xref: /openbmc/linux/kernel/irq/manage.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/task_work.h>
21 
22 #include "internals.h"
23 
24 #ifdef CONFIG_IRQ_FORCED_THREADING
25 __read_mostly bool force_irqthreads;
26 
27 static int __init setup_forced_irqthreads(char *arg)
28 {
29 	force_irqthreads = true;
30 	return 0;
31 }
32 early_param("threadirqs", setup_forced_irqthreads);
33 #endif
34 
35 static void __synchronize_hardirq(struct irq_desc *desc)
36 {
37 	bool inprogress;
38 
39 	do {
40 		unsigned long flags;
41 
42 		/*
43 		 * Wait until we're out of the critical section.  This might
44 		 * give the wrong answer due to the lack of memory barriers.
45 		 */
46 		while (irqd_irq_inprogress(&desc->irq_data))
47 			cpu_relax();
48 
49 		/* Ok, that indicated we're done: double-check carefully. */
50 		raw_spin_lock_irqsave(&desc->lock, flags);
51 		inprogress = irqd_irq_inprogress(&desc->irq_data);
52 		raw_spin_unlock_irqrestore(&desc->lock, flags);
53 
54 		/* Oops, that failed? */
55 	} while (inprogress);
56 }
57 
58 /**
59  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60  *	@irq: interrupt number to wait for
61  *
62  *	This function waits for any pending hard IRQ handlers for this
63  *	interrupt to complete before returning. If you use this
64  *	function while holding a resource the IRQ handler may need you
65  *	will deadlock. It does not take associated threaded handlers
66  *	into account.
67  *
68  *	Do not use this for shutdown scenarios where you must be sure
69  *	that all parts (hardirq and threaded handler) have completed.
70  *
71  *	Returns: false if a threaded handler is active.
72  *
73  *	This function may be called - with care - from IRQ context.
74  */
75 bool synchronize_hardirq(unsigned int irq)
76 {
77 	struct irq_desc *desc = irq_to_desc(irq);
78 
79 	if (desc) {
80 		__synchronize_hardirq(desc);
81 		return !atomic_read(&desc->threads_active);
82 	}
83 
84 	return true;
85 }
86 EXPORT_SYMBOL(synchronize_hardirq);
87 
88 /**
89  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90  *	@irq: interrupt number to wait for
91  *
92  *	This function waits for any pending IRQ handlers for this interrupt
93  *	to complete before returning. If you use this function while
94  *	holding a resource the IRQ handler may need you will deadlock.
95  *
96  *	This function may be called - with care - from IRQ context.
97  */
98 void synchronize_irq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc);
104 		/*
105 		 * We made sure that no hardirq handler is
106 		 * running. Now verify that no threaded handlers are
107 		 * active.
108 		 */
109 		wait_event(desc->wait_for_threads,
110 			   !atomic_read(&desc->threads_active));
111 	}
112 }
113 EXPORT_SYMBOL(synchronize_irq);
114 
115 #ifdef CONFIG_SMP
116 cpumask_var_t irq_default_affinity;
117 
118 static bool __irq_can_set_affinity(struct irq_desc *desc)
119 {
120 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
121 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122 		return false;
123 	return true;
124 }
125 
126 /**
127  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
128  *	@irq:		Interrupt to check
129  *
130  */
131 int irq_can_set_affinity(unsigned int irq)
132 {
133 	return __irq_can_set_affinity(irq_to_desc(irq));
134 }
135 
136 /**
137  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
138  * @irq:	Interrupt to check
139  *
140  * Like irq_can_set_affinity() above, but additionally checks for the
141  * AFFINITY_MANAGED flag.
142  */
143 bool irq_can_set_affinity_usr(unsigned int irq)
144 {
145 	struct irq_desc *desc = irq_to_desc(irq);
146 
147 	return __irq_can_set_affinity(desc) &&
148 		!irqd_affinity_is_managed(&desc->irq_data);
149 }
150 
151 /**
152  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
153  *	@desc:		irq descriptor which has affitnity changed
154  *
155  *	We just set IRQTF_AFFINITY and delegate the affinity setting
156  *	to the interrupt thread itself. We can not call
157  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
158  *	code can be called from hard interrupt context.
159  */
160 void irq_set_thread_affinity(struct irq_desc *desc)
161 {
162 	struct irqaction *action;
163 
164 	for_each_action_of_desc(desc, action)
165 		if (action->thread)
166 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
167 }
168 
169 #ifdef CONFIG_GENERIC_PENDING_IRQ
170 static inline bool irq_can_move_pcntxt(struct irq_data *data)
171 {
172 	return irqd_can_move_in_process_context(data);
173 }
174 static inline bool irq_move_pending(struct irq_data *data)
175 {
176 	return irqd_is_setaffinity_pending(data);
177 }
178 static inline void
179 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
180 {
181 	cpumask_copy(desc->pending_mask, mask);
182 }
183 static inline void
184 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
185 {
186 	cpumask_copy(mask, desc->pending_mask);
187 }
188 #else
189 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
190 static inline bool irq_move_pending(struct irq_data *data) { return false; }
191 static inline void
192 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
193 static inline void
194 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
195 #endif
196 
197 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
198 			bool force)
199 {
200 	struct irq_desc *desc = irq_data_to_desc(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 	int ret;
203 
204 	ret = chip->irq_set_affinity(data, mask, force);
205 	switch (ret) {
206 	case IRQ_SET_MASK_OK:
207 	case IRQ_SET_MASK_OK_DONE:
208 		cpumask_copy(desc->irq_common_data.affinity, mask);
209 	case IRQ_SET_MASK_OK_NOCOPY:
210 		irq_set_thread_affinity(desc);
211 		ret = 0;
212 	}
213 
214 	return ret;
215 }
216 
217 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
218 			    bool force)
219 {
220 	struct irq_chip *chip = irq_data_get_irq_chip(data);
221 	struct irq_desc *desc = irq_data_to_desc(data);
222 	int ret = 0;
223 
224 	if (!chip || !chip->irq_set_affinity)
225 		return -EINVAL;
226 
227 	if (irq_can_move_pcntxt(data)) {
228 		ret = irq_do_set_affinity(data, mask, force);
229 	} else {
230 		irqd_set_move_pending(data);
231 		irq_copy_pending(desc, mask);
232 	}
233 
234 	if (desc->affinity_notify) {
235 		kref_get(&desc->affinity_notify->kref);
236 		schedule_work(&desc->affinity_notify->work);
237 	}
238 	irqd_set(data, IRQD_AFFINITY_SET);
239 
240 	return ret;
241 }
242 
243 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
244 {
245 	struct irq_desc *desc = irq_to_desc(irq);
246 	unsigned long flags;
247 	int ret;
248 
249 	if (!desc)
250 		return -EINVAL;
251 
252 	raw_spin_lock_irqsave(&desc->lock, flags);
253 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
254 	raw_spin_unlock_irqrestore(&desc->lock, flags);
255 	return ret;
256 }
257 
258 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
259 {
260 	unsigned long flags;
261 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
262 
263 	if (!desc)
264 		return -EINVAL;
265 	desc->affinity_hint = m;
266 	irq_put_desc_unlock(desc, flags);
267 	/* set the initial affinity to prevent every interrupt being on CPU0 */
268 	if (m)
269 		__irq_set_affinity(irq, m, false);
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
273 
274 static void irq_affinity_notify(struct work_struct *work)
275 {
276 	struct irq_affinity_notify *notify =
277 		container_of(work, struct irq_affinity_notify, work);
278 	struct irq_desc *desc = irq_to_desc(notify->irq);
279 	cpumask_var_t cpumask;
280 	unsigned long flags;
281 
282 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
283 		goto out;
284 
285 	raw_spin_lock_irqsave(&desc->lock, flags);
286 	if (irq_move_pending(&desc->irq_data))
287 		irq_get_pending(cpumask, desc);
288 	else
289 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
290 	raw_spin_unlock_irqrestore(&desc->lock, flags);
291 
292 	notify->notify(notify, cpumask);
293 
294 	free_cpumask_var(cpumask);
295 out:
296 	kref_put(&notify->kref, notify->release);
297 }
298 
299 /**
300  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
301  *	@irq:		Interrupt for which to enable/disable notification
302  *	@notify:	Context for notification, or %NULL to disable
303  *			notification.  Function pointers must be initialised;
304  *			the other fields will be initialised by this function.
