1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 EXPORT_SYMBOL_GPL(force_irqthreads); 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 /* fall through */ 200 case IRQ_SET_MASK_OK_NOCOPY: 201 irq_validate_effective_affinity(data); 202 irq_set_thread_affinity(desc); 203 ret = 0; 204 } 205 206 return ret; 207 } 208 209 #ifdef CONFIG_GENERIC_PENDING_IRQ 210 static inline int irq_set_affinity_pending(struct irq_data *data, 211 const struct cpumask *dest) 212 { 213 struct irq_desc *desc = irq_data_to_desc(data); 214 215 irqd_set_move_pending(data); 216 irq_copy_pending(desc, dest); 217 return 0; 218 } 219 #else 220 static inline int irq_set_affinity_pending(struct irq_data *data, 221 const struct cpumask *dest) 222 { 223 return -EBUSY; 224 } 225 #endif 226 227 static int irq_try_set_affinity(struct irq_data *data, 228 const struct cpumask *dest, bool force) 229 { 230 int ret = irq_do_set_affinity(data, dest, force); 231 232 /* 233 * In case that the underlying vector management is busy and the 234 * architecture supports the generic pending mechanism then utilize 235 * this to avoid returning an error to user space. 236 */ 237 if (ret == -EBUSY && !force) 238 ret = irq_set_affinity_pending(data, dest); 239 return ret; 240 } 241 242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 243 bool force) 244 { 245 struct irq_chip *chip = irq_data_get_irq_chip(data); 246 struct irq_desc *desc = irq_data_to_desc(data); 247 int ret = 0; 248 249 if (!chip || !chip->irq_set_affinity) 250 return -EINVAL; 251 252 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 253 ret = irq_try_set_affinity(data, mask, force); 254 } else { 255 irqd_set_move_pending(data); 256 irq_copy_pending(desc, mask); 257 } 258 259 if (desc->affinity_notify) { 260 kref_get(&desc->affinity_notify->kref); 261 schedule_work(&desc->affinity_notify->work); 262 } 263 irqd_set(data, IRQD_AFFINITY_SET); 264 265 return ret; 266 } 267 268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 269 { 270 struct irq_desc *desc = irq_to_desc(irq); 271 unsigned long flags; 272 int ret; 273 274 if (!desc) 275 return -EINVAL; 276 277 raw_spin_lock_irqsave(&desc->lock, flags); 278 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 279 raw_spin_unlock_irqrestore(&desc->lock, flags); 280 return ret; 281 } 282 283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 284 { 285 unsigned long flags; 286 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 287 288 if (!desc) 289 return -EINVAL; 290 desc->affinity_hint = m; 291 irq_put_desc_unlock(desc, flags); 292 /* set the initial affinity to prevent every interrupt being on CPU0 */ 293 if (m) 294 __irq_set_affinity(irq, m, false); 295 return 0; 296 } 297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 298 299 static void irq_affinity_notify(struct work_struct *work) 300 { 301 struct irq_affinity_notify *notify = 302 container_of(work, struct irq_affinity_notify, work); 303 struct irq_desc *desc = irq_to_desc(notify->irq); 304 cpumask_var_t cpumask; 305 unsigned long flags; 306 307 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 308 goto out; 309 310 raw_spin_lock_irqsave(&desc->lock, flags); 311 if (irq_move_pending(&desc->irq_data)) 312 irq_get_pending(cpumask, desc); 313 else 314 cpumask_copy(cpumask, desc->irq_common_data.affinity); 315 raw_spin_unlock_irqrestore(&desc->lock, flags); 316 317 notify->notify(notify, cpumask); 318 319 free_cpumask_var(cpumask); 320 out: 321 kref_put(¬ify->kref, notify->release); 322 } 323 324 /** 325 * irq_set_affinity_notifier - control notification of IRQ affinity changes 326 * @irq: Interrupt for which to enable/disable notification 327 * @notify: Context for notification, or %NULL to disable 328 * notification. Function pointers must be initialised; 329 * the other fields will be initialised by this function. 330 * 331 * Must be called in process context. Notification may only be enabled 332 * after the IRQ is allocated and must be disabled before the IRQ is 333 * freed using free_irq(). 334 */ 335 int 336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 337 { 338 struct irq_desc *desc = irq_to_desc(irq); 339 struct irq_affinity_notify *old_notify; 340 unsigned long flags; 341 342 /* The release function is promised process context */ 343 might_sleep(); 344 345 if (!desc || desc->istate & IRQS_NMI) 346 return -EINVAL; 347 348 /* Complete initialisation of *notify */ 349 if (notify) { 350 notify->irq = irq; 351 kref_init(¬ify->kref); 352 INIT_WORK(¬ify->work, irq_affinity_notify); 353 } 354 355 raw_spin_lock_irqsave(&desc->lock, flags); 356 old_notify = desc->affinity_notify; 357 desc->affinity_notify = notify; 358 raw_spin_unlock_irqrestore(&desc->lock, flags); 359 360 if (old_notify) 361 kref_put(&old_notify->kref, old_notify->release); 362 363 return 0; 364 } 365 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 366 367 #ifndef CONFIG_AUTO_IRQ_AFFINITY 368 /* 369 * Generic version of the affinity autoselector. 370 */ 371 int irq_setup_affinity(struct irq_desc *desc) 372 { 373 struct cpumask *set = irq_default_affinity; 374 int ret, node = irq_desc_get_node(desc); 375 static DEFINE_RAW_SPINLOCK(mask_lock); 376 static struct cpumask mask; 377 378 /* Excludes PER_CPU and NO_BALANCE interrupts */ 379 if (!__irq_can_set_affinity(desc)) 380 return 0; 381 382 raw_spin_lock(&mask_lock); 383 /* 384 * Preserve the managed affinity setting and a userspace affinity 385 * setup, but make sure that one of the targets is online. 386 */ 387 if (irqd_affinity_is_managed(&desc->irq_data) || 388 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 389 if (cpumask_intersects(desc->irq_common_data.affinity, 390 cpu_online_mask)) 391 set = desc->irq_common_data.affinity; 392 else 393 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 394 } 395 396 cpumask_and(&mask, cpu_online_mask, set); 397 if (cpumask_empty(&mask)) 398 cpumask_copy(&mask, cpu_online_mask); 399 400 if (node != NUMA_NO_NODE) { 401 const struct cpumask *nodemask = cpumask_of_node(node); 402 403 /* make sure at least one of the cpus in nodemask is online */ 404 if (cpumask_intersects(&mask, nodemask)) 405 cpumask_and(&mask, &mask, nodemask); 406 } 407 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 408 raw_spin_unlock(&mask_lock); 409 return ret; 410 } 411 #else 412 /* Wrapper for ALPHA specific affinity selector magic */ 413 int irq_setup_affinity(struct irq_desc *desc) 414 { 415 return irq_select_affinity(irq_desc_get_irq(desc)); 416 } 417 #endif 418 419 /* 420 * Called when a bogus affinity is set via /proc/irq 421 */ 422 int irq_select_affinity_usr(unsigned int irq) 423 { 424 struct irq_desc *desc = irq_to_desc(irq); 425 unsigned long flags; 426 int ret; 427 428 raw_spin_lock_irqsave(&desc->lock, flags); 429 ret = irq_setup_affinity(desc); 430 raw_spin_unlock_irqrestore(&desc->lock, flags); 431 return ret; 432 } 433 #endif 434 435 /** 436 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 437 * @irq: interrupt number to set affinity 438 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 439 * specific data for percpu_devid interrupts 440 * 441 * This function uses the vCPU specific data to set the vCPU 442 * affinity for an irq. The vCPU specific data is passed from 443 * outside, such as KVM. One example code path is as below: 444 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 445 */ 446 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 447 { 448 unsigned long flags; 449 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 450 struct irq_data *data; 451 struct irq_chip *chip; 452 int ret = -ENOSYS; 453 454 if (!desc) 455 return -EINVAL; 456 457 data = irq_desc_get_irq_data(desc); 458 do { 459 chip = irq_data_get_irq_chip(data); 460 if (chip && chip->irq_set_vcpu_affinity) 461 break; 462 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 463 data = data->parent_data; 464 #else 465 data = NULL; 466 #endif 467 } while (data); 468 469 if (data) 470 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 471 irq_put_desc_unlock(desc, flags); 472 473 return ret; 474 } 475 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 476 477 void __disable_irq(struct irq_desc *desc) 478 { 479 if (!desc->depth++) 480 irq_disable(desc); 481 } 482 483 static int __disable_irq_nosync(unsigned int irq) 484 { 485 unsigned long flags; 486 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 487 488 if (!desc) 489 return -EINVAL; 490 __disable_irq(desc); 491 irq_put_desc_busunlock(desc, flags); 492 return 0; 493 } 494 495 /** 496 * disable_irq_nosync - disable an irq without waiting 497 * @irq: Interrupt to disable 498 * 499 * Disable the selected interrupt line. Disables and Enables are 500 * nested. 501 * Unlike disable_irq(), this function does not ensure existing 502 * instances of the IRQ handler have completed before returning. 503 * 504 * This function may be called from IRQ context. 505 */ 506 void disable_irq_nosync(unsigned int irq) 507 { 508 __disable_irq_nosync(irq); 509 } 510 EXPORT_SYMBOL(disable_irq_nosync); 511 512 /** 513 * disable_irq - disable an irq and wait for completion 514 * @irq: Interrupt to disable 515 * 516 * Disable the selected interrupt line. Enables and Disables are 517 * nested. 