xref: /openbmc/linux/kernel/irq/manage.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	force_irqthreads = true;
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affitnity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
197 static void irq_validate_effective_affinity(struct irq_data *data)
198 {
199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 #endif
208 }
209 
210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
211 			bool force)
212 {
213 	struct irq_desc *desc = irq_data_to_desc(data);
214 	struct irq_chip *chip = irq_data_get_irq_chip(data);
215 	int ret;
216 
217 	if (!chip || !chip->irq_set_affinity)
218 		return -EINVAL;
219 
220 	ret = chip->irq_set_affinity(data, mask, force);
221 	switch (ret) {
222 	case IRQ_SET_MASK_OK:
223 	case IRQ_SET_MASK_OK_DONE:
224 		cpumask_copy(desc->irq_common_data.affinity, mask);
225 		/* fall through */
226 	case IRQ_SET_MASK_OK_NOCOPY:
227 		irq_validate_effective_affinity(data);
228 		irq_set_thread_affinity(desc);
229 		ret = 0;
230 	}
231 
232 	return ret;
233 }
234 
235 #ifdef CONFIG_GENERIC_PENDING_IRQ
236 static inline int irq_set_affinity_pending(struct irq_data *data,
237 					   const struct cpumask *dest)
238 {
239 	struct irq_desc *desc = irq_data_to_desc(data);
240 
241 	irqd_set_move_pending(data);
242 	irq_copy_pending(desc, dest);
243 	return 0;
244 }
245 #else
246 static inline int irq_set_affinity_pending(struct irq_data *data,
247 					   const struct cpumask *dest)
248 {
249 	return -EBUSY;
250 }
251 #endif
252 
253 static int irq_try_set_affinity(struct irq_data *data,
254 				const struct cpumask *dest, bool force)
255 {
256 	int ret = irq_do_set_affinity(data, dest, force);
257 
258 	/*
259 	 * In case that the underlying vector management is busy and the
260 	 * architecture supports the generic pending mechanism then utilize
261 	 * this to avoid returning an error to user space.
262 	 */
263 	if (ret == -EBUSY && !force)
264 		ret = irq_set_affinity_pending(data, dest);
265 	return ret;
266 }
267 
268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
269 			    bool force)
270 {
271 	struct irq_chip *chip = irq_data_get_irq_chip(data);
272 	struct irq_desc *desc = irq_data_to_desc(data);
273 	int ret = 0;
274 
275 	if (!chip || !chip->irq_set_affinity)
276 		return -EINVAL;
277 
278 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
279 		ret = irq_try_set_affinity(data, mask, force);
280 	} else {
281 		irqd_set_move_pending(data);
282 		irq_copy_pending(desc, mask);
283 	}
284 
285 	if (desc->affinity_notify) {
286 		kref_get(&desc->affinity_notify->kref);
287 		schedule_work(&desc->affinity_notify->work);
288 	}
289 	irqd_set(data, IRQD_AFFINITY_SET);
290 
291 	return ret;
292 }
293 
294 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
295 {
296 	struct irq_desc *desc = irq_to_desc(irq);
297 	unsigned long flags;
298 	int ret;
299 
300 	if (!desc)
301 		return -EINVAL;
302 
303 	raw_spin_lock_irqsave(&desc->lock, flags);
304 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
305 	raw_spin_unlock_irqrestore(&desc->lock, flags);
306 	return ret;
307 }
308 
309 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
310 {
311 	unsigned long flags;
312 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
313 
314 	if (!desc)
315 		return -EINVAL;
316 	desc->affinity_hint = m;
317 	irq_put_desc_unlock(desc, flags);
318 	/* set the initial affinity to prevent every interrupt being on CPU0 */
319 	if (m)
320 		__irq_set_affinity(irq, m, false);
321 	return 0;
322 }
323 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
324 
325 static void irq_affinity_notify(struct work_struct *work)
326 {
327 	struct irq_affinity_notify *notify =
328 		container_of(work, struct irq_affinity_notify, work);
329 	struct irq_desc *desc = irq_to_desc(notify->irq);
330 	cpumask_var_t cpumask;
331 	unsigned long flags;
332 
333 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
334 		goto out;
335 
336 	raw_spin_lock_irqsave(&desc->lock, flags);
337 	if (irq_move_pending(&desc->irq_data))
338 		irq_get_pending(cpumask, desc);
339 	else
340 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
341 	raw_spin_unlock_irqrestore(&desc->lock, flags);
342 
343 	notify->notify(notify, cpumask);
344 
345 	free_cpumask_var(cpumask);
346 out:
347 	kref_put(&notify->kref, notify->release);
348 }
349 
350 /**
351  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
352  *	@irq:		Interrupt for which to enable/disable notification
353  *	@notify:	Context for notification, or %NULL to disable
354  *			notification.  Function pointers must be initialised;
355  *			the other fields will be initialised by this function.