305  *
306  *	Must be called in process context.  Notification may only be enabled
307  *	after the IRQ is allocated and must be disabled before the IRQ is
308  *	freed using free_irq().
309  */
310 int
311 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
312 {
313 	struct irq_desc *desc = irq_to_desc(irq);
314 	struct irq_affinity_notify *old_notify;
315 	unsigned long flags;
316 
317 	/* The release function is promised process context */
318 	might_sleep();
319 
320 	if (!desc)
321 		return -EINVAL;
322 
323 	/* Complete initialisation of *notify */
324 	if (notify) {
325 		notify->irq = irq;
326 		kref_init(&notify->kref);
327 		INIT_WORK(&notify->work, irq_affinity_notify);
328 	}
329 
330 	raw_spin_lock_irqsave(&desc->lock, flags);
331 	old_notify = desc->affinity_notify;
332 	desc->affinity_notify = notify;
333 	raw_spin_unlock_irqrestore(&desc->lock, flags);
334 
335 	if (old_notify)
336 		kref_put(&old_notify->kref, old_notify->release);
337 
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
341 
342 #ifndef CONFIG_AUTO_IRQ_AFFINITY
343 /*
344  * Generic version of the affinity autoselector.
345  */
346 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
347 {
348 	struct cpumask *set = irq_default_affinity;
349 	int node = irq_desc_get_node(desc);
350 
351 	/* Excludes PER_CPU and NO_BALANCE interrupts */
352 	if (!__irq_can_set_affinity(desc))
353 		return 0;
354 
355 	/*
356 	 * Preserve the managed affinity setting and an userspace affinity
357 	 * setup, but make sure that one of the targets is online.
358 	 */
359 	if (irqd_affinity_is_managed(&desc->irq_data) ||
360 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
361 		if (cpumask_intersects(desc->irq_common_data.affinity,
362 				       cpu_online_mask))
363 			set = desc->irq_common_data.affinity;
364 		else
365 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
366 	}
367 
368 	cpumask_and(mask, cpu_online_mask, set);
369 	if (node != NUMA_NO_NODE) {
370 		const struct cpumask *nodemask = cpumask_of_node(node);
371 
372 		/* make sure at least one of the cpus in nodemask is online */
373 		if (cpumask_intersects(mask, nodemask))
374 			cpumask_and(mask, mask, nodemask);
375 	}
376 	irq_do_set_affinity(&desc->irq_data, mask, false);
377 	return 0;
378 }
379 #else
380 /* Wrapper for ALPHA specific affinity selector magic */
381 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
382 {
383 	return irq_select_affinity(irq_desc_get_irq(d));
384 }
385 #endif
386 
387 /*
388  * Called when affinity is set via /proc/irq
389  */
390 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
391 {
392 	struct irq_desc *desc = irq_to_desc(irq);
393 	unsigned long flags;
394 	int ret;
395 
396 	raw_spin_lock_irqsave(&desc->lock, flags);
397 	ret = setup_affinity(desc, mask);
398 	raw_spin_unlock_irqrestore(&desc->lock, flags);
399 	return ret;
400 }
401 
402 #else
403 static inline int
404 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
405 {
406 	return 0;
407 }
408 #endif
409 
410 /**
411  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
412  *	@irq: interrupt number to set affinity
413  *	@vcpu_info: vCPU specific data
414  *
415  *	This function uses the vCPU specific data to set the vCPU
416  *	affinity for an irq. The vCPU specific data is passed from
417  *	outside, such as KVM. One example code path is as below:
418  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
419  */
420 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
421 {
422 	unsigned long flags;
423 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
424 	struct irq_data *data;
425 	struct irq_chip *chip;
426 	int ret = -ENOSYS;
427 
428 	if (!desc)
429 		return -EINVAL;
430 
431 	data = irq_desc_get_irq_data(desc);
432 	chip = irq_data_get_irq_chip(data);
433 	if (chip && chip->irq_set_vcpu_affinity)
434 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
435 	irq_put_desc_unlock(desc, flags);
436 
437 	return ret;
438 }
439 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
440 
441 void __disable_irq(struct irq_desc *desc)
442 {
443 	if (!desc->depth++)
444 		irq_disable(desc);
445 }
446 
447 static int __disable_irq_nosync(unsigned int irq)
448 {
449 	unsigned long flags;
450 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
451 
452 	if (!desc)
453 		return -EINVAL;
454 	__disable_irq(desc);
455 	irq_put_desc_busunlock(desc, flags);
456 	return 0;
457 }
458 
459 /**
460  *	disable_irq_nosync - disable an irq without waiting
461  *	@irq: Interrupt to disable
462  *
463  *	Disable the selected interrupt line.  Disables and Enables are
464  *	nested.
465  *	Unlike disable_irq(), this function does not ensure existing
466  *	instances of the IRQ handler have completed before returning.
467  *
468  *	This function may be called from IRQ context.
469  */
470 void disable_irq_nosync(unsigned int irq)
471 {
472 	__disable_irq_nosync(irq);
473 }
474 EXPORT_SYMBOL(disable_irq_nosync);
475 
476 /**
477  *	disable_irq - disable an irq and wait for completion
478  *	@irq: Interrupt to disable
479  *
480  *	Disable the selected interrupt line.  Enables and Disables are
481  *	nested.
482  *	This function waits for any pending IRQ handlers for this interrupt
483  *	to complete before returning. If you use this function while
484  *	holding a resource the IRQ handler may need you will deadlock.
485  *
486  *	This function may be called - with care - from IRQ context.
487  */
488 void disable_irq(unsigned int irq)
489 {
490 	if (!__disable_irq_nosync(irq))
491 		synchronize_irq(irq);
492 }
493 EXPORT_SYMBOL(disable_irq);
494 
495 /**
496  *	disable_hardirq - disables an irq and waits for hardirq completion
497  *	@irq: Interrupt to disable
498  *
499  *	Disable the selected interrupt line.  Enables and Disables are
500  *	nested.
501  *	This function waits for any pending hard IRQ handlers for this
502  *	interrupt to complete before returning. If you use this function while
503  *	holding a resource the hard IRQ handler may need you will deadlock.
504  *
505  *	When used to optimistically disable an interrupt from atomic context
506  *	the return value must be checked.
507  *
508  *	Returns: false if a threaded handler is active.
509  *
510  *	This function may be called - with care - from IRQ context.
511  */
512 bool disable_hardirq(unsigned int irq)
513 {
514 	if (!__disable_irq_nosync(irq))
515 		return synchronize_hardirq(irq);
516 
517 	return false;
518 }
519 EXPORT_SYMBOL_GPL(disable_hardirq);
520 
521 void __enable_irq(struct irq_desc *desc)
522 {
523 	switch (desc->depth) {
524 	case 0:
525  err_out:
526 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
527 		     irq_desc_get_irq(desc));
528 		break;
529 	case 1: {
530 		if (desc->istate & IRQS_SUSPENDED)
531 			goto err_out;
532 		/* Prevent probing on this irq: */
533 		irq_settings_set_noprobe(desc);
534 		irq_enable(desc);
535 		check_irq_resend(desc);
536 		/* fall-through */
537 	}
538 	default:
539 		desc->depth--;
540 	}
541 }
542 
543 /**
544  *	enable_irq - enable handling of an irq
545  *	@irq: Interrupt to enable
546  *
547  *	Undoes the effect of one call to disable_irq().  If this
548  *	matches the last disable, processing of interrupts on this
549  *	IRQ line is re-enabled.