518 * This function waits for any pending IRQ handlers for this interrupt 519 * to complete before returning. If you use this function while 520 * holding a resource the IRQ handler may need you will deadlock. 521 * 522 * This function may be called - with care - from IRQ context. 523 */ 524 void disable_irq(unsigned int irq) 525 { 526 if (!__disable_irq_nosync(irq)) 527 synchronize_irq(irq); 528 } 529 EXPORT_SYMBOL(disable_irq); 530 531 /** 532 * disable_hardirq - disables an irq and waits for hardirq completion 533 * @irq: Interrupt to disable 534 * 535 * Disable the selected interrupt line. Enables and Disables are 536 * nested. 537 * This function waits for any pending hard IRQ handlers for this 538 * interrupt to complete before returning. If you use this function while 539 * holding a resource the hard IRQ handler may need you will deadlock. 540 * 541 * When used to optimistically disable an interrupt from atomic context 542 * the return value must be checked. 543 * 544 * Returns: false if a threaded handler is active. 545 * 546 * This function may be called - with care - from IRQ context. 547 */ 548 bool disable_hardirq(unsigned int irq) 549 { 550 if (!__disable_irq_nosync(irq)) 551 return synchronize_hardirq(irq); 552 553 return false; 554 } 555 EXPORT_SYMBOL_GPL(disable_hardirq); 556 557 /** 558 * disable_nmi_nosync - disable an nmi without waiting 559 * @irq: Interrupt to disable 560 * 561 * Disable the selected interrupt line. Disables and enables are 562 * nested. 563 * The interrupt to disable must have been requested through request_nmi. 564 * Unlike disable_nmi(), this function does not ensure existing 565 * instances of the IRQ handler have completed before returning. 566 */ 567 void disable_nmi_nosync(unsigned int irq) 568 { 569 disable_irq_nosync(irq); 570 } 571 572 void __enable_irq(struct irq_desc *desc) 573 { 574 switch (desc->depth) { 575 case 0: 576 err_out: 577 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 578 irq_desc_get_irq(desc)); 579 break; 580 case 1: { 581 if (desc->istate & IRQS_SUSPENDED) 582 goto err_out; 583 /* Prevent probing on this irq: */ 584 irq_settings_set_noprobe(desc); 585 /* 586 * Call irq_startup() not irq_enable() here because the 587 * interrupt might be marked NOAUTOEN. So irq_startup() 588 * needs to be invoked when it gets enabled the first 589 * time. If it was already started up, then irq_startup() 590 * will invoke irq_enable() under the hood. 591 */ 592 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 593 break; 594 } 595 default: 596 desc->depth--; 597 } 598 } 599 600 /** 601 * enable_irq - enable handling of an irq 602 * @irq: Interrupt to enable 603 * 604 * Undoes the effect of one call to disable_irq(). If this 605 * matches the last disable, processing of interrupts on this 606 * IRQ line is re-enabled. 607 * 608 * This function may be called from IRQ context only when 609 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 610 */ 611 void enable_irq(unsigned int irq) 612 { 613 unsigned long flags; 614 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 615 616 if (!desc) 617 return; 618 if (WARN(!desc->irq_data.chip, 619 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 620 goto out; 621 622 __enable_irq(desc); 623 out: 624 irq_put_desc_busunlock(desc, flags); 625 } 626 EXPORT_SYMBOL(enable_irq); 627 628 /** 629 * enable_nmi - enable handling of an nmi 630 * @irq: Interrupt to enable 631 * 632 * The interrupt to enable must have been requested through request_nmi. 633 * Undoes the effect of one call to disable_nmi(). If this 634 * matches the last disable, processing of interrupts on this 635 * IRQ line is re-enabled. 636 */ 637 void enable_nmi(unsigned int irq) 638 { 639 enable_irq(irq); 640 } 641 642 static int set_irq_wake_real(unsigned int irq, unsigned int on) 643 { 644 struct irq_desc *desc = irq_to_desc(irq); 645 int ret = -ENXIO; 646 647 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 648 return 0; 649 650 if (desc->irq_data.chip->irq_set_wake) 651 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 652 653 return ret; 654 } 655 656 /** 657 * irq_set_irq_wake - control irq power management wakeup 658 * @irq: interrupt to control 659 * @on: enable/disable power management wakeup 660 * 661 * Enable/disable power management wakeup mode, which is 662 * disabled by default. Enables and disables must match, 663 * just as they match for non-wakeup mode support. 664 * 665 * Wakeup mode lets this IRQ wake the system from sleep 666 * states like "suspend to RAM". 667 */ 668 int irq_set_irq_wake(unsigned int irq, unsigned int on) 669 { 670 unsigned long flags; 671 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 672 int ret = 0; 673 674 if (!desc) 675 return -EINVAL; 676 677 /* Don't use NMIs as wake up interrupts please */ 678 if (desc->istate & IRQS_NMI) { 679 ret = -EINVAL; 680 goto out_unlock; 681 } 682 683 /* wakeup-capable irqs can be shared between drivers that 684 * don't need to have the same sleep mode behaviors. 685 */ 686 if (on) { 687 if (desc->wake_depth++ == 0) { 688 ret = set_irq_wake_real(irq, on); 689 if (ret) 690 desc->wake_depth = 0; 691 else 692 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 693 } 694 } else { 695 if (desc->wake_depth == 0) { 696 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 697 } else if (--desc->wake_depth == 0) { 698 ret = set_irq_wake_real(irq, on); 699 if (ret) 700 desc->wake_depth = 1; 701 else 702 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 703 } 704 } 705 706 out_unlock: 707 irq_put_desc_busunlock(desc, flags); 708 return ret; 709 } 710 EXPORT_SYMBOL(irq_set_irq_wake); 711 712 /* 713 * Internal function that tells the architecture code whether a 714 * particular irq has been exclusively allocated or is available 715 * for driver use. 716 */ 717 int can_request_irq(unsigned int irq, unsigned long irqflags) 718 { 719 unsigned long flags; 720 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 721 int canrequest = 0; 722 723 if (!desc) 724 return 0; 725 726 if (irq_settings_can_request(desc)) { 727 if (!desc->action || 728 irqflags & desc->action->flags & IRQF_SHARED) 729 canrequest = 1; 730 } 731 irq_put_desc_unlock(desc, flags); 732 return canrequest; 733 } 734 735 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 736 { 737 struct irq_chip *chip = desc->irq_data.chip; 738 int ret, unmask = 0; 739 740 if (!chip || !chip->irq_set_type) { 741 /* 742 * IRQF_TRIGGER_* but the PIC does not support multiple 743 * flow-types? 744 */ 745 pr_debug("No set_type function for IRQ %d (%s)\n", 746 irq_desc_get_irq(desc), 747 chip ? (chip->name ? : "unknown") : "unknown"); 748 return 0; 749 } 750 751 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 752 if (!irqd_irq_masked(&desc->irq_data)) 753 mask_irq(desc); 754 if (!irqd_irq_disabled(&desc->irq_data)) 755 unmask = 1; 756 } 757 758 /* Mask all flags except trigger mode */ 759 flags &= IRQ_TYPE_SENSE_MASK; 760 ret = chip->irq_set_type(&desc->irq_data, flags); 761 762 switch (ret) { 763 case IRQ_SET_MASK_OK: 764 case IRQ_SET_MASK_OK_DONE: 765 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 766 irqd_set(&desc->irq_data, flags); 767 /* fall through */ 768 769 case IRQ_SET_MASK_OK_NOCOPY: 770 flags = irqd_get_trigger_type(&desc->irq_data); 771 irq_settings_set_trigger_mask(desc, flags); 772 irqd_clear(&desc->irq_data, IRQD_LEVEL); 773 irq_settings_clr_level(desc); 774 if (flags & IRQ_TYPE_LEVEL_MASK) { 775 irq_settings_set_level(desc); 776 irqd_set(&desc->irq_data, IRQD_LEVEL); 777 } 778 779 ret = 0; 780 break; 781 default: 782 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 783 flags, irq_desc_get_irq(desc), chip->irq_set_type); 784 } 785 if (unmask) 786 unmask_irq(desc); 787 return ret; 788 } 789 790 #ifdef CONFIG_HARDIRQS_SW_RESEND 791 int irq_set_parent(int irq, int parent_irq) 792 { 793 unsigned long flags; 794 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 795 796 if (!desc) 797 return -EINVAL; 798 799 desc->parent_irq = parent_irq; 800 801 irq_put_desc_unlock(desc, flags); 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(irq_set_parent); 805 #endif 806 807 /* 808 * Default primary interrupt handler for threaded interrupts. Is 809 * assigned as primary handler when request_threaded_irq is called 810 * with handler == NULL. Useful for oneshot interrupts. 811 */ 812 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 813 { 814 return IRQ_WAKE_THREAD; 815 } 816 817 /* 818 * Primary handler for nested threaded interrupts. Should never be 819 * called. 