * This function should be called with preemption disabled if the 2831 * interrupt controller has per-cpu registers. 2832 */ 2833 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2834 bool *state) 2835 { 2836 struct irq_desc *desc; 2837 struct irq_data *data; 2838 unsigned long flags; 2839 int err = -EINVAL; 2840 2841 desc = irq_get_desc_buslock(irq, &flags, 0); 2842 if (!desc) 2843 return err; 2844 2845 data = irq_desc_get_irq_data(desc); 2846 2847 err = __irq_get_irqchip_state(data, which, state); 2848 2849 irq_put_desc_busunlock(desc, flags); 2850 return err; 2851 } 2852 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2853 2854 /** 2855 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2856 * @irq: Interrupt line that is forwarded to a VM 2857 * @which: State to be restored (one of IRQCHIP_STATE_*) 2858 * @val: Value corresponding to @which 2859 * 2860 * This call sets the internal irqchip state of an interrupt, 2861 * depending on the value of @which. 2862 * 2863 * This function should be called with migration disabled if the 2864 * interrupt controller has per-cpu registers. 2865 */ 2866 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2867 bool val) 2868 { 2869 struct irq_desc *desc; 2870 struct irq_data *data; 2871 struct irq_chip *chip; 2872 unsigned long flags; 2873 int err = -EINVAL; 2874 2875 desc = irq_get_desc_buslock(irq, &flags, 0); 2876 if (!desc) 2877 return err; 2878 2879 data = irq_desc_get_irq_data(desc); 2880 2881 do { 2882 chip = irq_data_get_irq_chip(data); 2883 if (WARN_ON_ONCE(!chip)) { 2884 err = -ENODEV; 2885 goto out_unlock; 2886 } 2887 if (chip->irq_set_irqchip_state) 2888 break; 2889 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2890 data = data->parent_data; 2891 #else 2892 data = NULL; 2893 #endif 2894 } while (data); 2895 2896 if (data) 2897 err = chip->irq_set_irqchip_state(data, which, val); 2898 2899 out_unlock: 2900 irq_put_desc_busunlock(desc, flags); 2901 return err; 2902 } 2903 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2904 2905 /** 2906 * irq_has_action - Check whether an interrupt is requested 2907 * @irq: The linux irq number 2908 * 2909 * Returns: A snapshot of the current state 2910 */ 2911 bool irq_has_action(unsigned int irq) 2912 { 2913 bool res; 2914 2915 rcu_read_lock(); 2916 res = irq_desc_has_action(irq_to_desc(irq)); 2917 rcu_read_unlock(); 2918 return res; 2919 } 2920 EXPORT_SYMBOL_GPL(irq_has_action); 2921 2922 /** 2923 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2924 * @irq: The linux irq number 2925 * @bitmask: The bitmask to evaluate 2926 * 2927 * Returns: True if one of the bits in @bitmask is set 2928 */ 2929 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2930 { 2931 struct irq_desc *desc; 2932 bool res = false; 2933 2934 rcu_read_lock(); 2935 desc = irq_to_desc(irq); 2936 if (desc) 2937 res = !!(desc->status_use_accessors & bitmask); 2938 rcu_read_unlock(); 2939 return res; 2940 } 2941 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2942