356  *
357  *	Must be called in process context.  Notification may only be enabled
358  *	after the IRQ is allocated and must be disabled before the IRQ is
359  *	freed using free_irq().
360  */
361 int
362 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
363 {
364 	struct irq_desc *desc = irq_to_desc(irq);
365 	struct irq_affinity_notify *old_notify;
366 	unsigned long flags;
367 
368 	/* The release function is promised process context */
369 	might_sleep();
370 
371 	if (!desc || desc->istate & IRQS_NMI)
372 		return -EINVAL;
373 
374 	/* Complete initialisation of *notify */
375 	if (notify) {
376 		notify->irq = irq;
377 		kref_init(&notify->kref);
378 		INIT_WORK(&notify->work, irq_affinity_notify);
379 	}
380 
381 	raw_spin_lock_irqsave(&desc->lock, flags);
382 	old_notify = desc->affinity_notify;
383 	desc->affinity_notify = notify;
384 	raw_spin_unlock_irqrestore(&desc->lock, flags);
385 
386 	if (old_notify) {
387 		cancel_work_sync(&old_notify->work);
388 		kref_put(&old_notify->kref, old_notify->release);
389 	}
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
394 
395 #ifndef CONFIG_AUTO_IRQ_AFFINITY
396 /*
397  * Generic version of the affinity autoselector.
398  */
399 int irq_setup_affinity(struct irq_desc *desc)
400 {
401 	struct cpumask *set = irq_default_affinity;
402 	int ret, node = irq_desc_get_node(desc);
403 	static DEFINE_RAW_SPINLOCK(mask_lock);
404 	static struct cpumask mask;
405 
406 	/* Excludes PER_CPU and NO_BALANCE interrupts */
407 	if (!__irq_can_set_affinity(desc))
408 		return 0;
409 
410 	raw_spin_lock(&mask_lock);
411 	/*
412 	 * Preserve the managed affinity setting and a userspace affinity
413 	 * setup, but make sure that one of the targets is online.
414 	 */
415 	if (irqd_affinity_is_managed(&desc->irq_data) ||
416 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
417 		if (cpumask_intersects(desc->irq_common_data.affinity,
418 				       cpu_online_mask))
419 			set = desc->irq_common_data.affinity;
420 		else
421 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
422 	}
423 
424 	cpumask_and(&mask, cpu_online_mask, set);
425 	if (cpumask_empty(&mask))
426 		cpumask_copy(&mask, cpu_online_mask);
427 
428 	if (node != NUMA_NO_NODE) {
429 		const struct cpumask *nodemask = cpumask_of_node(node);
430 
431 		/* make sure at least one of the cpus in nodemask is online */
432 		if (cpumask_intersects(&mask, nodemask))
433 			cpumask_and(&mask, &mask, nodemask);
434 	}
435 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
436 	raw_spin_unlock(&mask_lock);
437 	return ret;
438 }
439 #else
440 /* Wrapper for ALPHA specific affinity selector magic */
441 int irq_setup_affinity(struct irq_desc *desc)
442 {
443 	return irq_select_affinity(irq_desc_get_irq(desc));
444 }
445 #endif
446 
447 /*
448  * Called when a bogus affinity is set via /proc/irq
449  */
450 int irq_select_affinity_usr(unsigned int irq)
451 {
452 	struct irq_desc *desc = irq_to_desc(irq);
453 	unsigned long flags;
454 	int ret;
455 
456 	raw_spin_lock_irqsave(&desc->lock, flags);
457 	ret = irq_setup_affinity(desc);
458 	raw_spin_unlock_irqrestore(&desc->lock, flags);
459 	return ret;
460 }
461 #endif
462 
463 /**
464  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
465  *	@irq: interrupt number to set affinity
466  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
467  *	            specific data for percpu_devid interrupts
468  *
469  *	This function uses the vCPU specific data to set the vCPU
470  *	affinity for an irq. The vCPU specific data is passed from
471  *	outside, such as KVM. One example code path is as below:
472  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
473  */
474 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
475 {
476 	unsigned long flags;
477 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
478 	struct irq_data *data;
479 	struct irq_chip *chip;
480 	int ret = -ENOSYS;
481 
482 	if (!desc)
483 		return -EINVAL;
484 
485 	data = irq_desc_get_irq_data(desc);
486 	do {
487 		chip = irq_data_get_irq_chip(data);