550  *
551  *	This function may be called from IRQ context only when
552  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
553  */
554 void enable_irq(unsigned int irq)
555 {
556 	unsigned long flags;
557 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
558 
559 	if (!desc)
560 		return;
561 	if (WARN(!desc->irq_data.chip,
562 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
563 		goto out;
564 
565 	__enable_irq(desc);
566 out:
567 	irq_put_desc_busunlock(desc, flags);
568 }
569 EXPORT_SYMBOL(enable_irq);
570 
571 static int set_irq_wake_real(unsigned int irq, unsigned int on)
572 {
573 	struct irq_desc *desc = irq_to_desc(irq);
574 	int ret = -ENXIO;
575 
576 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
577 		return 0;
578 
579 	if (desc->irq_data.chip->irq_set_wake)
580 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
581 
582 	return ret;
583 }
584 
585 /**
586  *	irq_set_irq_wake - control irq power management wakeup
587  *	@irq:	interrupt to control
588  *	@on:	enable/disable power management wakeup
589  *
590  *	Enable/disable power management wakeup mode, which is
591  *	disabled by default.  Enables and disables must match,
592  *	just as they match for non-wakeup mode support.
593  *
594  *	Wakeup mode lets this IRQ wake the system from sleep
595  *	states like "suspend to RAM".
596  */
597 int irq_set_irq_wake(unsigned int irq, unsigned int on)
598 {
599 	unsigned long flags;
600 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
601 	int ret = 0;
602 
603 	if (!desc)
604 		return -EINVAL;
605 
606 	/* wakeup-capable irqs can be shared between drivers that
607 	 * don't need to have the same sleep mode behaviors.
608 	 */
609 	if (on) {
610 		if (desc->wake_depth++ == 0) {
611 			ret = set_irq_wake_real(irq, on);
612 			if (ret)
613 				desc->wake_depth = 0;
614 			else
615 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
616 		}
617 	} else {
618 		if (desc->wake_depth == 0) {
619 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
620 		} else if (--desc->wake_depth == 0) {
621 			ret = set_irq_wake_real(irq, on);
622 			if (ret)
623 				desc->wake_depth = 1;
624 			else
625 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
626 		}
627 	}
628 	irq_put_desc_busunlock(desc, flags);
629 	return ret;
630 }
631 EXPORT_SYMBOL(irq_set_irq_wake);
632 
633 /*
634  * Internal function that tells the architecture code whether a
635  * particular irq has been exclusively allocated or is available
636  * for driver use.
637  */
638 int can_request_irq(unsigned int irq, unsigned long irqflags)
639 {
640 	unsigned long flags;
641 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
642 	int canrequest = 0;
643 
644 	if (!desc)
645 		return 0;
646 
647 	if (irq_settings_can_request(desc)) {
648 		if (!desc->action ||
649 		    irqflags & desc->action->flags & IRQF_SHARED)
650 			canrequest = 1;
651 	}
652 	irq_put_desc_unlock(desc, flags);
653 	return canrequest;
654 }
655 
656 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
657 {
658 	struct irq_chip *chip = desc->irq_data.chip;
659 	int ret, unmask = 0;
660 
661 	if (!chip || !chip->irq_set_type) {
662 		/*
663 		 * IRQF_TRIGGER_* but the PIC does not support multiple
664 		 * flow-types?
665 		 */
666 		pr_debug("No set_type function for IRQ %d (%s)\n",
667 			 irq_desc_get_irq(desc),
668 			 chip ? (chip->name ? : "unknown") : "unknown");
669 		return 0;
670 	}
671 
672 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
673 		if (!irqd_irq_masked(&desc->irq_data))
674 			mask_irq(desc);
675 		if (!irqd_irq_disabled(&desc->irq_data))
676 			unmask = 1;
677 	}
678 
679 	/* Mask all flags except trigger mode */
680 	flags &= IRQ_TYPE_SENSE_MASK;
681 	ret = chip->irq_set_type(&desc->irq_data, flags);
682 
683 	switch (ret) {
684 	case IRQ_SET_MASK_OK:
685 	case IRQ_SET_MASK_OK_DONE:
686 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
687 		irqd_set(&desc->irq_data, flags);
688 
689 	case IRQ_SET_MASK_OK_NOCOPY:
690 		flags = irqd_get_trigger_type(&desc->irq_data);
691 		irq_settings_set_trigger_mask(desc, flags);
692 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
693 		irq_settings_clr_level(desc);
694 		if (flags & IRQ_TYPE_LEVEL_MASK) {
695 			irq_settings_set_level(desc);
696 			irqd_set(&desc->irq_data, IRQD_LEVEL);
697 		}
698 
699 		ret = 0;
700 		break;
701 	default:
702 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
703 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
704 	}
705 	if (unmask)
706 		unmask_irq(desc);
707 	return ret;
708 }
709 
710 #ifdef CONFIG_HARDIRQS_SW_RESEND
711 int irq_set_parent(int irq, int parent_irq)
712 {
713 	unsigned long flags;
714 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
715 
716 	if (!desc)
717 		return -EINVAL;
718 
719 	desc->parent_irq = parent_irq;
720 
721 	irq_put_desc_unlock(desc, flags);
722 	return 0;
723 }
724 EXPORT_SYMBOL_GPL(irq_set_parent);
725 #endif
726 
727 /*
728  * Default primary interrupt handler for threaded interrupts. Is
729  * assigned as primary handler when request_threaded_irq is called
730  * with handler == NULL. Useful for oneshot interrupts.
731  */
732 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
733 {
734 	return IRQ_WAKE_THREAD;
735 }
736 
737 /*
738  * Primary handler for nested threaded interrupts. Should never be
739  * called.
740  */
741 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
742 {
743 	WARN(1, "Primary handler called for nested irq %d\n", irq);
744 	return IRQ_NONE;
745 }
746 
747 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
748 {
749 	WARN(1, "Secondary action handler called for irq %d\n", irq);
750 	return IRQ_NONE;
751 }
752 
753 static int irq_wait_for_interrupt(struct irqaction *action)
754 {
755 	set_current_state(TASK_INTERRUPTIBLE);
756 
757 	while (!kthread_should_stop()) {
758 
759 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
760 				       &action->thread_flags)) {
761 			__set_current_state(TASK_RUNNING);
762 			return 0;
763 		}
764 		schedule();
765 		set_current_state(TASK_INTERRUPTIBLE);
766 	}
767 	__set_current_state(TASK_RUNNING);
768 	return -1;
769 }
770 
771 /*
772  * Oneshot interrupts keep the irq line masked until the threaded
773  * handler finished. unmask if the interrupt has not been disabled and
774  * is marked MASKED.
775  */
776 static void irq_finalize_oneshot(struct irq_desc *desc,
777 				 struct irqaction *action)
778 {
779 	if (!(desc->istate & IRQS_ONESHOT) ||
780 	    action->handler == irq_forced_secondary_handler)
781 		return;
782 again:
783 	chip_bus_lock(desc);
784 	raw_spin_lock_irq(&desc->lock);
785 
786 	/*
787 	 * Implausible though it may be we need to protect us against
788 	 * the following scenario:
789 	 *
790 	 * The thread is faster done than the hard interrupt handler
791 	 * on the other CPU. If we unmask the irq line then the
792 	 * interrupt can come in again and masks the line, leaves due
793 	 * to IRQS_INPROGRESS and the irq line is masked forever.
794 	 *
795 	 * This also serializes the state of shared oneshot handlers
796 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
797 	 * irq_wake_thread(). See the comment there which explains the
798 	 * serialization.
799 	 */
800 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
801 		raw_spin_unlock_irq(&desc->lock);
802 		chip_bus_sync_unlock(desc);
803 		cpu_relax();
804 		goto again;
805 	}
806 
807 	/*
808 	 * Now check again, whether the thread should run. Otherwise
809 	 * we would clear the threads_oneshot bit of this thread which
810 	 * was just set.
811 	 */
812 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
813 		goto out_unlock;
814 
815 	desc->threads_oneshot &= ~action->thread_mask;
816 
817 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
818 	    irqd_irq_masked(&desc->irq_data))
819 		unmask_threaded_irq(desc);
820 
821 out_unlock:
822 	raw_spin_unlock_irq(&desc->lock);
823 	chip_bus_sync_unlock(desc);
824 }
825 
826 #ifdef CONFIG_SMP
827 /*
828  * Check whether we need to change the affinity of the interrupt thread.