820 */ 821 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 822 { 823 WARN(1, "Primary handler called for nested irq %d\n", irq); 824 return IRQ_NONE; 825 } 826 827 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 828 { 829 WARN(1, "Secondary action handler called for irq %d\n", irq); 830 return IRQ_NONE; 831 } 832 833 static int irq_wait_for_interrupt(struct irqaction *action) 834 { 835 for (;;) { 836 set_current_state(TASK_INTERRUPTIBLE); 837 838 if (kthread_should_stop()) { 839 /* may need to run one last time */ 840 if (test_and_clear_bit(IRQTF_RUNTHREAD, 841 &action->thread_flags)) { 842 __set_current_state(TASK_RUNNING); 843 return 0; 844 } 845 __set_current_state(TASK_RUNNING); 846 return -1; 847 } 848 849 if (test_and_clear_bit(IRQTF_RUNTHREAD, 850 &action->thread_flags)) { 851 __set_current_state(TASK_RUNNING); 852 return 0; 853 } 854 schedule(); 855 } 856 } 857 858 /* 859 * Oneshot interrupts keep the irq line masked until the threaded 860 * handler finished. unmask if the interrupt has not been disabled and 861 * is marked MASKED. 862 */ 863 static void irq_finalize_oneshot(struct irq_desc *desc, 864 struct irqaction *action) 865 { 866 if (!(desc->istate & IRQS_ONESHOT) || 867 action->handler == irq_forced_secondary_handler) 868 return; 869 again: 870 chip_bus_lock(desc); 871 raw_spin_lock_irq(&desc->lock); 872 873 /* 874 * Implausible though it may be we need to protect us against 875 * the following scenario: 876 * 877 * The thread is faster done than the hard interrupt handler 878 * on the other CPU. If we unmask the irq line then the 879 * interrupt can come in again and masks the line, leaves due 880 * to IRQS_INPROGRESS and the irq line is masked forever. 881 * 882 * This also serializes the state of shared oneshot handlers 883 * versus "desc->threads_onehsot |= action->thread_mask;" in 884 * irq_wake_thread(). See the comment there which explains the 885 * serialization. 886 */ 887 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 888 raw_spin_unlock_irq(&desc->lock); 889 chip_bus_sync_unlock(desc); 890 cpu_relax(); 891 goto again; 892 } 893 894 /* 895 * Now check again, whether the thread should run. Otherwise 896 * we would clear the threads_oneshot bit of this thread which 897 * was just set. 898 */ 899 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 900 goto out_unlock; 901 902 desc->threads_oneshot &= ~action->thread_mask; 903 904 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 905 irqd_irq_masked(&desc->irq_data)) 906 unmask_threaded_irq(desc); 907 908 out_unlock: 909 raw_spin_unlock_irq(&desc->lock); 910 chip_bus_sync_unlock(desc); 911 } 912 913 #ifdef CONFIG_SMP 914 /* 915 * Check whether we need to change the affinity of the interrupt thread. 916 */ 917 static void 918 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 919 { 920 cpumask_var_t mask; 921 bool valid = true; 922 923 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 924 return; 925 926 /* 927 * In case we are out of memory we set IRQTF_AFFINITY again and 928 * try again next time 929 */ 930 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 931 set_bit(IRQTF_AFFINITY, &action->thread_flags); 932 return; 933 } 934 935 raw_spin_lock_irq(&desc->lock); 936 /* 937 * This code is triggered unconditionally. Check the affinity 938 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 939 */ 940 if (cpumask_available(desc->irq_common_data.affinity)) { 941 const struct cpumask *m; 942 943 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 944 cpumask_copy(mask, m); 945 } else { 946 valid = false; 947 } 948 raw_spin_unlock_irq(&desc->lock); 949 950 if (valid) 951 set_cpus_allowed_ptr(current, mask); 952 free_cpumask_var(mask); 953 } 954 #else 955 static inline void 956 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 957 #endif 958 959 /* 960 * Interrupts which are not explicitly requested as threaded 961 * interrupts rely on the implicit bh/preempt disable of the hard irq 962 * context. So we need to disable bh here to avoid deadlocks and other 963 * side effects. 964 */ 965 static irqreturn_t 966 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 967 { 968 irqreturn_t ret; 969 970 local_bh_disable(); 971 ret = action->thread_fn(action->irq, action->dev_id); 972 if (ret == IRQ_HANDLED) 973 atomic_inc(&desc->threads_handled); 974 975 irq_finalize_oneshot(desc, action); 976 local_bh_enable(); 977 return ret; 978 } 979 980 /* 981 * Interrupts explicitly requested as threaded interrupts want to be 982 * preemtible - many of them need to sleep and wait for slow busses to 983 * complete. 984 */ 985 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 986 struct irqaction *action) 987 { 988 irqreturn_t ret; 989 990 ret = action->thread_fn(action->irq, action->dev_id); 991 if (ret == IRQ_HANDLED) 992 atomic_inc(&desc->threads_handled); 993 994 irq_finalize_oneshot(desc, action); 995 return ret; 996 } 997 998 static void wake_threads_waitq(struct irq_desc *desc) 999 { 1000 if (atomic_dec_and_test(&desc->threads_active)) 1001 wake_up(&desc->wait_for_threads); 1002 } 1003 1004 static void irq_thread_dtor(struct callback_head *unused) 1005 { 1006 struct task_struct *tsk = current; 1007 struct irq_desc *desc; 1008 struct irqaction *action; 1009 1010 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1011 return; 1012 1013 action = kthread_data(tsk); 1014 1015 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1016 tsk->comm, tsk->pid, action->irq); 1017 1018 1019 desc = irq_to_desc(action->irq); 1020 /* 1021 * If IRQTF_RUNTHREAD is set, we need to decrement 1022 * desc->threads_active and wake possible waiters. 1023 */ 1024 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1025 wake_threads_waitq(desc); 1026 1027 /* Prevent a stale desc->threads_oneshot */ 1028 irq_finalize_oneshot(desc, action); 1029 } 1030 1031 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1032 { 1033 struct irqaction *secondary = action->secondary; 1034 1035 if (WARN_ON_ONCE(!secondary)) 1036 return; 1037 1038 raw_spin_lock_irq(&desc->lock); 1039 __irq_wake_thread(desc, secondary); 1040 raw_spin_unlock_irq(&desc->lock); 1041 } 1042 1043 /* 1044 * Interrupt handler thread 1045 */ 1046 static int irq_thread(void *data) 1047 { 1048 struct callback_head on_exit_work; 1049 struct irqaction *action = data; 1050 struct irq_desc *desc = irq_to_desc(action->irq); 1051 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1052 struct irqaction *action); 1053 1054 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1055 &action->thread_flags)) 1056 handler_fn = irq_forced_thread_fn; 1057 else 1058 handler_fn = irq_thread_fn; 1059 1060 init_task_work(&on_exit_work, irq_thread_dtor); 1061 task_work_add(current, &on_exit_work, false); 1062 1063 irq_thread_check_affinity(desc, action); 1064 1065 while (!irq_wait_for_interrupt(action)) { 1066 irqreturn_t action_ret; 1067 1068 irq_thread_check_affinity(desc, action); 1069 1070 action_ret = handler_fn(desc, action); 1071 if (action_ret == IRQ_WAKE_THREAD) 1072 irq_wake_secondary(desc, action); 1073 1074 wake_threads_waitq(desc); 1075 } 1076 1077 /* 1078 * This is the regular exit path. __free_irq() is stopping the 1079 * thread via kthread_stop() after calling 1080 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1081 * oneshot mask bit can be set. 1082 */ 1083 task_work_cancel(current, irq_thread_dtor); 1084 return 0; 1085 } 1086 1087 /** 1088 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1089 * @irq: Interrupt line 1090 * @dev_id: Device identity for which the thread should be woken 1091 * 1092 */ 1093 void irq_wake_thread(unsigned int irq, void *dev_id) 1094 { 1095 struct irq_desc *desc = irq_to_desc(irq); 1096 struct irqaction *action; 1097 unsigned long flags; 1098 1099 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1100 return; 1101 1102 raw_spin_lock_irqsave(&desc->lock, flags); 1103 for_each_action_of_desc(desc, action) { 1104 if (action->dev_id == dev_id) { 1105 if (action->thread) 1106 __irq_wake_thread(desc, action); 1107 break; 1108 } 1109 } 1110 raw_spin_unlock_irqrestore(&desc->lock, flags); 1111 } 1112 EXPORT_SYMBOL_GPL(irq_wake_thread); 1113 1114 static int irq_setup_forced_threading(struct irqaction *new) 1115 { 1116 if (!force_irqthreads) 1117 return 0; 1118 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1119 return 0; 1120 1121 /* 1122 * No further action required for interrupts which are requested as 1123 * threaded interrupts already 1124 */ 1125 if (new->handler == irq_default_primary_handler) 1126 return 0; 1127 1128 new->flags |= IRQF_ONESHOT; 1129 1130 /* 1131 * Handle the case where we have a real primary handler and a 1132 * thread handler. We force thread them as well by creating a 1133 * secondary action. 