488 		if (chip && chip->irq_set_vcpu_affinity)
489 			break;
490 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
491 		data = data->parent_data;
492 #else
493 		data = NULL;
494 #endif
495 	} while (data);
496 
497 	if (data)
498 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
499 	irq_put_desc_unlock(desc, flags);
500 
501 	return ret;
502 }
503 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
504 
505 void __disable_irq(struct irq_desc *desc)
506 {
507 	if (!desc->depth++)
508 		irq_disable(desc);
509 }
510 
511 static int __disable_irq_nosync(unsigned int irq)
512 {
513 	unsigned long flags;
514 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
515 
516 	if (!desc)
517 		return -EINVAL;
518 	__disable_irq(desc);
519 	irq_put_desc_busunlock(desc, flags);
520 	return 0;
521 }
522 
523 /**
524  *	disable_irq_nosync - disable an irq without waiting
525  *	@irq: Interrupt to disable
526  *
527  *	Disable the selected interrupt line.  Disables and Enables are
528  *	nested.
529  *	Unlike disable_irq(), this function does not ensure existing
530  *	instances of the IRQ handler have completed before returning.
531  *
532  *	This function may be called from IRQ context.
533  */
534 void disable_irq_nosync(unsigned int irq)
535 {
536 	__disable_irq_nosync(irq);
537 }
538 EXPORT_SYMBOL(disable_irq_nosync);
539 
540 /**
541  *	disable_irq - disable an irq and wait for completion
542  *	@irq: Interrupt to disable
543  *
544  *	Disable the selected interrupt line.  Enables and Disables are
545  *	nested.
546  *	This function waits for any pending IRQ handlers for this interrupt
547  *	to complete before returning. If you use this function while
548  *	holding a resource the IRQ handler may need you will deadlock.
549  *
550  *	This function may be called - with care - from IRQ context.
551  */
552 void disable_irq(unsigned int irq)
553 {
554 	if (!__disable_irq_nosync(irq))
555 		synchronize_irq(irq);
556 }
557 EXPORT_SYMBOL(disable_irq);
558 
559 /**
560  *	disable_hardirq - disables an irq and waits for hardirq completion
561  *	@irq: Interrupt to disable
562  *
563  *	Disable the selected interrupt line.  Enables and Disables are
564  *	nested.
565  *	This function waits for any pending hard IRQ handlers for this
566  *	interrupt to complete before returning. If you use this function while
567  *	holding a resource the hard IRQ handler may need you will deadlock.
568  *
569  *	When used to optimistically disable an interrupt from atomic context
570  *	the return value must be checked.
571  *
572  *	Returns: false if a threaded handler is active.
573  *
574  *	This function may be called - with care - from IRQ context.
575  */
576 bool disable_hardirq(unsigned int irq)
577 {
578 	if (!__disable_irq_nosync(irq))
579 		return synchronize_hardirq(irq);
580 
581 	return false;
582 }
583 EXPORT_SYMBOL_GPL(disable_hardirq);
584 
585 /**
586  *	disable_nmi_nosync - disable an nmi without waiting
587  *	@irq: Interrupt to disable
588  *
589  *	Disable the selected interrupt line. Disables and enables are
590  *	nested.
591  *	The interrupt to disable must have been requested through request_nmi.
592  *	Unlike disable_nmi(), this function does not ensure existing
593  *	instances of the IRQ handler have completed before returning.
594  */
595 void disable_nmi_nosync(unsigned int irq)
596 {
597 	disable_irq_nosync(irq);
598 }
599 
600 void __enable_irq(struct irq_desc *desc)
601 {
602 	switch (desc->depth) {
603 	case 0:
604  err_out:
605 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
606 		     irq_desc_get_irq(desc));
607 		break;
608 	case 1: {
609 		if (desc->istate & IRQS_SUSPENDED)
610 			goto err_out;
611 		/* Prevent probing on this irq: */
612 		irq_settings_set_noprobe(desc);
613 		/*
614 		 * Call irq_startup() not irq_enable() here because the
615 		 * interrupt might be marked NOAUTOEN. So irq_startup()
616 		 * needs to be invoked when it gets enabled the first
617 		 * time. If it was already started up, then irq_startup()
618 		 * will invoke irq_enable() under the hood.