829  */
830 static void
831 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
832 {
833 	cpumask_var_t mask;
834 	bool valid = true;
835 
836 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
837 		return;
838 
839 	/*
840 	 * In case we are out of memory we set IRQTF_AFFINITY again and
841 	 * try again next time
842 	 */
843 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
844 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
845 		return;
846 	}
847 
848 	raw_spin_lock_irq(&desc->lock);
849 	/*
850 	 * This code is triggered unconditionally. Check the affinity
851 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
852 	 */
853 	if (desc->irq_common_data.affinity)
854 		cpumask_copy(mask, desc->irq_common_data.affinity);
855 	else
856 		valid = false;
857 	raw_spin_unlock_irq(&desc->lock);
858 
859 	if (valid)
860 		set_cpus_allowed_ptr(current, mask);
861 	free_cpumask_var(mask);
862 }
863 #else
864 static inline void
865 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
866 #endif
867 
868 /*
869  * Interrupts which are not explicitely requested as threaded
870  * interrupts rely on the implicit bh/preempt disable of the hard irq
871  * context. So we need to disable bh here to avoid deadlocks and other
872  * side effects.
873  */
874 static irqreturn_t
875 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
876 {
877 	irqreturn_t ret;
878 
879 	local_bh_disable();
880 	ret = action->thread_fn(action->irq, action->dev_id);
881 	irq_finalize_oneshot(desc, action);
882 	local_bh_enable();
883 	return ret;
884 }
885 
886 /*
887  * Interrupts explicitly requested as threaded interrupts want to be
888  * preemtible - many of them need to sleep and wait for slow busses to
889  * complete.
890  */
891 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
892 		struct irqaction *action)
893 {
894 	irqreturn_t ret;
895 
896 	ret = action->thread_fn(action->irq, action->dev_id);
897 	irq_finalize_oneshot(desc, action);
898 	return ret;
899 }
900 
901 static void wake_threads_waitq(struct irq_desc *desc)
902 {
903 	if (atomic_dec_and_test(&desc->threads_active))
904 		wake_up(&desc->wait_for_threads);
905 }
906 
907 static void irq_thread_dtor(struct callback_head *unused)
908 {
909 	struct task_struct *tsk = current;
910 	struct irq_desc *desc;
911 	struct irqaction *action;
912 
913 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
914 		return;
915 
916 	action = kthread_data(tsk);
917 
918 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
919 	       tsk->comm, tsk->pid, action->irq);
920 
921 
922 	desc = irq_to_desc(action->irq);
923 	/*
924 	 * If IRQTF_RUNTHREAD is set, we need to decrement
925 	 * desc->threads_active and wake possible waiters.
926 	 */
927 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
928 		wake_threads_waitq(desc);
929 
930 	/* Prevent a stale desc->threads_oneshot */
931 	irq_finalize_oneshot(desc, action);
932 }
933 
934 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
935 {
936 	struct irqaction *secondary = action->secondary;
937 
938 	if (WARN_ON_ONCE(!secondary))
939 		return;
940 
941 	raw_spin_lock_irq(&desc->lock);
942 	__irq_wake_thread(desc, secondary);
943 	raw_spin_unlock_irq(&desc->lock);
944 }
945 
946 /*
947  * Interrupt handler thread
948  */
949 static int irq_thread(void *data)
950 {
951 	struct callback_head on_exit_work;
952 	struct irqaction *action = data;
953 	struct irq_desc *desc = irq_to_desc(action->irq);
954 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
955 			struct irqaction *action);
956 
957 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
958 					&action->thread_flags))
959 		handler_fn = irq_forced_thread_fn;
960 	else
961 		handler_fn = irq_thread_fn;
962 
963 	init_task_work(&on_exit_work, irq_thread_dtor);
964 	task_work_add(current, &on_exit_work, false);
965 
966 	irq_thread_check_affinity(desc, action);
967 
968 	while (!irq_wait_for_interrupt(action)) {
969 		irqreturn_t action_ret;
970 
971 		irq_thread_check_affinity(desc, action);
972 
973 		action_ret = handler_fn(desc, action);
974 		if (action_ret == IRQ_HANDLED)
975 			atomic_inc(&desc->threads_handled);
976 		if (action_ret == IRQ_WAKE_THREAD)
977 			irq_wake_secondary(desc, action);
978 
979 		wake_threads_waitq(desc);
980 	}
981 
982 	/*
983 	 * This is the regular exit path. __free_irq() is stopping the
984 	 * thread via kthread_stop() after calling
985 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
986 	 * oneshot mask bit can be set. We cannot verify that as we
987 	 * cannot touch the oneshot mask at this point anymore as
988 	 * __setup_irq() might have given out currents thread_mask
989 	 * again.
990 	 */
991 	task_work_cancel(current, irq_thread_dtor);
992 	return 0;
993 }
994 
995 /**
996  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
997  *	@irq:		Interrupt line
998  *	@dev_id:	Device identity for which the thread should be woken
999  *
1000  */
1001 void irq_wake_thread(unsigned int irq, void *dev_id)
1002 {
1003 	struct irq_desc *desc = irq_to_desc(irq);
1004 	struct irqaction *action;
1005 	unsigned long flags;
1006 
1007 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1008 		return;
1009 
1010 	raw_spin_lock_irqsave(&desc->lock, flags);
1011 	for_each_action_of_desc(desc, action) {
1012 		if (action->dev_id == dev_id) {
1013 			if (action->thread)
1014 				__irq_wake_thread(desc, action);
1015 			break;
1016 		}
1017 	}
1018 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1019 }
1020 EXPORT_SYMBOL_GPL(irq_wake_thread);
1021 
1022 static int irq_setup_forced_threading(struct irqaction *new)
1023 {
1024 	if (!force_irqthreads)
1025 		return 0;
1026 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1027 		return 0;
1028 
1029 	new->flags |= IRQF_ONESHOT;
1030 
1031 	/*
1032 	 * Handle the case where we have a real primary handler and a
1033 	 * thread handler. We force thread them as well by creating a
1034 	 * secondary action.
1035 	 */
1036 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1037 		/* Allocate the secondary action */
1038 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1039 		if (!new->secondary)
1040 			return -ENOMEM;
1041 		new->secondary->handler = irq_forced_secondary_handler;
1042 		new->secondary->thread_fn = new->thread_fn;
1043 		new->secondary->dev_id = new->dev_id;
1044 		new->secondary->irq = new->irq;
1045 		new->secondary->name = new->name;
1046 	}
1047 	/* Deal with the primary handler */
1048 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1049 	new->thread_fn = new->handler;
1050 	new->handler = irq_default_primary_handler;
1051 	return 0;
1052 }
1053 
1054 static int irq_request_resources(struct irq_desc *desc)
1055 {
1056 	struct irq_data *d = &desc->irq_data;
1057 	struct irq_chip *c = d->chip;
1058 
1059 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1060 }
1061 
1062 static void irq_release_resources(struct irq_desc *desc)
1063 {
1064 	struct irq_data *d = &desc->irq_data;
1065 	struct irq_chip *c = d->chip;
1066 
1067 	if (c->irq_release_resources)
1068 		c->irq_release_resources(d);
1069 }
1070 
1071 static int
1072 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1073 {
1074 	struct task_struct *t;
1075 	struct sched_param param = {
1076 		.sched_priority = MAX_USER_RT_PRIO/2,
1077 	};
1078 
1079 	if (!secondary) {
1080 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1081 				   new->name);
1082 	} else {
1083 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1084 				   new->name);
1085 		param.sched_priority -= 1;
1086 	}
1087 
1088 	if (IS_ERR(t))
1089 		return PTR_ERR(t);
1090 
1091 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1092 
1093 	/*
1094 	 * We keep the reference to the task struct even if
1095 	 * the thread dies to avoid that the interrupt code
1096 	 * references an already freed task_struct.