1134 */ 1135 if (new->handler && new->thread_fn) { 1136 /* Allocate the secondary action */ 1137 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1138 if (!new->secondary) 1139 return -ENOMEM; 1140 new->secondary->handler = irq_forced_secondary_handler; 1141 new->secondary->thread_fn = new->thread_fn; 1142 new->secondary->dev_id = new->dev_id; 1143 new->secondary->irq = new->irq; 1144 new->secondary->name = new->name; 1145 } 1146 /* Deal with the primary handler */ 1147 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1148 new->thread_fn = new->handler; 1149 new->handler = irq_default_primary_handler; 1150 return 0; 1151 } 1152 1153 static int irq_request_resources(struct irq_desc *desc) 1154 { 1155 struct irq_data *d = &desc->irq_data; 1156 struct irq_chip *c = d->chip; 1157 1158 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1159 } 1160 1161 static void irq_release_resources(struct irq_desc *desc) 1162 { 1163 struct irq_data *d = &desc->irq_data; 1164 struct irq_chip *c = d->chip; 1165 1166 if (c->irq_release_resources) 1167 c->irq_release_resources(d); 1168 } 1169 1170 static bool irq_supports_nmi(struct irq_desc *desc) 1171 { 1172 struct irq_data *d = irq_desc_get_irq_data(desc); 1173 1174 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1175 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1176 if (d->parent_data) 1177 return false; 1178 #endif 1179 /* Don't support NMIs for chips behind a slow bus */ 1180 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1181 return false; 1182 1183 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1184 } 1185 1186 static int irq_nmi_setup(struct irq_desc *desc) 1187 { 1188 struct irq_data *d = irq_desc_get_irq_data(desc); 1189 struct irq_chip *c = d->chip; 1190 1191 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1192 } 1193 1194 static void irq_nmi_teardown(struct irq_desc *desc) 1195 { 1196 struct irq_data *d = irq_desc_get_irq_data(desc); 1197 struct irq_chip *c = d->chip; 1198 1199 if (c->irq_nmi_teardown) 1200 c->irq_nmi_teardown(d); 1201 } 1202 1203 static int 1204 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1205 { 1206 struct task_struct *t; 1207 struct sched_param param = { 1208 .sched_priority = MAX_USER_RT_PRIO/2, 1209 }; 1210 1211 if (!secondary) { 1212 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1213 new->name); 1214 } else { 1215 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1216 new->name); 1217 param.sched_priority -= 1; 1218 } 1219 1220 if (IS_ERR(t)) 1221 return PTR_ERR(t); 1222 1223 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1224 1225 /* 1226 * We keep the reference to the task struct even if 1227 * the thread dies to avoid that the interrupt code 1228 * references an already freed task_struct. 1229 */ 1230 get_task_struct(t); 1231 new->thread = t; 1232 /* 1233 * Tell the thread to set its affinity. This is 1234 * important for shared interrupt handlers as we do 1235 * not invoke setup_affinity() for the secondary 1236 * handlers as everything is already set up. Even for 1237 * interrupts marked with IRQF_NO_BALANCE this is 1238 * correct as we want the thread to move to the cpu(s) 1239 * on which the requesting code placed the interrupt. 1240 */ 1241 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1242 return 0; 1243 } 1244 1245 /* 1246 * Internal function to register an irqaction - typically used to 1247 * allocate special interrupts that are part of the architecture. 1248 * 1249 * Locking rules: 1250 * 1251 * desc->request_mutex Provides serialization against a concurrent free_irq() 1252 * chip_bus_lock Provides serialization for slow bus operations 1253 * desc->lock Provides serialization against hard interrupts 1254 * 1255 * chip_bus_lock and desc->lock are sufficient for all other management and 1256 * interrupt related functions. desc->request_mutex solely serializes 1257 * request/free_irq(). 1258 */ 1259 static int 1260 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1261 { 1262 struct irqaction *old, **old_ptr; 1263 unsigned long flags, thread_mask = 0; 1264 int ret, nested, shared = 0; 1265 1266 if (!desc) 1267 return -EINVAL; 1268 1269 if (desc->irq_data.chip == &no_irq_chip) 1270 return -ENOSYS; 1271 if (!try_module_get(desc->owner)) 1272 return -ENODEV; 1273 1274 new->irq = irq; 1275 1276 /* 1277 * If the trigger type is not specified by the caller, 1278 * then use the default for this interrupt. 1279 */ 1280 if (!(new->flags & IRQF_TRIGGER_MASK)) 1281 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1282 1283 /* 1284 * Check whether the interrupt nests into another interrupt 1285 * thread. 1286 */ 1287 nested = irq_settings_is_nested_thread(desc); 1288 if (nested) { 1289 if (!new->thread_fn) { 1290 ret = -EINVAL; 1291 goto out_mput; 1292 } 1293 /* 1294 * Replace the primary handler which was provided from 1295 * the driver for non nested interrupt handling by the 1296 * dummy function which warns when called. 1297 */ 1298 new->handler = irq_nested_primary_handler; 1299 } else { 1300 if (irq_settings_can_thread(desc)) { 1301 ret = irq_setup_forced_threading(new); 1302 if (ret) 1303 goto out_mput; 1304 } 1305 } 1306 1307 /* 1308 * Create a handler thread when a thread function is supplied 1309 * and the interrupt does not nest into another interrupt 1310 * thread. 1311 */ 1312 if (new->thread_fn && !nested) { 1313 ret = setup_irq_thread(new, irq, false); 1314 if (ret) 1315 goto out_mput; 1316 if (new->secondary) { 1317 ret = setup_irq_thread(new->secondary, irq, true); 1318 if (ret) 1319 goto out_thread; 1320 } 1321 } 1322 1323 /* 1324 * Drivers are often written to work w/o knowledge about the 1325 * underlying irq chip implementation, so a request for a 1326 * threaded irq without a primary hard irq context handler 1327 * requires the ONESHOT flag to be set. Some irq chips like 1328 * MSI based interrupts are per se one shot safe. Check the 1329 * chip flags, so we can avoid the unmask dance at the end of 1330 * the threaded handler for those. 1331 */ 1332 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1333 new->flags &= ~IRQF_ONESHOT; 1334 1335 /* 1336 * Protects against a concurrent __free_irq() call which might wait 1337 * for synchronize_hardirq() to complete without holding the optional 1338 * chip bus lock and desc->lock. Also protects against handing out 1339 * a recycled oneshot thread_mask bit while it's still in use by 1340 * its previous owner. 1341 */ 1342 mutex_lock(&desc->request_mutex); 1343 1344 /* 1345 * Acquire bus lock as the irq_request_resources() callback below 1346 * might rely on the serialization or the magic power management 1347 * functions which are abusing the irq_bus_lock() callback, 1348 */ 1349 chip_bus_lock(desc); 1350 1351 /* First installed action requests resources. */ 1352 if (!desc->action) { 1353 ret = irq_request_resources(desc); 1354 if (ret) { 1355 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1356 new->name, irq, desc->irq_data.chip->name); 1357 goto out_bus_unlock; 1358 } 1359 } 1360 1361 /* 1362 * The following block of code has to be executed atomically 1363 * protected against a concurrent interrupt and any of the other 1364 * management calls which are not serialized via 1365 * desc->request_mutex or the optional bus lock. 1366 */ 1367 raw_spin_lock_irqsave(&desc->lock, flags); 1368 old_ptr = &desc->action; 1369 old = *old_ptr; 1370 if (old) { 1371 /* 1372 * Can't share interrupts unless both agree to and are 1373 * the same type (level, edge, polarity). So both flag 1374 * fields must have IRQF_SHARED set and the bits which 1375 * set the trigger type must match. Also all must 1376 * agree on ONESHOT. 1377 * Interrupt lines used for NMIs cannot be shared. 1378 */ 1379 unsigned int oldtype; 1380 1381 if (desc->istate & IRQS_NMI) { 1382 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1383 new->name, irq, desc->irq_data.chip->name); 1384 ret = -EINVAL; 1385 goto out_unlock; 1386 } 1387 1388 /* 1389 * If nobody did set the configuration before, inherit 1390 * the one provided by the requester. 1391 */ 1392 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1393 oldtype = irqd_get_trigger_type(&desc->irq_data); 1394 } else { 1395 oldtype = new->flags & IRQF_TRIGGER_MASK; 1396 irqd_set_trigger_type(&desc->irq_data, oldtype); 1397 } 1398 1399 if (!((old->flags & new->flags) & IRQF_SHARED) || 1400 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1401 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1402 goto mismatch; 1403 1404 /* All handlers must agree on per-cpuness */ 1405 if ((old->flags & IRQF_PERCPU) != 1406 (new->flags & IRQF_PERCPU)) 1407 goto mismatch; 1408 1409 /* add new interrupt at end of irq queue */ 1410 do { 1411 /* 1412 * Or all existing action->thread_mask bits, 1413 * so we can find the next zero bit for this 1414 * new action. 1415 */ 1416 thread_mask |= old->thread_mask; 1417 old_ptr = &old->next; 1418 old = *old_ptr; 1419 } while (old); 1420 shared = 1; 1421 } 1422 1423 /* 1424 * Setup the thread mask for this irqaction for ONESHOT. For 1425 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1426 * conditional in irq_wake_thread(). 1427 */ 1428 if (new->flags & IRQF_ONESHOT) { 1429 /* 1430 * Unlikely to have 32 resp 64 irqs sharing one line, 1431 * but who knows. 1432 */ 1433 if (thread_mask == ~0UL) { 1434 ret = -EBUSY; 1435 goto out_unlock; 1436 } 1437 /* 1438 * The thread_mask for the action is or'ed to 1439 * desc->thread_active to indicate that the 1440 * IRQF_ONESHOT thread handler has been woken, but not 1441 * yet finished. The bit is cleared when a thread 1442 * completes. When all threads of a shared interrupt 1443 * line have completed desc->threads_active becomes 1444 * zero and the interrupt line is unmasked. See 1445 * handle.c:irq_wake_thread() for further information. 