619 		 */
620 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
621 		break;
622 	}
623 	default:
624 		desc->depth--;
625 	}
626 }
627 
628 /**
629  *	enable_irq - enable handling of an irq
630  *	@irq: Interrupt to enable
631  *
632  *	Undoes the effect of one call to disable_irq().  If this
633  *	matches the last disable, processing of interrupts on this
634  *	IRQ line is re-enabled.
635  *
636  *	This function may be called from IRQ context only when
637  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
638  */
639 void enable_irq(unsigned int irq)
640 {
641 	unsigned long flags;
642 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
643 
644 	if (!desc)
645 		return;
646 	if (WARN(!desc->irq_data.chip,
647 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
648 		goto out;
649 
650 	__enable_irq(desc);
651 out:
652 	irq_put_desc_busunlock(desc, flags);
653 }
654 EXPORT_SYMBOL(enable_irq);
655 
656 /**
657  *	enable_nmi - enable handling of an nmi
658  *	@irq: Interrupt to enable
659  *
660  *	The interrupt to enable must have been requested through request_nmi.
661  *	Undoes the effect of one call to disable_nmi(). If this
662  *	matches the last disable, processing of interrupts on this
663  *	IRQ line is re-enabled.
664  */
665 void enable_nmi(unsigned int irq)
666 {
667 	enable_irq(irq);
668 }
669 
670 static int set_irq_wake_real(unsigned int irq, unsigned int on)
671 {
672 	struct irq_desc *desc = irq_to_desc(irq);
673 	int ret = -ENXIO;
674 
675 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
676 		return 0;
677 
678 	if (desc->irq_data.chip->irq_set_wake)
679 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
680 
681 	return ret;
682 }
683 
684 /**
685  *	irq_set_irq_wake - control irq power management wakeup
686  *	@irq:	interrupt to control
687  *	@on:	enable/disable power management wakeup
688  *
689  *	Enable/disable power management wakeup mode, which is
690  *	disabled by default.  Enables and disables must match,
691  *	just as they match for non-wakeup mode support.
692  *
693  *	Wakeup mode lets this IRQ wake the system from sleep
694  *	states like "suspend to RAM".
695  */
696 int irq_set_irq_wake(unsigned int irq, unsigned int on)
697 {
698 	unsigned long flags;
699 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700 	int ret = 0;
701 
702 	if (!desc)
703 		return -EINVAL;
704 
705 	/* Don't use NMIs as wake up interrupts please */
706 	if (desc->istate & IRQS_NMI) {
707 		ret = -EINVAL;
708 		goto out_unlock;
709 	}
710 
711 	/* wakeup-capable irqs can be shared between drivers that
712 	 * don't need to have the same sleep mode behaviors.
713 	 */
714 	if (on) {
715 		if (desc->wake_depth++ == 0) {
716 			ret = set_irq_wake_real(irq, on);
717 			if (ret)
718 				desc->wake_depth = 0;
719 			else
720 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
721 		}
722 	} else {
723 		if (desc->wake_depth == 0) {
724 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
725 		} else if (--desc->wake_depth == 0) {
726 			ret = set_irq_wake_real(irq, on);
727 			if (ret)
728 				desc->wake_depth = 1;
729 			else
730 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
731 		}
732 	}
733 
734 out_unlock:
735 	irq_put_desc_busunlock(desc, flags);
736 	return ret;
737 }
738 EXPORT_SYMBOL(irq_set_irq_wake);
739 
740 /*
741  * Internal function that tells the architecture code whether a
742  * particular irq has been exclusively allocated or is available
743  * for driver use.
744  */
745 int can_request_irq(unsigned int irq, unsigned long irqflags)
746 {
747 	unsigned long flags;
748 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
749 	int canrequest = 0;
750 
751 	if (!desc)
752 		return 0;
753 
754 	if (irq_settings_can_request(desc)) {
755 		if (!desc->action ||
756 		    irqflags & desc->action->flags & IRQF_SHARED)
757 			canrequest = 1;
758 	}
759 	irq_put_desc_unlock(desc, flags);
760 	return canrequest;
761 }
762 
763 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
764 {
765 	struct irq_chip *chip = desc->irq_data.chip;
766 	int ret, unmask = 0;
767 
768 	if (!chip || !chip->irq_set_type) {
769 		/*
770 		 * IRQF_TRIGGER_* but the PIC does not support multiple
771 		 * flow-types?