1097 	 */
1098 	get_task_struct(t);
1099 	new->thread = t;
1100 	/*
1101 	 * Tell the thread to set its affinity. This is
1102 	 * important for shared interrupt handlers as we do
1103 	 * not invoke setup_affinity() for the secondary
1104 	 * handlers as everything is already set up. Even for
1105 	 * interrupts marked with IRQF_NO_BALANCE this is
1106 	 * correct as we want the thread to move to the cpu(s)
1107 	 * on which the requesting code placed the interrupt.
1108 	 */
1109 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Internal function to register an irqaction - typically used to
1115  * allocate special interrupts that are part of the architecture.
1116  */
1117 static int
1118 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1119 {
1120 	struct irqaction *old, **old_ptr;
1121 	unsigned long flags, thread_mask = 0;
1122 	int ret, nested, shared = 0;
1123 	cpumask_var_t mask;
1124 
1125 	if (!desc)
1126 		return -EINVAL;
1127 
1128 	if (desc->irq_data.chip == &no_irq_chip)
1129 		return -ENOSYS;
1130 	if (!try_module_get(desc->owner))
1131 		return -ENODEV;
1132 
1133 	new->irq = irq;
1134 
1135 	/*
1136 	 * If the trigger type is not specified by the caller,
1137 	 * then use the default for this interrupt.
1138 	 */
1139 	if (!(new->flags & IRQF_TRIGGER_MASK))
1140 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1141 
1142 	/*
1143 	 * Check whether the interrupt nests into another interrupt
1144 	 * thread.
1145 	 */
1146 	nested = irq_settings_is_nested_thread(desc);
1147 	if (nested) {
1148 		if (!new->thread_fn) {
1149 			ret = -EINVAL;
1150 			goto out_mput;
1151 		}
1152 		/*
1153 		 * Replace the primary handler which was provided from
1154 		 * the driver for non nested interrupt handling by the
1155 		 * dummy function which warns when called.
1156 		 */
1157 		new->handler = irq_nested_primary_handler;
1158 	} else {
1159 		if (irq_settings_can_thread(desc)) {
1160 			ret = irq_setup_forced_threading(new);
1161 			if (ret)
1162 				goto out_mput;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * Create a handler thread when a thread function is supplied
1168 	 * and the interrupt does not nest into another interrupt
1169 	 * thread.
1170 	 */
1171 	if (new->thread_fn && !nested) {
1172 		ret = setup_irq_thread(new, irq, false);
1173 		if (ret)
1174 			goto out_mput;
1175 		if (new->secondary) {
1176 			ret = setup_irq_thread(new->secondary, irq, true);
1177 			if (ret)
1178 				goto out_thread;
1179 		}
1180 	}
1181 
1182 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1183 		ret = -ENOMEM;
1184 		goto out_thread;
1185 	}
1186 
1187 	/*
1188 	 * Drivers are often written to work w/o knowledge about the
1189 	 * underlying irq chip implementation, so a request for a
1190 	 * threaded irq without a primary hard irq context handler
1191 	 * requires the ONESHOT flag to be set. Some irq chips like
1192 	 * MSI based interrupts are per se one shot safe. Check the
1193 	 * chip flags, so we can avoid the unmask dance at the end of
1194 	 * the threaded handler for those.
1195 	 */
1196 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1197 		new->flags &= ~IRQF_ONESHOT;
1198 
1199 	/*
1200 	 * The following block of code has to be executed atomically
1201 	 */
1202 	raw_spin_lock_irqsave(&desc->lock, flags);
1203 	old_ptr = &desc->action;
1204 	old = *old_ptr;
1205 	if (old) {
1206 		/*
1207 		 * Can't share interrupts unless both agree to and are
1208 		 * the same type (level, edge, polarity). So both flag
1209 		 * fields must have IRQF_SHARED set and the bits which
1210 		 * set the trigger type must match. Also all must
1211 		 * agree on ONESHOT.
1212 		 */
1213 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1214 		    ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1215 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1216 			goto mismatch;
1217 
1218 		/* All handlers must agree on per-cpuness */
1219 		if ((old->flags & IRQF_PERCPU) !=
1220 		    (new->flags & IRQF_PERCPU))
1221 			goto mismatch;
1222 
1223 		/* add new interrupt at end of irq queue */
1224 		do {
1225 			/*
1226 			 * Or all existing action->thread_mask bits,
1227 			 * so we can find the next zero bit for this
1228 			 * new action.
1229 			 */
1230 			thread_mask |= old->thread_mask;
1231 			old_ptr = &old->next;
1232 			old = *old_ptr;
1233 		} while (old);
1234 		shared = 1;
1235 	}
1236 
1237 	/*
1238 	 * Setup the thread mask for this irqaction for ONESHOT. For
1239 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1240 	 * conditional in irq_wake_thread().
1241 	 */
1242 	if (new->flags & IRQF_ONESHOT) {
1243 		/*
1244 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1245 		 * but who knows.
1246 		 */
1247 		if (thread_mask == ~0UL) {
1248 			ret = -EBUSY;
1249 			goto out_mask;
1250 		}
1251 		/*
1252 		 * The thread_mask for the action is or'ed to
1253 		 * desc->thread_active to indicate that the
1254 		 * IRQF_ONESHOT thread handler has been woken, but not
1255 		 * yet finished. The bit is cleared when a thread
1256 		 * completes. When all threads of a shared interrupt
1257 		 * line have completed desc->threads_active becomes
1258 		 * zero and the interrupt line is unmasked. See
1259 		 * handle.c:irq_wake_thread() for further information.
1260 		 *
1261 		 * If no thread is woken by primary (hard irq context)
1262 		 * interrupt handlers, then desc->threads_active is
1263 		 * also checked for zero to unmask the irq line in the
1264 		 * affected hard irq flow handlers
1265 		 * (handle_[fasteoi|level]_irq).
1266 		 *
1267 		 * The new action gets the first zero bit of
1268 		 * thread_mask assigned. See the loop above which or's
1269 		 * all existing action->thread_mask bits.
1270 		 */
1271 		new->thread_mask = 1 << ffz(thread_mask);
1272 
1273 	} else if (new->handler == irq_default_primary_handler &&
1274 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1275 		/*
1276 		 * The interrupt was requested with handler = NULL, so
1277 		 * we use the default primary handler for it. But it
1278 		 * does not have the oneshot flag set. In combination
1279 		 * with level interrupts this is deadly, because the
1280 		 * default primary handler just wakes the thread, then
1281 		 * the irq lines is reenabled, but the device still
1282 		 * has the level irq asserted. Rinse and repeat....
1283 		 *
1284 		 * While this works for edge type interrupts, we play
1285 		 * it safe and reject unconditionally because we can't
1286 		 * say for sure which type this interrupt really
1287 		 * has. The type flags are unreliable as the
1288 		 * underlying chip implementation can override them.
1289 		 */
1290 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1291 		       irq);
1292 		ret = -EINVAL;
1293 		goto out_mask;
1294 	}
1295 
1296 	if (!shared) {
1297 		ret = irq_request_resources(desc);
1298 		if (ret) {
1299 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1300 			       new->name, irq, desc->irq_data.chip->name);
1301 			goto out_mask;
1302 		}
1303 
1304 		init_waitqueue_head(&desc->wait_for_threads);
1305 
1306 		/* Setup the type (level, edge polarity) if configured: */
1307 		if (new->flags & IRQF_TRIGGER_MASK) {
1308 			ret = __irq_set_trigger(desc,
1309 						new->flags & IRQF_TRIGGER_MASK);
1310 
1311 			if (ret)
1312 				goto out_mask;
1313 		}
1314 
1315 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1316 				  IRQS_ONESHOT | IRQS_WAITING);
1317 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1318 
1319 		if (new->flags & IRQF_PERCPU) {
1320 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1321 			irq_settings_set_per_cpu(desc);
1322 		}
1323 
1324 		if (new->flags & IRQF_ONESHOT)
1325 			desc->istate |= IRQS_ONESHOT;
1326 
1327 		if (irq_settings_can_autoenable(desc))
1328 			irq_startup(desc, true);
1329 		else
1330 			/* Undo nested disables: */
1331 			desc->depth = 1;
1332 
1333 		/* Exclude IRQ from balancing if requested */
1334 		if (new->flags & IRQF_NOBALANCING) {
1335 			irq_settings_set_no_balancing(desc);
1336 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1337 		}
1338 
1339 		/* Set default affinity mask once everything is setup */
1340 		setup_affinity(desc, mask);
1341 
1342 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1343 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1344 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1345 
1346 		if (nmsk != omsk)
1347 			/* hope the handler works with current  trigger mode */
1348 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1349 				irq, omsk, nmsk);
1350 	}
1351 
1352 	*old_ptr = new;
1353 
1354 	irq_pm_install_action(desc, new);
1355 
1356 	/* Reset broken irq detection when installing new handler */
1357 	desc->irq_count = 0;
1358 	desc->irqs_unhandled = 0;
1359 
1360 	/*
1361 	 * Check whether we disabled the irq via the spurious handler
1362 	 * before. Reenable it and give it another chance.