1446 * 1447 * If no thread is woken by primary (hard irq context) 1448 * interrupt handlers, then desc->threads_active is 1449 * also checked for zero to unmask the irq line in the 1450 * affected hard irq flow handlers 1451 * (handle_[fasteoi|level]_irq). 1452 * 1453 * The new action gets the first zero bit of 1454 * thread_mask assigned. See the loop above which or's 1455 * all existing action->thread_mask bits. 1456 */ 1457 new->thread_mask = 1UL << ffz(thread_mask); 1458 1459 } else if (new->handler == irq_default_primary_handler && 1460 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1461 /* 1462 * The interrupt was requested with handler = NULL, so 1463 * we use the default primary handler for it. But it 1464 * does not have the oneshot flag set. In combination 1465 * with level interrupts this is deadly, because the 1466 * default primary handler just wakes the thread, then 1467 * the irq lines is reenabled, but the device still 1468 * has the level irq asserted. Rinse and repeat.... 1469 * 1470 * While this works for edge type interrupts, we play 1471 * it safe and reject unconditionally because we can't 1472 * say for sure which type this interrupt really 1473 * has. The type flags are unreliable as the 1474 * underlying chip implementation can override them. 1475 */ 1476 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1477 irq); 1478 ret = -EINVAL; 1479 goto out_unlock; 1480 } 1481 1482 if (!shared) { 1483 init_waitqueue_head(&desc->wait_for_threads); 1484 1485 /* Setup the type (level, edge polarity) if configured: */ 1486 if (new->flags & IRQF_TRIGGER_MASK) { 1487 ret = __irq_set_trigger(desc, 1488 new->flags & IRQF_TRIGGER_MASK); 1489 1490 if (ret) 1491 goto out_unlock; 1492 } 1493 1494 /* 1495 * Activate the interrupt. That activation must happen 1496 * independently of IRQ_NOAUTOEN. request_irq() can fail 1497 * and the callers are supposed to handle 1498 * that. enable_irq() of an interrupt requested with 1499 * IRQ_NOAUTOEN is not supposed to fail. The activation 1500 * keeps it in shutdown mode, it merily associates 1501 * resources if necessary and if that's not possible it 1502 * fails. Interrupts which are in managed shutdown mode 1503 * will simply ignore that activation request. 1504 */ 1505 ret = irq_activate(desc); 1506 if (ret) 1507 goto out_unlock; 1508 1509 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1510 IRQS_ONESHOT | IRQS_WAITING); 1511 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1512 1513 if (new->flags & IRQF_PERCPU) { 1514 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1515 irq_settings_set_per_cpu(desc); 1516 } 1517 1518 if (new->flags & IRQF_ONESHOT) 1519 desc->istate |= IRQS_ONESHOT; 1520 1521 /* Exclude IRQ from balancing if requested */ 1522 if (new->flags & IRQF_NOBALANCING) { 1523 irq_settings_set_no_balancing(desc); 1524 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1525 } 1526 1527 if (irq_settings_can_autoenable(desc)) { 1528 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1529 } else { 1530 /* 1531 * Shared interrupts do not go well with disabling 1532 * auto enable. The sharing interrupt might request 1533 * it while it's still disabled and then wait for 1534 * interrupts forever. 1535 */ 1536 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1537 /* Undo nested disables: */ 1538 desc->depth = 1; 1539 } 1540 1541 } else if (new->flags & IRQF_TRIGGER_MASK) { 1542 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1543 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1544 1545 if (nmsk != omsk) 1546 /* hope the handler works with current trigger mode */ 1547 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1548 irq, omsk, nmsk); 1549 } 1550 1551 *old_ptr = new; 1552 1553 irq_pm_install_action(desc, new); 1554 1555 /* Reset broken irq detection when installing new handler */ 1556 desc->irq_count = 0; 1557 desc->irqs_unhandled = 0; 1558 1559 /* 1560 * Check whether we disabled the irq via the spurious handler 1561 * before. Reenable it and give it another chance. 1562 */ 1563 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1564 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1565 __enable_irq(desc); 1566 } 1567 1568 raw_spin_unlock_irqrestore(&desc->lock, flags); 1569 chip_bus_sync_unlock(desc); 1570 mutex_unlock(&desc->request_mutex); 1571 1572 irq_setup_timings(desc, new); 1573 1574 /* 1575 * Strictly no need to wake it up, but hung_task complains 1576 * when no hard interrupt wakes the thread up. 1577 */ 1578 if (new->thread) 1579 wake_up_process(new->thread); 1580 if (new->secondary) 1581 wake_up_process(new->secondary->thread); 1582 1583 register_irq_proc(irq, desc); 1584 new->dir = NULL; 1585 register_handler_proc(irq, new); 1586 return 0; 1587 1588 mismatch: 1589 if (!(new->flags & IRQF_PROBE_SHARED)) { 1590 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1591 irq, new->flags, new->name, old->flags, old->name); 1592 #ifdef CONFIG_DEBUG_SHIRQ 1593 dump_stack(); 1594 #endif 1595 } 1596 ret = -EBUSY; 1597 1598 out_unlock: 1599 raw_spin_unlock_irqrestore(&desc->lock, flags); 1600 1601 if (!desc->action) 1602 irq_release_resources(desc); 1603 out_bus_unlock: 1604 chip_bus_sync_unlock(desc); 1605 mutex_unlock(&desc->request_mutex); 1606 1607 out_thread: 1608 if (new->thread) { 1609 struct task_struct *t = new->thread; 1610 1611 new->thread = NULL; 1612 kthread_stop(t); 1613 put_task_struct(t); 1614 } 1615 if (new->secondary && new->secondary->thread) { 1616 struct task_struct *t = new->secondary->thread; 1617 1618 new->secondary->thread = NULL; 1619 kthread_stop(t); 1620 put_task_struct(t); 1621 } 1622 out_mput: 1623 module_put(desc->owner); 1624 return ret; 1625 } 1626 1627 /** 1628 * setup_irq - setup an interrupt 1629 * @irq: Interrupt line to setup 1630 * @act: irqaction for the interrupt 1631 * 1632 * Used to statically setup interrupts in the early boot process. 1633 */ 1634 int setup_irq(unsigned int irq, struct irqaction *act) 1635 { 1636 int retval; 1637 struct irq_desc *desc = irq_to_desc(irq); 1638 1639 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1640 return -EINVAL; 1641 1642 retval = irq_chip_pm_get(&desc->irq_data); 1643 if (retval < 0) 1644 return retval; 1645 1646 retval = __setup_irq(irq, desc, act); 1647 1648 if (retval) 1649 irq_chip_pm_put(&desc->irq_data); 1650 1651 return retval; 1652 } 1653 EXPORT_SYMBOL_GPL(setup_irq); 1654 1655 /* 1656 * Internal function to unregister an irqaction - used to free 1657 * regular and special interrupts that are part of the architecture. 1658 */ 1659 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1660 { 1661 unsigned irq = desc->irq_data.irq; 1662 struct irqaction *action, **action_ptr; 1663 unsigned long flags; 1664 1665 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1666 1667 mutex_lock(&desc->request_mutex); 1668 chip_bus_lock(desc); 1669 raw_spin_lock_irqsave(&desc->lock, flags); 1670 1671 /* 1672 * There can be multiple actions per IRQ descriptor, find the right 1673 * one based on the dev_id: 1674 */ 1675 action_ptr = &desc->action; 1676 for (;;) { 1677 action = *action_ptr; 1678 1679 if (!action) { 1680 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1681 raw_spin_unlock_irqrestore(&desc->lock, flags); 1682 chip_bus_sync_unlock(desc); 1683 mutex_unlock(&desc->request_mutex); 1684 return NULL; 1685 } 1686 1687 if (action->dev_id == dev_id) 1688 break; 1689 action_ptr = &action->next; 1690 } 1691 1692 /* Found it - now remove it from the list of entries: */ 1693 *action_ptr = action->next; 1694 1695 irq_pm_remove_action(desc, action); 1696 1697 /* If this was the last handler, shut down the IRQ line: */ 1698 if (!desc->action) { 1699 irq_settings_clr_disable_unlazy(desc); 1700 irq_shutdown(desc); 1701 } 1702 1703 #ifdef CONFIG_SMP 1704 /* make sure affinity_hint is cleaned up */ 1705 if (WARN_ON_ONCE(desc->affinity_hint)) 1706 desc->affinity_hint = NULL; 1707 #endif 1708 1709 raw_spin_unlock_irqrestore(&desc->lock, flags); 1710 /* 1711 * Drop bus_lock here so the changes which were done in the chip 1712 * callbacks above are synced out to the irq chips which hang 1713 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1714 * 1715 * Aside of that the bus_lock can also be taken from the threaded 1716 * handler in irq_finalize_oneshot() which results in a deadlock 1717 * because kthread_stop() would wait forever for the thread to 1718 * complete, which is blocked on the bus lock. 1719 * 1720 * The still held desc->request_mutex() protects against a 1721 * concurrent request_irq() of this irq so the release of resources 1722 * and timing data is properly serialized. 1723 */ 1724 chip_bus_sync_unlock(desc); 1725 1726 unregister_handler_proc(irq, action); 1727 1728 /* Make sure it's not being used on another CPU: */ 1729 synchronize_hardirq(irq); 1730 1731 #ifdef CONFIG_DEBUG_SHIRQ 1732 /* 1733 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1734 * event to happen even now it's being freed, so let's make sure that 1735 * is so by doing an extra call to the handler .... 