772 		 */
773 		pr_debug("No set_type function for IRQ %d (%s)\n",
774 			 irq_desc_get_irq(desc),
775 			 chip ? (chip->name ? : "unknown") : "unknown");
776 		return 0;
777 	}
778 
779 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
780 		if (!irqd_irq_masked(&desc->irq_data))
781 			mask_irq(desc);
782 		if (!irqd_irq_disabled(&desc->irq_data))
783 			unmask = 1;
784 	}
785 
786 	/* Mask all flags except trigger mode */
787 	flags &= IRQ_TYPE_SENSE_MASK;
788 	ret = chip->irq_set_type(&desc->irq_data, flags);
789 
790 	switch (ret) {
791 	case IRQ_SET_MASK_OK:
792 	case IRQ_SET_MASK_OK_DONE:
793 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
794 		irqd_set(&desc->irq_data, flags);
795 		/* fall through */
796 
797 	case IRQ_SET_MASK_OK_NOCOPY:
798 		flags = irqd_get_trigger_type(&desc->irq_data);
799 		irq_settings_set_trigger_mask(desc, flags);
800 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
801 		irq_settings_clr_level(desc);
802 		if (flags & IRQ_TYPE_LEVEL_MASK) {
803 			irq_settings_set_level(desc);
804 			irqd_set(&desc->irq_data, IRQD_LEVEL);
805 		}
806 
807 		ret = 0;
808 		break;
809 	default:
810 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
811 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
812 	}
813 	if (unmask)
814 		unmask_irq(desc);
815 	return ret;
816 }
817 
818 #ifdef CONFIG_HARDIRQS_SW_RESEND
819 int irq_set_parent(int irq, int parent_irq)
820 {
821 	unsigned long flags;
822 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
823 
824 	if (!desc)
825 		return -EINVAL;
826 
827 	desc->parent_irq = parent_irq;
828 
829 	irq_put_desc_unlock(desc, flags);
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(irq_set_parent);
833 #endif
834 
835 /*
836  * Default primary interrupt handler for threaded interrupts. Is
837  * assigned as primary handler when request_threaded_irq is called
838  * with handler == NULL. Useful for oneshot interrupts.
839  */
840 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
841 {
842 	return IRQ_WAKE_THREAD;
843 }
844 
845 /*
846  * Primary handler for nested threaded interrupts. Should never be
847  * called.
848  */
849 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
850 {
851 	WARN(1, "Primary handler called for nested irq %d\n", irq);
852 	return IRQ_NONE;
853 }
854 
855 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
856 {
857 	WARN(1, "Secondary action handler called for irq %d\n", irq);
858 	return IRQ_NONE;
859 }
860 
861 static int irq_wait_for_interrupt(struct irqaction *action)
862 {
863 	for (;;) {
864 		set_current_state(TASK_INTERRUPTIBLE);
865 
866 		if (kthread_should_stop()) {
867 			/* may need to run one last time */
868 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
869 					       &action->thread_flags)) {
870 				__set_current_state(TASK_RUNNING);
871 				return 0;
872 			}
873 			__set_current_state(TASK_RUNNING);
874 			return -1;
875 		}
876 
877 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
878 				       &action->thread_flags)) {
879 			__set_current_state(TASK_RUNNING);
880 			return 0;
881 		}
882 		schedule();
883 	}
884 }
885 
886 /*
887  * Oneshot interrupts keep the irq line masked until the threaded
888  * handler finished. unmask if the interrupt has not been disabled and
889  * is marked MASKED.
890  */
891 static void irq_finalize_oneshot(struct irq_desc *desc,
892 				 struct irqaction *action)
893 {
894 	if (!(desc->istate & IRQS_ONESHOT) ||
895 	    action->handler == irq_forced_secondary_handler)
896 		return;
897 again:
898 	chip_bus_lock(desc);
899 	raw_spin_lock_irq(&desc->lock);
900 
901 	/*
902 	 * Implausible though it may be we need to protect us against
903 	 * the following scenario:
904 	 *
905 	 * The thread is faster done than the hard interrupt handler
906 	 * on the other CPU. If we unmask the irq line then the
907 	 * interrupt can come in again and masks the line, leaves due
908 	 * to IRQS_INPROGRESS and the irq line is masked forever.