1363 	 */
1364 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1365 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1366 		__enable_irq(desc);
1367 	}
1368 
1369 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1370 
1371 	/*
1372 	 * Strictly no need to wake it up, but hung_task complains
1373 	 * when no hard interrupt wakes the thread up.
1374 	 */
1375 	if (new->thread)
1376 		wake_up_process(new->thread);
1377 	if (new->secondary)
1378 		wake_up_process(new->secondary->thread);
1379 
1380 	register_irq_proc(irq, desc);
1381 	new->dir = NULL;
1382 	register_handler_proc(irq, new);
1383 	free_cpumask_var(mask);
1384 
1385 	return 0;
1386 
1387 mismatch:
1388 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1389 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1390 		       irq, new->flags, new->name, old->flags, old->name);
1391 #ifdef CONFIG_DEBUG_SHIRQ
1392 		dump_stack();
1393 #endif
1394 	}
1395 	ret = -EBUSY;
1396 
1397 out_mask:
1398 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1399 	free_cpumask_var(mask);
1400 
1401 out_thread:
1402 	if (new->thread) {
1403 		struct task_struct *t = new->thread;
1404 
1405 		new->thread = NULL;
1406 		kthread_stop(t);
1407 		put_task_struct(t);
1408 	}
1409 	if (new->secondary && new->secondary->thread) {
1410 		struct task_struct *t = new->secondary->thread;
1411 
1412 		new->secondary->thread = NULL;
1413 		kthread_stop(t);
1414 		put_task_struct(t);
1415 	}
1416 out_mput:
1417 	module_put(desc->owner);
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	setup_irq - setup an interrupt
1423  *	@irq: Interrupt line to setup
1424  *	@act: irqaction for the interrupt
1425  *
1426  * Used to statically setup interrupts in the early boot process.
1427  */
1428 int setup_irq(unsigned int irq, struct irqaction *act)
1429 {
1430 	int retval;
1431 	struct irq_desc *desc = irq_to_desc(irq);
1432 
1433 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1434 		return -EINVAL;
1435 
1436 	retval = irq_chip_pm_get(&desc->irq_data);
1437 	if (retval < 0)
1438 		return retval;
1439 
1440 	chip_bus_lock(desc);
1441 	retval = __setup_irq(irq, desc, act);
1442 	chip_bus_sync_unlock(desc);
1443 
1444 	if (retval)
1445 		irq_chip_pm_put(&desc->irq_data);
1446 
1447 	return retval;
1448 }
1449 EXPORT_SYMBOL_GPL(setup_irq);
1450 
1451 /*
1452  * Internal function to unregister an irqaction - used to free
1453  * regular and special interrupts that are part of the architecture.
1454  */
1455 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1456 {
1457 	struct irq_desc *desc = irq_to_desc(irq);
1458 	struct irqaction *action, **action_ptr;
1459 	unsigned long flags;
1460 
1461 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1462 
1463 	if (!desc)
1464 		return NULL;
1465 
1466 	chip_bus_lock(desc);
1467 	raw_spin_lock_irqsave(&desc->lock, flags);
1468 
1469 	/*
1470 	 * There can be multiple actions per IRQ descriptor, find the right
1471 	 * one based on the dev_id:
1472 	 */
1473 	action_ptr = &desc->action;
1474 	for (;;) {
1475 		action = *action_ptr;
1476 
1477 		if (!action) {
1478 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1479 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1480 			chip_bus_sync_unlock(desc);
1481 			return NULL;
1482 		}
1483 
1484 		if (action->dev_id == dev_id)
1485 			break;
1486 		action_ptr = &action->next;
1487 	}
1488 
1489 	/* Found it - now remove it from the list of entries: */
1490 	*action_ptr = action->next;
1491 
1492 	irq_pm_remove_action(desc, action);
1493 
1494 	/* If this was the last handler, shut down the IRQ line: */
1495 	if (!desc->action) {
1496 		irq_settings_clr_disable_unlazy(desc);
1497 		irq_shutdown(desc);
1498 		irq_release_resources(desc);
1499 	}
1500 
1501 #ifdef CONFIG_SMP
1502 	/* make sure affinity_hint is cleaned up */
1503 	if (WARN_ON_ONCE(desc->affinity_hint))
1504 		desc->affinity_hint = NULL;
1505 #endif
1506 
1507 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1508 	chip_bus_sync_unlock(desc);
1509 
1510 	unregister_handler_proc(irq, action);
1511 
1512 	/* Make sure it's not being used on another CPU: */
1513 	synchronize_irq(irq);
1514 
1515 #ifdef CONFIG_DEBUG_SHIRQ
1516 	/*
1517 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1518 	 * event to happen even now it's being freed, so let's make sure that
1519 	 * is so by doing an extra call to the handler ....
1520 	 *
1521 	 * ( We do this after actually deregistering it, to make sure that a
1522 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1523 	 */
1524 	if (action->flags & IRQF_SHARED) {
1525 		local_irq_save(flags);
1526 		action->handler(irq, dev_id);
1527 		local_irq_restore(flags);
1528 	}
1529 #endif
1530 
1531 	if (action->thread) {
1532 		kthread_stop(action->thread);
1533 		put_task_struct(action->thread);
1534 		if (action->secondary && action->secondary->thread) {
1535 			kthread_stop(action->secondary->thread);
1536 			put_task_struct(action->secondary->thread);
1537 		}
1538 	}
1539 
1540 	irq_chip_pm_put(&desc->irq_data);
1541 	module_put(desc->owner);
1542 	kfree(action->secondary);
1543 	return action;
1544 }
1545 
1546 /**
1547  *	remove_irq - free an interrupt
1548  *	@irq: Interrupt line to free
1549  *	@act: irqaction for the interrupt
1550  *
1551  * Used to remove interrupts statically setup by the early boot process.
1552  */
1553 void remove_irq(unsigned int irq, struct irqaction *act)
1554 {
1555 	struct irq_desc *desc = irq_to_desc(irq);
1556 
1557 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1558 	    __free_irq(irq, act->dev_id);
1559 }
1560 EXPORT_SYMBOL_GPL(remove_irq);
1561 
1562 /**
1563  *	free_irq - free an interrupt allocated with request_irq
1564  *	@irq: Interrupt line to free
1565  *	@dev_id: Device identity to free
1566  *
1567  *	Remove an interrupt handler. The handler is removed and if the
1568  *	interrupt line is no longer in use by any driver it is disabled.
1569  *	On a shared IRQ the caller must ensure the interrupt is disabled
1570  *	on the card it drives before calling this function. The function
1571  *	does not return until any executing interrupts for this IRQ
1572  *	have completed.
1573  *
1574  *	This function must not be called from interrupt context.
1575  */
1576 void free_irq(unsigned int irq, void *dev_id)
1577 {
1578 	struct irq_desc *desc = irq_to_desc(irq);
1579 
1580 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1581 		return;
1582 
1583 #ifdef CONFIG_SMP
1584 	if (WARN_ON(desc->affinity_notify))
1585 		desc->affinity_notify = NULL;
1586 #endif
1587 
1588 	kfree(__free_irq(irq, dev_id));
1589 }
1590 EXPORT_SYMBOL(free_irq);
1591 
1592 /**
1593  *	request_threaded_irq - allocate an interrupt line
1594  *	@irq: Interrupt line to allocate
1595  *	@handler: Function to be called when the IRQ occurs.