1736 * 1737 * ( We do this after actually deregistering it, to make sure that a 1738 * 'real' IRQ doesn't run in parallel with our fake. ) 1739 */ 1740 if (action->flags & IRQF_SHARED) { 1741 local_irq_save(flags); 1742 action->handler(irq, dev_id); 1743 local_irq_restore(flags); 1744 } 1745 #endif 1746 1747 /* 1748 * The action has already been removed above, but the thread writes 1749 * its oneshot mask bit when it completes. Though request_mutex is 1750 * held across this which prevents __setup_irq() from handing out 1751 * the same bit to a newly requested action. 1752 */ 1753 if (action->thread) { 1754 kthread_stop(action->thread); 1755 put_task_struct(action->thread); 1756 if (action->secondary && action->secondary->thread) { 1757 kthread_stop(action->secondary->thread); 1758 put_task_struct(action->secondary->thread); 1759 } 1760 } 1761 1762 /* Last action releases resources */ 1763 if (!desc->action) { 1764 /* 1765 * Reaquire bus lock as irq_release_resources() might 1766 * require it to deallocate resources over the slow bus. 1767 */ 1768 chip_bus_lock(desc); 1769 irq_release_resources(desc); 1770 chip_bus_sync_unlock(desc); 1771 irq_remove_timings(desc); 1772 } 1773 1774 mutex_unlock(&desc->request_mutex); 1775 1776 irq_chip_pm_put(&desc->irq_data); 1777 module_put(desc->owner); 1778 kfree(action->secondary); 1779 return action; 1780 } 1781 1782 /** 1783 * remove_irq - free an interrupt 1784 * @irq: Interrupt line to free 1785 * @act: irqaction for the interrupt 1786 * 1787 * Used to remove interrupts statically setup by the early boot process. 1788 */ 1789 void remove_irq(unsigned int irq, struct irqaction *act) 1790 { 1791 struct irq_desc *desc = irq_to_desc(irq); 1792 1793 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1794 __free_irq(desc, act->dev_id); 1795 } 1796 EXPORT_SYMBOL_GPL(remove_irq); 1797 1798 /** 1799 * free_irq - free an interrupt allocated with request_irq 1800 * @irq: Interrupt line to free 1801 * @dev_id: Device identity to free 1802 * 1803 * Remove an interrupt handler. The handler is removed and if the 1804 * interrupt line is no longer in use by any driver it is disabled. 1805 * On a shared IRQ the caller must ensure the interrupt is disabled 1806 * on the card it drives before calling this function. The function 1807 * does not return until any executing interrupts for this IRQ 1808 * have completed. 1809 * 1810 * This function must not be called from interrupt context. 1811 * 1812 * Returns the devname argument passed to request_irq. 1813 */ 1814 const void *free_irq(unsigned int irq, void *dev_id) 1815 { 1816 struct irq_desc *desc = irq_to_desc(irq); 1817 struct irqaction *action; 1818 const char *devname; 1819 1820 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1821 return NULL; 1822 1823 #ifdef CONFIG_SMP 1824 if (WARN_ON(desc->affinity_notify)) 1825 desc->affinity_notify = NULL; 1826 #endif 1827 1828 action = __free_irq(desc, dev_id); 1829 1830 if (!action) 1831 return NULL; 1832 1833 devname = action->name; 1834 kfree(action); 1835 return devname; 1836 } 1837 EXPORT_SYMBOL(free_irq); 1838 1839 /* This function must be called with desc->lock held */ 1840 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1841 { 1842 const char *devname = NULL; 1843 1844 desc->istate &= ~IRQS_NMI; 1845 1846 if (!WARN_ON(desc->action == NULL)) { 1847 irq_pm_remove_action(desc, desc->action); 1848 devname = desc->action->name; 1849 unregister_handler_proc(irq, desc->action); 1850 1851 kfree(desc->action); 1852 desc->action = NULL; 1853 } 1854 1855 irq_settings_clr_disable_unlazy(desc); 1856 irq_shutdown(desc); 1857 1858 irq_release_resources(desc); 1859 1860 irq_chip_pm_put(&desc->irq_data); 1861 module_put(desc->owner); 1862 1863 return devname; 1864 } 1865 1866 const void *free_nmi(unsigned int irq, void *dev_id) 1867 { 1868 struct irq_desc *desc = irq_to_desc(irq); 1869 unsigned long flags; 1870 const void *devname; 1871 1872 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1873 return NULL; 1874 1875 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1876 return NULL; 1877 1878 /* NMI still enabled */ 1879 if (WARN_ON(desc->depth == 0)) 1880 disable_nmi_nosync(irq); 1881 1882 raw_spin_lock_irqsave(&desc->lock, flags); 1883 1884 irq_nmi_teardown(desc); 1885 devname = __cleanup_nmi(irq, desc); 1886 1887 raw_spin_unlock_irqrestore(&desc->lock, flags); 1888 1889 return devname; 1890 } 1891 1892 /** 1893 * request_threaded_irq - allocate an interrupt line 1894 * @irq: Interrupt line to allocate 1895 * @handler: Function to be called when the IRQ occurs. 1896 * Primary handler for threaded interrupts 1897 * If NULL and thread_fn != NULL the default 1898 * primary handler is installed 1899 * @thread_fn: Function called from the irq handler thread 1900 * If NULL, no irq thread is created 1901 * @irqflags: Interrupt type flags 1902 * @devname: An ascii name for the claiming device 1903 * @dev_id: A cookie passed back to the handler function 1904 * 1905 * This call allocates interrupt resources and enables the 1906 * interrupt line and IRQ handling. From the point this 1907 * call is made your handler function may be invoked. Since 1908 * your handler function must clear any interrupt the board 1909 * raises, you must take care both to initialise your hardware 1910 * and to set up the interrupt handler in the right order. 1911 * 1912 * If you want to set up a threaded irq handler for your device 1913 * then you need to supply @handler and @thread_fn. @handler is 1914 * still called in hard interrupt context and has to check 1915 * whether the interrupt originates from the device. If yes it 1916 * needs to disable the interrupt on the device and return 1917 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1918 * @thread_fn. This split handler design is necessary to support 1919 * shared interrupts. 1920 * 1921 * Dev_id must be globally unique. Normally the address of the 1922 * device data structure is used as the cookie. Since the handler 1923 * receives this value it makes sense to use it. 1924 * 1925 * If your interrupt is shared you must pass a non NULL dev_id 1926 * as this is required when freeing the interrupt. 1927 * 1928 * Flags: 1929 * 1930 * IRQF_SHARED Interrupt is shared 1931 * IRQF_TRIGGER_* Specify active edge(s) or level 1932 * 1933 */ 1934 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1935 irq_handler_t thread_fn, unsigned long irqflags, 1936 const char *devname, void *dev_id) 1937 { 1938 struct irqaction *action; 1939 struct irq_desc *desc; 1940 int retval; 1941 1942 if (irq == IRQ_NOTCONNECTED) 1943 return -ENOTCONN; 1944 1945 /* 1946 * Sanity-check: shared interrupts must pass in a real dev-ID, 1947 * otherwise we'll have trouble later trying to figure out 1948 * which interrupt is which (messes up the interrupt freeing 1949 * logic etc). 1950 * 1951 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1952 * it cannot be set along with IRQF_NO_SUSPEND. 1953 */ 1954 if (((irqflags & IRQF_SHARED) && !dev_id) || 1955 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1956 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1957 return -EINVAL; 1958 1959 desc = irq_to_desc(irq); 1960 if (!desc) 1961 return -EINVAL; 1962 1963 if (!irq_settings_can_request(desc) || 1964 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1965 return -EINVAL; 1966 1967 if (!handler) { 1968 if (!thread_fn) 1969 return -EINVAL; 1970 handler = irq_default_primary_handler; 1971 } 1972 1973 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1974 if (!action) 1975 return -ENOMEM; 1976 1977 action->handler = handler; 1978 action->thread_fn = thread_fn; 1979 action->flags = irqflags; 1980 action->name = devname; 1981 action->dev_id = dev_id; 1982 1983 retval = irq_chip_pm_get(&desc->irq_data); 1984 if (retval < 0) { 1985 kfree(action); 1986 return retval; 1987 } 1988 1989 retval = __setup_irq(irq, desc, action); 1990 1991 if (retval) { 1992 irq_chip_pm_put(&desc->irq_data); 1993 kfree(action->secondary); 1994 kfree(action); 1995 } 1996 1997 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1998 if (!retval && (irqflags & IRQF_SHARED)) { 1999 /* 2000 * It's a shared IRQ -- the driver ought to be prepared for it 2001 * to happen immediately, so let's make sure.... 2002 * We disable the irq to make sure that a 'real' IRQ doesn't 2003 * run in parallel with our fake. 2004 */ 2005 unsigned long flags; 2006 2007 disable_irq(irq); 2008 local_irq_save(flags); 2009 2010 handler(irq, dev_id); 2011 2012 local_irq_restore(flags); 2013 enable_irq(irq); 2014 } 2015 #endif 2016 return retval; 2017 } 2018 EXPORT_SYMBOL(request_threaded_irq); 2019 2020 /** 2021 * request_any_context_irq - allocate an interrupt line 2022 * @irq: Interrupt line to allocate 2023 * @handler: Function to be called when the IRQ occurs. 2024 * Threaded handler for threaded interrupts. 2025 * @flags: Interrupt type flags 2026 * @name: An ascii name for the claiming device 2027 * @dev_id: A cookie passed back to the handler function 2028 * 2029 * This call allocates interrupt resources and enables the 2030 * interrupt line and IRQ handling. It selects either a 2031 * hardirq or threaded handling method depending on the 2032 * context. 