909 	 *
910 	 * This also serializes the state of shared oneshot handlers
911 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
912 	 * irq_wake_thread(). See the comment there which explains the
913 	 * serialization.
914 	 */
915 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
916 		raw_spin_unlock_irq(&desc->lock);
917 		chip_bus_sync_unlock(desc);
918 		cpu_relax();
919 		goto again;
920 	}
921 
922 	/*
923 	 * Now check again, whether the thread should run. Otherwise
924 	 * we would clear the threads_oneshot bit of this thread which
925 	 * was just set.
926 	 */
927 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
928 		goto out_unlock;
929 
930 	desc->threads_oneshot &= ~action->thread_mask;
931 
932 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
933 	    irqd_irq_masked(&desc->irq_data))
934 		unmask_threaded_irq(desc);
935 
936 out_unlock:
937 	raw_spin_unlock_irq(&desc->lock);
938 	chip_bus_sync_unlock(desc);
939 }
940 
941 #ifdef CONFIG_SMP
942 /*
943  * Check whether we need to change the affinity of the interrupt thread.
944  */
945 static void
946 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
947 {
948 	cpumask_var_t mask;
949 	bool valid = true;
950 
951 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
952 		return;
953 
954 	/*
955 	 * In case we are out of memory we set IRQTF_AFFINITY again and
956 	 * try again next time
957 	 */
958 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
959 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
960 		return;
961 	}
962 
963 	raw_spin_lock_irq(&desc->lock);
964 	/*
965 	 * This code is triggered unconditionally. Check the affinity
966 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
967 	 */
968 	if (cpumask_available(desc->irq_common_data.affinity)) {
969 		const struct cpumask *m;
970 
971 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
972 		cpumask_copy(mask, m);
973 	} else {
974 		valid = false;
975 	}
976 	raw_spin_unlock_irq(&desc->lock);
977 
978 	if (valid)
979 		set_cpus_allowed_ptr(current, mask);
980 	free_cpumask_var(mask);
981 }
982 #else
983 static inline void
984 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
985 #endif
986 
987 /*
988  * Interrupts which are not explicitly requested as threaded
989  * interrupts rely on the implicit bh/preempt disable of the hard irq
990  * context. So we need to disable bh here to avoid deadlocks and other
991  * side effects.
992  */
993 static irqreturn_t
994 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
995 {
996 	irqreturn_t ret;
997 
998 	local_bh_disable();
999 	ret = action->thread_fn(action->irq, action->dev_id);
1000 	if (ret == IRQ_HANDLED)
1001 		atomic_inc(&desc->threads_handled);
1002 
1003 	irq_finalize_oneshot(desc, action);
1004 	local_bh_enable();
1005 	return ret;
1006 }
1007 
1008 /*
1009  * Interrupts explicitly requested as threaded interrupts want to be
1010  * preemtible - many of them need to sleep and wait for slow busses to
1011  * complete.
1012  */
1013 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014 		struct irqaction *action)
1015 {
1016 	irqreturn_t ret;
1017 
1018 	ret = action->thread_fn(action->irq, action->dev_id);
1019 	if (ret == IRQ_HANDLED)
1020 		atomic_inc(&desc->threads_handled);
1021 
1022 	irq_finalize_oneshot(desc, action);
1023 	return ret;
1024 }
1025 
1026 static void wake_threads_waitq(struct irq_desc *desc)
1027 {
1028 	if (atomic_dec_and_test(&desc->threads_active))
1029 		wake_up(&desc->wait_for_threads);
1030 }
1031 
1032 static void irq_thread_dtor(struct callback_head *unused)
1033 {
1034 	struct task_struct *tsk = current;
1035 	struct irq_desc *desc;
1036 	struct irqaction *action;
1037 
1038 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039 		return;
1040 
1041 	action = kthread_data(tsk);
1042 
1043 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044 	       tsk->comm, tsk->pid, action->irq);
1045 
1046 
1047 	desc = irq_to_desc(action->irq);
1048 	/*
1049 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1050 	 * desc->threads_active and wake possible waiters.