1596  *		  Primary handler for threaded interrupts
1597  *		  If NULL and thread_fn != NULL the default
1598  *		  primary handler is installed
1599  *	@thread_fn: Function called from the irq handler thread
1600  *		    If NULL, no irq thread is created
1601  *	@irqflags: Interrupt type flags
1602  *	@devname: An ascii name for the claiming device
1603  *	@dev_id: A cookie passed back to the handler function
1604  *
1605  *	This call allocates interrupt resources and enables the
1606  *	interrupt line and IRQ handling. From the point this
1607  *	call is made your handler function may be invoked. Since
1608  *	your handler function must clear any interrupt the board
1609  *	raises, you must take care both to initialise your hardware
1610  *	and to set up the interrupt handler in the right order.
1611  *
1612  *	If you want to set up a threaded irq handler for your device
1613  *	then you need to supply @handler and @thread_fn. @handler is
1614  *	still called in hard interrupt context and has to check
1615  *	whether the interrupt originates from the device. If yes it
1616  *	needs to disable the interrupt on the device and return
1617  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1618  *	@thread_fn. This split handler design is necessary to support
1619  *	shared interrupts.
1620  *
1621  *	Dev_id must be globally unique. Normally the address of the
1622  *	device data structure is used as the cookie. Since the handler
1623  *	receives this value it makes sense to use it.
1624  *
1625  *	If your interrupt is shared you must pass a non NULL dev_id
1626  *	as this is required when freeing the interrupt.
1627  *
1628  *	Flags:
1629  *
1630  *	IRQF_SHARED		Interrupt is shared
1631  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1632  *
1633  */
1634 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1635 			 irq_handler_t thread_fn, unsigned long irqflags,
1636 			 const char *devname, void *dev_id)
1637 {
1638 	struct irqaction *action;
1639 	struct irq_desc *desc;
1640 	int retval;
1641 
1642 	if (irq == IRQ_NOTCONNECTED)
1643 		return -ENOTCONN;
1644 
1645 	/*
1646 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1647 	 * otherwise we'll have trouble later trying to figure out
1648 	 * which interrupt is which (messes up the interrupt freeing
1649 	 * logic etc).
1650 	 *
1651 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1652 	 * it cannot be set along with IRQF_NO_SUSPEND.
1653 	 */
1654 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1655 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1656 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1657 		return -EINVAL;
1658 
1659 	desc = irq_to_desc(irq);
1660 	if (!desc)
1661 		return -EINVAL;
1662 
1663 	if (!irq_settings_can_request(desc) ||
1664 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1665 		return -EINVAL;
1666 
1667 	if (!handler) {
1668 		if (!thread_fn)
1669 			return -EINVAL;
1670 		handler = irq_default_primary_handler;
1671 	}
1672 
1673 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1674 	if (!action)
1675 		return -ENOMEM;
1676 
1677 	action->handler = handler;
1678 	action->thread_fn = thread_fn;
1679 	action->flags = irqflags;
1680 	action->name = devname;
1681 	action->dev_id = dev_id;
1682 
1683 	retval = irq_chip_pm_get(&desc->irq_data);
1684 	if (retval < 0) {
1685 		kfree(action);
1686 		return retval;
1687 	}
1688 
1689 	chip_bus_lock(desc);
1690 	retval = __setup_irq(irq, desc, action);
1691 	chip_bus_sync_unlock(desc);
1692 
1693 	if (retval) {
1694 		irq_chip_pm_put(&desc->irq_data);
1695 		kfree(action->secondary);
1696 		kfree(action);
1697 	}
1698 
1699 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1700 	if (!retval && (irqflags & IRQF_SHARED)) {
1701 		/*
1702 		 * It's a shared IRQ -- the driver ought to be prepared for it
1703 		 * to happen immediately, so let's make sure....
1704 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1705 		 * run in parallel with our fake.
1706 		 */
1707 		unsigned long flags;
1708 
1709 		disable_irq(irq);
1710 		local_irq_save(flags);
1711 
1712 		handler(irq, dev_id);
1713 
1714 		local_irq_restore(flags);
1715 		enable_irq(irq);
1716 	}
1717 #endif
1718 	return retval;
1719 }
1720 EXPORT_SYMBOL(request_threaded_irq);
1721 
1722 /**
1723  *	request_any_context_irq - allocate an interrupt line
1724  *	@irq: Interrupt line to allocate
1725  *	@handler: Function to be called when the IRQ occurs.
1726  *		  Threaded handler for threaded interrupts.
1727  *	@flags: Interrupt type flags
1728  *	@name: An ascii name for the claiming device
1729  *	@dev_id: A cookie passed back to the handler function
1730  *
1731  *	This call allocates interrupt resources and enables the
1732  *	interrupt line and IRQ handling. It selects either a
1733  *	hardirq or threaded handling method depending on the
1734  *	context.
1735  *
1736  *	On failure, it returns a negative value. On success,
1737  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1738  */
1739 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1740 			    unsigned long flags, const char *name, void *dev_id)
1741 {
1742 	struct irq_desc *desc;
1743 	int ret;
1744 
1745 	if (irq == IRQ_NOTCONNECTED)
1746 		return -ENOTCONN;
1747 
1748 	desc = irq_to_desc(irq);
1749 	if (!desc)
1750 		return -EINVAL;
1751 
1752 	if (irq_settings_is_nested_thread(desc)) {
1753 		ret = request_threaded_irq(irq, NULL, handler,
1754 					   flags, name, dev_id);
1755 		return !ret ? IRQC_IS_NESTED : ret;
1756 	}
1757 
1758 	ret = request_irq(irq, handler, flags, name, dev_id);
1759 	return !ret ? IRQC_IS_HARDIRQ : ret;
1760 }
1761 EXPORT_SYMBOL_GPL(request_any_context_irq);
1762 
1763 void enable_percpu_irq(unsigned int irq, unsigned int type)
1764 {
1765 	unsigned int cpu = smp_processor_id();
1766 	unsigned long flags;
1767 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1768 
1769 	if (!desc)
1770 		return;
1771 
1772 	/*
1773 	 * If the trigger type is not specified by the caller, then
1774 	 * use the default for this interrupt.
1775 	 */
1776 	type &= IRQ_TYPE_SENSE_MASK;
1777 	if (type == IRQ_TYPE_NONE)
1778 		type = irqd_get_trigger_type(&desc->irq_data);
1779 
1780 	if (type != IRQ_TYPE_NONE) {
1781 		int ret;
1782 
1783 		ret = __irq_set_trigger(desc, type);
1784 
1785 		if (ret) {
1786 			WARN(1, "failed to set type for IRQ%d\n", irq);
1787 			goto out;
1788 		}
1789 	}
1790 
1791 	irq_percpu_enable(desc, cpu);
1792 out:
1793 	irq_put_desc_unlock(desc, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1796 
1797 /**
1798  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1799  * @irq:	Linux irq number to check for
1800  *
1801  * Must be called from a non migratable context. Returns the enable
1802  * state of a per cpu interrupt on the current cpu.
1803  */
1804 bool irq_percpu_is_enabled(unsigned int irq)
1805 {
1806 	unsigned int cpu = smp_processor_id();
1807 	struct irq_desc *desc;
1808 	unsigned long flags;
1809 	bool is_enabled;
1810 
1811 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1812 	if (!desc)
1813 		return false;
1814 
1815 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1816 	irq_put_desc_unlock(desc, flags);
1817 
1818 	return is_enabled;
1819 }
1820 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1821 
1822 void disable_percpu_irq(unsigned int irq)
1823 {
1824 	unsigned int cpu = smp_processor_id();
1825 	unsigned long flags;
1826 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1827 
1828 	if (!desc)
1829 		return;
1830 
1831 	irq_percpu_disable(desc, cpu);
1832 	irq_put_desc_unlock(desc, flags);
1833 }
1834 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1835 
1836 /*
1837  * Internal function to unregister a percpu irqaction.