2033 * 2034 * On failure, it returns a negative value. On success, 2035 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2036 */ 2037 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2038 unsigned long flags, const char *name, void *dev_id) 2039 { 2040 struct irq_desc *desc; 2041 int ret; 2042 2043 if (irq == IRQ_NOTCONNECTED) 2044 return -ENOTCONN; 2045 2046 desc = irq_to_desc(irq); 2047 if (!desc) 2048 return -EINVAL; 2049 2050 if (irq_settings_is_nested_thread(desc)) { 2051 ret = request_threaded_irq(irq, NULL, handler, 2052 flags, name, dev_id); 2053 return !ret ? IRQC_IS_NESTED : ret; 2054 } 2055 2056 ret = request_irq(irq, handler, flags, name, dev_id); 2057 return !ret ? IRQC_IS_HARDIRQ : ret; 2058 } 2059 EXPORT_SYMBOL_GPL(request_any_context_irq); 2060 2061 /** 2062 * request_nmi - allocate an interrupt line for NMI delivery 2063 * @irq: Interrupt line to allocate 2064 * @handler: Function to be called when the IRQ occurs. 2065 * Threaded handler for threaded interrupts. 2066 * @irqflags: Interrupt type flags 2067 * @name: An ascii name for the claiming device 2068 * @dev_id: A cookie passed back to the handler function 2069 * 2070 * This call allocates interrupt resources and enables the 2071 * interrupt line and IRQ handling. It sets up the IRQ line 2072 * to be handled as an NMI. 2073 * 2074 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2075 * cannot be threaded. 2076 * 2077 * Interrupt lines requested for NMI delivering must produce per cpu 2078 * interrupts and have auto enabling setting disabled. 2079 * 2080 * Dev_id must be globally unique. Normally the address of the 2081 * device data structure is used as the cookie. Since the handler 2082 * receives this value it makes sense to use it. 2083 * 2084 * If the interrupt line cannot be used to deliver NMIs, function 2085 * will fail and return a negative value. 2086 */ 2087 int request_nmi(unsigned int irq, irq_handler_t handler, 2088 unsigned long irqflags, const char *name, void *dev_id) 2089 { 2090 struct irqaction *action; 2091 struct irq_desc *desc; 2092 unsigned long flags; 2093 int retval; 2094 2095 if (irq == IRQ_NOTCONNECTED) 2096 return -ENOTCONN; 2097 2098 /* NMI cannot be shared, used for Polling */ 2099 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2100 return -EINVAL; 2101 2102 if (!(irqflags & IRQF_PERCPU)) 2103 return -EINVAL; 2104 2105 if (!handler) 2106 return -EINVAL; 2107 2108 desc = irq_to_desc(irq); 2109 2110 if (!desc || irq_settings_can_autoenable(desc) || 2111 !irq_settings_can_request(desc) || 2112 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2113 !irq_supports_nmi(desc)) 2114 return -EINVAL; 2115 2116 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2117 if (!action) 2118 return -ENOMEM; 2119 2120 action->handler = handler; 2121 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2122 action->name = name; 2123 action->dev_id = dev_id; 2124 2125 retval = irq_chip_pm_get(&desc->irq_data); 2126 if (retval < 0) 2127 goto err_out; 2128 2129 retval = __setup_irq(irq, desc, action); 2130 if (retval) 2131 goto err_irq_setup; 2132 2133 raw_spin_lock_irqsave(&desc->lock, flags); 2134 2135 /* Setup NMI state */ 2136 desc->istate |= IRQS_NMI; 2137 retval = irq_nmi_setup(desc); 2138 if (retval) { 2139 __cleanup_nmi(irq, desc); 2140 raw_spin_unlock_irqrestore(&desc->lock, flags); 2141 return -EINVAL; 2142 } 2143 2144 raw_spin_unlock_irqrestore(&desc->lock, flags); 2145 2146 return 0; 2147 2148 err_irq_setup: 2149 irq_chip_pm_put(&desc->irq_data); 2150 err_out: 2151 kfree(action); 2152 2153 return retval; 2154 } 2155 2156 void enable_percpu_irq(unsigned int irq, unsigned int type) 2157 { 2158 unsigned int cpu = smp_processor_id(); 2159 unsigned long flags; 2160 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2161 2162 if (!desc) 2163 return; 2164 2165 /* 2166 * If the trigger type is not specified by the caller, then 2167 * use the default for this interrupt. 2168 */ 2169 type &= IRQ_TYPE_SENSE_MASK; 2170 if (type == IRQ_TYPE_NONE) 2171 type = irqd_get_trigger_type(&desc->irq_data); 2172 2173 if (type != IRQ_TYPE_NONE) { 2174 int ret; 2175 2176 ret = __irq_set_trigger(desc, type); 2177 2178 if (ret) { 2179 WARN(1, "failed to set type for IRQ%d\n", irq); 2180 goto out; 2181 } 2182 } 2183 2184 irq_percpu_enable(desc, cpu); 2185 out: 2186 irq_put_desc_unlock(desc, flags); 2187 } 2188 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2189 2190 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2191 { 2192 enable_percpu_irq(irq, type); 2193 } 2194 2195 /** 2196 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2197 * @irq: Linux irq number to check for 2198 * 2199 * Must be called from a non migratable context. Returns the enable 2200 * state of a per cpu interrupt on the current cpu. 2201 */ 2202 bool irq_percpu_is_enabled(unsigned int irq) 2203 { 2204 unsigned int cpu = smp_processor_id(); 2205 struct irq_desc *desc; 2206 unsigned long flags; 2207 bool is_enabled; 2208 2209 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2210 if (!desc) 2211 return false; 2212 2213 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2214 irq_put_desc_unlock(desc, flags); 2215 2216 return is_enabled; 2217 } 2218 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2219 2220 void disable_percpu_irq(unsigned int irq) 2221 { 2222 unsigned int cpu = smp_processor_id(); 2223 unsigned long flags; 2224 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2225 2226 if (!desc) 2227 return; 2228 2229 irq_percpu_disable(desc, cpu); 2230 irq_put_desc_unlock(desc, flags); 2231 } 2232 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2233 2234 void disable_percpu_nmi(unsigned int irq) 2235 { 2236 disable_percpu_irq(irq); 2237 } 2238 2239 /* 2240 * Internal function to unregister a percpu irqaction. 2241 */ 2242 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2243 { 2244 struct irq_desc *desc = irq_to_desc(irq); 2245 struct irqaction *action; 2246 unsigned long flags; 2247 2248 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2249 2250 if (!desc) 2251 return NULL; 2252 2253 raw_spin_lock_irqsave(&desc->lock, flags); 2254 2255 action = desc->action; 2256 if (!action || action->percpu_dev_id != dev_id) { 2257 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2258 goto bad; 2259 } 2260 2261 if (!cpumask_empty(desc->percpu_enabled)) { 2262 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2263 irq, cpumask_first(desc->percpu_enabled)); 2264 goto bad; 2265 } 2266 2267 /* Found it - now remove it from the list of entries: */ 2268 desc->action = NULL; 2269 2270 desc->istate &= ~IRQS_NMI; 2271 2272 raw_spin_unlock_irqrestore(&desc->lock, flags); 2273 2274 unregister_handler_proc(irq, action); 2275 2276 irq_chip_pm_put(&desc->irq_data); 2277 module_put(desc->owner); 2278 return action; 2279 2280 bad: 2281 raw_spin_unlock_irqrestore(&desc->lock, flags); 2282 return NULL; 2283 } 2284 2285 /** 2286 * remove_percpu_irq - free a per-cpu interrupt 2287 * @irq: Interrupt line to free 2288 * @act: irqaction for the interrupt 2289 * 2290 * Used to remove interrupts statically setup by the early boot process. 2291 */ 2292 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2293 { 2294 struct irq_desc *desc = irq_to_desc(irq); 2295 2296 if (desc && irq_settings_is_per_cpu_devid(desc)) 2297 __free_percpu_irq(irq, act->percpu_dev_id); 2298 } 2299 2300 /** 2301 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2302 * @irq: Interrupt line to free 2303 * @dev_id: Device identity to free 2304 * 2305 * Remove a percpu interrupt handler. The handler is removed, but 2306 * the interrupt line is not disabled. This must be done on each 2307 * CPU before calling this function. The function does not return 2308 * until any executing interrupts for this IRQ have completed. 2309 * 2310 * This function must not be called from interrupt context. 2311 */ 2312 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2313 { 2314 struct irq_desc *desc = irq_to_desc(irq); 2315 2316 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2317 return; 2318 2319 chip_bus_lock(desc); 2320 kfree(__free_percpu_irq(irq, dev_id)); 2321 chip_bus_sync_unlock(desc); 2322 } 2323 EXPORT_SYMBOL_GPL(free_percpu_irq); 2324 2325 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2326 { 2327 struct irq_desc *desc = irq_to_desc(irq); 2328 2329 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2330 return; 2331 2332 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2333 return; 2334 2335 kfree(__free_percpu_irq(irq, dev_id)); 2336 } 2337 2338 /** 2339 * setup_percpu_irq - setup a per-cpu interrupt 2340 * @irq: Interrupt line to setup 2341 * @act: irqaction for the interrupt 2342 * 2343 * Used to statically setup per-cpu interrupts in the early boot process. 