1051 	 */
1052 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053 		wake_threads_waitq(desc);
1054 
1055 	/* Prevent a stale desc->threads_oneshot */
1056 	irq_finalize_oneshot(desc, action);
1057 }
1058 
1059 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060 {
1061 	struct irqaction *secondary = action->secondary;
1062 
1063 	if (WARN_ON_ONCE(!secondary))
1064 		return;
1065 
1066 	raw_spin_lock_irq(&desc->lock);
1067 	__irq_wake_thread(desc, secondary);
1068 	raw_spin_unlock_irq(&desc->lock);
1069 }
1070 
1071 /*
1072  * Interrupt handler thread
1073  */
1074 static int irq_thread(void *data)
1075 {
1076 	struct callback_head on_exit_work;
1077 	struct irqaction *action = data;
1078 	struct irq_desc *desc = irq_to_desc(action->irq);
1079 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080 			struct irqaction *action);
1081 
1082 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083 					&action->thread_flags))
1084 		handler_fn = irq_forced_thread_fn;
1085 	else
1086 		handler_fn = irq_thread_fn;
1087 
1088 	init_task_work(&on_exit_work, irq_thread_dtor);
1089 	task_work_add(current, &on_exit_work, false);
1090 
1091 	irq_thread_check_affinity(desc, action);
1092 
1093 	while (!irq_wait_for_interrupt(action)) {
1094 		irqreturn_t action_ret;
1095 
1096 		irq_thread_check_affinity(desc, action);
1097 
1098 		action_ret = handler_fn(desc, action);
1099 		if (action_ret == IRQ_WAKE_THREAD)
1100 			irq_wake_secondary(desc, action);
1101 
1102 		wake_threads_waitq(desc);
1103 	}
1104 
1105 	/*
1106 	 * This is the regular exit path. __free_irq() is stopping the
1107 	 * thread via kthread_stop() after calling
1108 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109 	 * oneshot mask bit can be set.
1110 	 */
1111 	task_work_cancel(current, irq_thread_dtor);
1112 	return 0;
1113 }
1114 
1115 /**
1116  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1117  *	@irq:		Interrupt line
1118  *	@dev_id:	Device identity for which the thread should be woken
1119  *
1120  */
1121 void irq_wake_thread(unsigned int irq, void *dev_id)
1122 {
1123 	struct irq_desc *desc = irq_to_desc(irq);
1124 	struct irqaction *action;
1125 	unsigned long flags;
1126 
1127 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128 		return;
1129 
1130 	raw_spin_lock_irqsave(&desc->lock, flags);
1131 	for_each_action_of_desc(desc, action) {
1132 		if (action->dev_id == dev_id) {
1133 			if (action->thread)
1134 				__irq_wake_thread(desc, action);
1135 			break;
1136 		}
1137 	}
1138 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1139 }
1140 EXPORT_SYMBOL_GPL(irq_wake_thread);
1141 
1142 static int irq_setup_forced_threading(struct irqaction *new)
1143 {
1144 	if (!force_irqthreads)
1145 		return 0;
1146 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147 		return 0;
1148 
1149 	/*
1150 	 * No further action required for interrupts which are requested as
1151 	 * threaded interrupts already
1152 	 */
1153 	if (new->handler == irq_default_primary_handler)
1154 		return 0;
1155 
1156 	new->flags |= IRQF_ONESHOT;
1157 
1158 	/*
1159 	 * Handle the case where we have a real primary handler and a
1160 	 * thread handler. We force thread them as well by creating a
1161 	 * secondary action.