1838  */
1839 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1840 {
1841 	struct irq_desc *desc = irq_to_desc(irq);
1842 	struct irqaction *action;
1843 	unsigned long flags;
1844 
1845 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1846 
1847 	if (!desc)
1848 		return NULL;
1849 
1850 	raw_spin_lock_irqsave(&desc->lock, flags);
1851 
1852 	action = desc->action;
1853 	if (!action || action->percpu_dev_id != dev_id) {
1854 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1855 		goto bad;
1856 	}
1857 
1858 	if (!cpumask_empty(desc->percpu_enabled)) {
1859 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1860 		     irq, cpumask_first(desc->percpu_enabled));
1861 		goto bad;
1862 	}
1863 
1864 	/* Found it - now remove it from the list of entries: */
1865 	desc->action = NULL;
1866 
1867 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1868 
1869 	unregister_handler_proc(irq, action);
1870 
1871 	irq_chip_pm_put(&desc->irq_data);
1872 	module_put(desc->owner);
1873 	return action;
1874 
1875 bad:
1876 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1877 	return NULL;
1878 }
1879 
1880 /**
1881  *	remove_percpu_irq - free a per-cpu interrupt
1882  *	@irq: Interrupt line to free
1883  *	@act: irqaction for the interrupt
1884  *
1885  * Used to remove interrupts statically setup by the early boot process.
1886  */
1887 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1888 {
1889 	struct irq_desc *desc = irq_to_desc(irq);
1890 
1891 	if (desc && irq_settings_is_per_cpu_devid(desc))
1892 	    __free_percpu_irq(irq, act->percpu_dev_id);
1893 }
1894 
1895 /**
1896  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1897  *	@irq: Interrupt line to free
1898  *	@dev_id: Device identity to free
1899  *
1900  *	Remove a percpu interrupt handler. The handler is removed, but
1901  *	the interrupt line is not disabled. This must be done on each
1902  *	CPU before calling this function. The function does not return
1903  *	until any executing interrupts for this IRQ have completed.
1904  *
1905  *	This function must not be called from interrupt context.
1906  */
1907 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1908 {
1909 	struct irq_desc *desc = irq_to_desc(irq);
1910 
1911 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1912 		return;
1913 
1914 	chip_bus_lock(desc);
1915 	kfree(__free_percpu_irq(irq, dev_id));
1916 	chip_bus_sync_unlock(desc);
1917 }
1918 EXPORT_SYMBOL_GPL(free_percpu_irq);
1919 
1920 /**
1921  *	setup_percpu_irq - setup a per-cpu interrupt
1922  *	@irq: Interrupt line to setup
1923  *	@act: irqaction for the interrupt
1924  *
1925  * Used to statically setup per-cpu interrupts in the early boot process.
1926  */
1927 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1928 {
1929 	struct irq_desc *desc = irq_to_desc(irq);
1930 	int retval;
1931 
1932 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1933 		return -EINVAL;
1934 
1935 	retval = irq_chip_pm_get(&desc->irq_data);
1936 	if (retval < 0)
1937 		return retval;
1938 
1939 	chip_bus_lock(desc);
1940 	retval = __setup_irq(irq, desc, act);
1941 	chip_bus_sync_unlock(desc);
1942 
1943 	if (retval)
1944 		irq_chip_pm_put(&desc->irq_data);
1945 
1946 	return retval;
1947 }
1948 
1949 /**
1950  *	request_percpu_irq - allocate a percpu interrupt line
1951  *	@irq: Interrupt line to allocate
1952  *	@handler: Function to be called when the IRQ occurs.
1953  *	@devname: An ascii name for the claiming device
1954  *	@dev_id: A percpu cookie passed back to the handler function
1955  *
1956  *	This call allocates interrupt resources and enables the
1957  *	interrupt on the local CPU. If the interrupt is supposed to be
1958  *	enabled on other CPUs, it has to be done on each CPU using
1959  *	enable_percpu_irq().
1960  *
1961  *	Dev_id must be globally unique. It is a per-cpu variable, and
1962  *	the handler gets called with the interrupted CPU's instance of
1963  *	that variable.
1964  */
1965 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1966 		       const char *devname, void __percpu *dev_id)
1967 {
1968 	struct irqaction *action;
1969 	struct irq_desc *desc;
1970 	int retval;
1971 
1972 	if (!dev_id)
1973 		return -EINVAL;
1974 
1975 	desc = irq_to_desc(irq);
1976 	if (!desc || !irq_settings_can_request(desc) ||
1977 	    !irq_settings_is_per_cpu_devid(desc))
1978 		return -EINVAL;
1979 
1980 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1981 	if (!action)
1982 		return -ENOMEM;
1983 
1984 	action->handler = handler;
1985 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1986 	action->name = devname;
1987 	action->percpu_dev_id = dev_id;
1988 
1989 	retval = irq_chip_pm_get(&desc->irq_data);
1990 	if (retval < 0) {
1991 		kfree(action);
1992 		return retval;
1993 	}
1994 
1995 	chip_bus_lock(desc);
1996 	retval = __setup_irq(irq, desc, action);
1997 	chip_bus_sync_unlock(desc);
1998 
1999 	if (retval) {
2000 		irq_chip_pm_put(&desc->irq_data);
2001 		kfree(action);
2002 	}
2003 
2004 	return retval;
2005 }
2006 EXPORT_SYMBOL_GPL(request_percpu_irq);
2007 
2008 /**
2009  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2010  *	@irq: Interrupt line that is forwarded to a VM
2011  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2012  *	@state: a pointer to a boolean where the state is to be storeed
2013  *
2014  *	This call snapshots the internal irqchip state of an
2015  *	interrupt, returning into @state the bit corresponding to
2016  *	stage @which
2017  *
2018  *	This function should be called with preemption disabled if the
2019  *	interrupt controller has per-cpu registers.
2020  */
2021 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2022 			  bool *state)
2023 {
2024 	struct irq_desc *desc;
2025 	struct irq_data *data;
2026 	struct irq_chip *chip;
2027 	unsigned long flags;
2028 	int err = -EINVAL;
2029 
2030 	desc = irq_get_desc_buslock(irq, &flags, 0);
2031 	if (!desc)
2032 		return err;
2033 
2034 	data = irq_desc_get_irq_data(desc);
2035 
2036 	do {
2037 		chip = irq_data_get_irq_chip(data);
2038 		if (chip->irq_get_irqchip_state)
2039 			break;
2040 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2041 		data = data->parent_data;
2042 #else
2043 		data = NULL;
2044 #endif
2045 	} while (data);
2046 
2047 	if (data)
2048 		err = chip->irq_get_irqchip_state(data, which, state);
2049 
2050 	irq_put_desc_busunlock(desc, flags);
2051 	return err;
2052 }
2053 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2054 
2055 /**
2056  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2057  *	@irq: Interrupt line that is forwarded to a VM
2058  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2059  *	@val: Value corresponding to @which
2060  *
2061  *	This call sets the internal irqchip state of an interrupt,
2062  *	depending on the value of @which.
2063  *
2064  *	This function should be called with preemption disabled if the
2065  *	interrupt controller has per-cpu registers.
2066  */
2067 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2068 			  bool val)
2069 {
2070 	struct irq_desc *desc;
2071 	struct irq_data *data;
2072 	struct irq_chip *chip;
2073 	unsigned long flags;
2074 	int err = -EINVAL;
2075 
2076 	desc = irq_get_desc_buslock(irq, &flags, 0);
2077 	if (!desc)
2078 		return err;
2079 
2080 	data = irq_desc_get_irq_data(desc);
2081 
2082 	do {
2083 		chip = irq_data_get_irq_chip(data);
2084 		if (chip->irq_set_irqchip_state)
2085 			break;
2086 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2087 		data = data->parent_data;
2088 #else
2089 		data = NULL;
2090 #endif
2091 	} while (data);
2092 
2093 	if (data)
2094 		err = chip->irq_set_irqchip_state(data, which, val);
2095 
2096 	irq_put_desc_busunlock(desc, flags);
2097 	return err;
2098 }
2099 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2100