2344 */ 2345 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2346 { 2347 struct irq_desc *desc = irq_to_desc(irq); 2348 int retval; 2349 2350 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2351 return -EINVAL; 2352 2353 retval = irq_chip_pm_get(&desc->irq_data); 2354 if (retval < 0) 2355 return retval; 2356 2357 retval = __setup_irq(irq, desc, act); 2358 2359 if (retval) 2360 irq_chip_pm_put(&desc->irq_data); 2361 2362 return retval; 2363 } 2364 2365 /** 2366 * __request_percpu_irq - allocate a percpu interrupt line 2367 * @irq: Interrupt line to allocate 2368 * @handler: Function to be called when the IRQ occurs. 2369 * @flags: Interrupt type flags (IRQF_TIMER only) 2370 * @devname: An ascii name for the claiming device 2371 * @dev_id: A percpu cookie passed back to the handler function 2372 * 2373 * This call allocates interrupt resources and enables the 2374 * interrupt on the local CPU. If the interrupt is supposed to be 2375 * enabled on other CPUs, it has to be done on each CPU using 2376 * enable_percpu_irq(). 2377 * 2378 * Dev_id must be globally unique. It is a per-cpu variable, and 2379 * the handler gets called with the interrupted CPU's instance of 2380 * that variable. 2381 */ 2382 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2383 unsigned long flags, const char *devname, 2384 void __percpu *dev_id) 2385 { 2386 struct irqaction *action; 2387 struct irq_desc *desc; 2388 int retval; 2389 2390 if (!dev_id) 2391 return -EINVAL; 2392 2393 desc = irq_to_desc(irq); 2394 if (!desc || !irq_settings_can_request(desc) || 2395 !irq_settings_is_per_cpu_devid(desc)) 2396 return -EINVAL; 2397 2398 if (flags && flags != IRQF_TIMER) 2399 return -EINVAL; 2400 2401 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2402 if (!action) 2403 return -ENOMEM; 2404 2405 action->handler = handler; 2406 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2407 action->name = devname; 2408 action->percpu_dev_id = dev_id; 2409 2410 retval = irq_chip_pm_get(&desc->irq_data); 2411 if (retval < 0) { 2412 kfree(action); 2413 return retval; 2414 } 2415 2416 retval = __setup_irq(irq, desc, action); 2417 2418 if (retval) { 2419 irq_chip_pm_put(&desc->irq_data); 2420 kfree(action); 2421 } 2422 2423 return retval; 2424 } 2425 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2426 2427 /** 2428 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2429 * @irq: Interrupt line to allocate 2430 * @handler: Function to be called when the IRQ occurs. 2431 * @name: An ascii name for the claiming device 2432 * @dev_id: A percpu cookie passed back to the handler function 2433 * 2434 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2435 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2436 * being enabled on the same CPU by using enable_percpu_nmi(). 2437 * 2438 * Dev_id must be globally unique. It is a per-cpu variable, and 2439 * the handler gets called with the interrupted CPU's instance of 2440 * that variable. 2441 * 2442 * Interrupt lines requested for NMI delivering should have auto enabling 2443 * setting disabled. 2444 * 2445 * If the interrupt line cannot be used to deliver NMIs, function 2446 * will fail returning a negative value. 2447 */ 2448 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2449 const char *name, void __percpu *dev_id) 2450 { 2451 struct irqaction *action; 2452 struct irq_desc *desc; 2453 unsigned long flags; 2454 int retval; 2455 2456 if (!handler) 2457 return -EINVAL; 2458 2459 desc = irq_to_desc(irq); 2460 2461 if (!desc || !irq_settings_can_request(desc) || 2462 !irq_settings_is_per_cpu_devid(desc) || 2463 irq_settings_can_autoenable(desc) || 2464 !irq_supports_nmi(desc)) 2465 return -EINVAL; 2466 2467 /* The line cannot already be NMI */ 2468 if (desc->istate & IRQS_NMI) 2469 return -EINVAL; 2470 2471 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2472 if (!action) 2473 return -ENOMEM; 2474 2475 action->handler = handler; 2476 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2477 | IRQF_NOBALANCING; 2478 action->name = name; 2479 action->percpu_dev_id = dev_id; 2480 2481 retval = irq_chip_pm_get(&desc->irq_data); 2482 if (retval < 0) 2483 goto err_out; 2484 2485 retval = __setup_irq(irq, desc, action); 2486 if (retval) 2487 goto err_irq_setup; 2488 2489 raw_spin_lock_irqsave(&desc->lock, flags); 2490 desc->istate |= IRQS_NMI; 2491 raw_spin_unlock_irqrestore(&desc->lock, flags); 2492 2493 return 0; 2494 2495 err_irq_setup: 2496 irq_chip_pm_put(&desc->irq_data); 2497 err_out: 2498 kfree(action); 2499 2500 return retval; 2501 } 2502 2503 /** 2504 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2505 * @irq: Interrupt line to prepare for NMI delivery 2506 * 2507 * This call prepares an interrupt line to deliver NMI on the current CPU, 2508 * before that interrupt line gets enabled with enable_percpu_nmi(). 2509 * 2510 * As a CPU local operation, this should be called from non-preemptible 2511 * context. 2512 * 2513 * If the interrupt line cannot be used to deliver NMIs, function 2514 * will fail returning a negative value. 2515 */ 2516 int prepare_percpu_nmi(unsigned int irq) 2517 { 2518 unsigned long flags; 2519 struct irq_desc *desc; 2520 int ret = 0; 2521 2522 WARN_ON(preemptible()); 2523 2524 desc = irq_get_desc_lock(irq, &flags, 2525 IRQ_GET_DESC_CHECK_PERCPU); 2526 if (!desc) 2527 return -EINVAL; 2528 2529 if (WARN(!(desc->istate & IRQS_NMI), 2530 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2531 irq)) { 2532 ret = -EINVAL; 2533 goto out; 2534 } 2535 2536 ret = irq_nmi_setup(desc); 2537 if (ret) { 2538 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2539 goto out; 2540 } 2541 2542 out: 2543 irq_put_desc_unlock(desc, flags); 2544 return ret; 2545 } 2546 2547 /** 2548 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2549 * @irq: Interrupt line from which CPU local NMI configuration should be 2550 * removed 2551 * 2552 * This call undoes the setup done by prepare_percpu_nmi(). 2553 * 2554 * IRQ line should not be enabled for the current CPU. 2555 * 2556 * As a CPU local operation, this should be called from non-preemptible 2557 * context. 2558 */ 2559 void teardown_percpu_nmi(unsigned int irq) 2560 { 2561 unsigned long flags; 2562 struct irq_desc *desc; 2563 2564 WARN_ON(preemptible()); 2565 2566 desc = irq_get_desc_lock(irq, &flags, 2567 IRQ_GET_DESC_CHECK_PERCPU); 2568 if (!desc) 2569 return; 2570 2571 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2572 goto out; 2573 2574 irq_nmi_teardown(desc); 2575 out: 2576 irq_put_desc_unlock(desc, flags); 2577 } 2578 2579 /** 2580 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2581 * @irq: Interrupt line that is forwarded to a VM 2582 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2583 * @state: a pointer to a boolean where the state is to be storeed 2584 * 2585 * This call snapshots the internal irqchip state of an 2586 * interrupt, returning into @state the bit corresponding to 2587 * stage @which 2588 * 2589 * This function should be called with preemption disabled if the 2590 * interrupt controller has per-cpu registers. 2591 */ 2592 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2593 bool *state) 2594 { 2595 struct irq_desc *desc; 2596 struct irq_data *data; 2597 struct irq_chip *chip; 2598 unsigned long flags; 2599 int err = -EINVAL; 2600 2601 desc = irq_get_desc_buslock(irq, &flags, 0); 2602 if (!desc) 2603 return err; 2604 2605 data = irq_desc_get_irq_data(desc); 2606 2607 do { 2608 chip = irq_data_get_irq_chip(data); 2609 if (chip->irq_get_irqchip_state) 2610 break; 2611 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2612 data = data->parent_data; 2613 #else 2614 data = NULL; 2615 #endif 2616 } while (data); 2617 2618 if (data) 2619 err = chip->irq_get_irqchip_state(data, which, state); 2620 2621 irq_put_desc_busunlock(desc, flags); 2622 return err; 2623 } 2624 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2625 2626 /** 2627 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2628 * @irq: Interrupt line that is forwarded to a VM 2629 * @which: State to be restored (one of IRQCHIP_STATE_*) 2630 * @val: Value corresponding to @which 2631 * 2632 * This call sets the internal irqchip state of an interrupt, 2633 * depending on the value of @which. 2634 * 2635 * This function should be called with preemption disabled if the 2636 * interrupt controller has per-cpu registers. 2637 */ 2638 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2639 bool val) 2640 { 2641 struct irq_desc *desc; 2642 struct irq_data *data; 2643 struct irq_chip *chip; 2644 unsigned long flags; 2645 int err = -EINVAL; 2646 2647 desc = irq_get_desc_buslock(irq, &flags, 0); 2648 if (!desc) 2649 return err; 2650 2651 data = irq_desc_get_irq_data(desc); 2652 2653 do { 2654 chip = irq_data_get_irq_chip(data); 2655 if (chip->irq_set_irqchip_state) 2656 break; 2657 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2658 data = data->parent_data; 2659 #else 2660 data = NULL; 2661 #endif 2662 } while (data); 2663 2664 if (data) 2665 err = chip->irq_set_irqchip_state(data, which, val); 2666 2667 irq_put_desc_busunlock(desc, flags); 2668 return err; 2669 } 2670 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2671