1162 	 */
1163 	if (new->handler && new->thread_fn) {
1164 		/* Allocate the secondary action */
1165 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166 		if (!new->secondary)
1167 			return -ENOMEM;
1168 		new->secondary->handler = irq_forced_secondary_handler;
1169 		new->secondary->thread_fn = new->thread_fn;
1170 		new->secondary->dev_id = new->dev_id;
1171 		new->secondary->irq = new->irq;
1172 		new->secondary->name = new->name;
1173 	}
1174 	/* Deal with the primary handler */
1175 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176 	new->thread_fn = new->handler;
1177 	new->handler = irq_default_primary_handler;
1178 	return 0;
1179 }
1180 
1181 static int irq_request_resources(struct irq_desc *desc)
1182 {
1183 	struct irq_data *d = &desc->irq_data;
1184 	struct irq_chip *c = d->chip;
1185 
1186 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187 }
1188 
1189 static void irq_release_resources(struct irq_desc *desc)
1190 {
1191 	struct irq_data *d = &desc->irq_data;
1192 	struct irq_chip *c = d->chip;
1193 
1194 	if (c->irq_release_resources)
1195 		c->irq_release_resources(d);
1196 }
1197 
1198 static bool irq_supports_nmi(struct irq_desc *desc)
1199 {
1200 	struct irq_data *d = irq_desc_get_irq_data(desc);
1201 
1202 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1204 	if (d->parent_data)
1205 		return false;
1206 #endif
1207 	/* Don't support NMIs for chips behind a slow bus */
1208 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209 		return false;
1210 
1211 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212 }
1213 
1214 static int irq_nmi_setup(struct irq_desc *desc)
1215 {
1216 	struct irq_data *d = irq_desc_get_irq_data(desc);
1217 	struct irq_chip *c = d->chip;
1218 
1219 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220 }
1221 
1222 static void irq_nmi_teardown(struct irq_desc *desc)
1223 {
1224 	struct irq_data *d = irq_desc_get_irq_data(desc);
1225 	struct irq_chip *c = d->chip;
1226 
1227 	if (c->irq_nmi_teardown)
1228 		c->irq_nmi_teardown(d);
1229 }
1230 
1231 static int
1232 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233 {
1234 	struct task_struct *t;
1235 	struct sched_param param = {
1236 		.sched_priority = MAX_USER_RT_PRIO/2,
1237 	};
1238 
1239 	if (!secondary) {
1240 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241 				   new->name);
1242 	} else {
1243 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244 				   new->name);
1245 		param.sched_priority -= 1;
1246 	}
1247 
1248 	if (IS_ERR(t))
1249 		return PTR_ERR(t);
1250 
1251 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252 
1253 	/*
1254 	 * We keep the reference to the task struct even if
1255 	 * the thread dies to avoid that the interrupt code
1256 	 * references an already freed task_struct.
1257 	 */
1258 	get_task_struct(t);
1259 	new->thread = t;
1260 	/*
1261 	 * Tell the thread to set its affinity. This is
1262 	 * important for shared interrupt handlers as we do
1263 	 * not invoke setup_affinity() for the secondary
1264 	 * handlers as everything is already set up. Even for
1265 	 * interrupts marked with IRQF_NO_BALANCE this is
1266 	 * correct as we want the thread to move to the cpu(s)
1267 	 * on which the requesting code placed the interrupt.
1268 	 */
1269 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Internal function to register an irqaction - typically used to
1275  * allocate special interrupts that are part of the architecture.
1276  *
1277  * Locking rules:
1278  *
1279  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1280  *   chip_bus_lock	Provides serialization for slow bus operations
1281  *     desc->lock	Provides serialization against hard interrupts
1282  *
1283  * chip_bus_lock and desc->lock are sufficient for all other management and
1284  * interrupt related functions. desc->request_mutex solely serializes
1285  * request/free_irq().
1286  */
1287 static int
1288 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1289 {
1290 	struct irqaction *old, **old_ptr;
1291 	unsigned long flags, thread_mask = 0;
1292 	int ret, nested, shared = 0;
1293 
1294 	if (!desc)
1295 		return -EINVAL;
1296 
1297 	if (desc->irq_data.chip == &no_irq_chip)
1298 		return -ENOSYS;
1299 	if (!try_module_get(desc->owner))
1300 		return -ENODEV;
1301 
1302 	new->irq = irq;
1303 
1304 	/*
1305 	 * If the trigger type is not specified by the caller,
1306 	 * then use the default for this interrupt.
1307 	 */
1308 	if (!(new->flags & IRQF_TRIGGER_MASK))
1309 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1310 
1311 	/*
1312 	 * Check whether the interrupt nests into another interrupt
1313 	 * thread.
1314 	 */
1315 	nested = irq_settings_is_nested_thread(desc);
1316 	if (nested) {
1317 		if (!new->thread_fn) {
1318 			ret = -EINVAL;
1319 			goto out_mput;
1320 		}
1321 		/*
1322 		 * Replace the primary handler which was provided from
1323 		 * the driver for non nested interrupt handling by the
1324 		 * dummy function which warns when called.
1325 		 */
1326 		new->handler = irq_nested_primary_handler;
1327 	} else {
1328 		if (irq_settings_can_thread(desc)) {
1329 			ret = irq_setup_forced_threading(new);
1330 			if (ret)
1331 				goto out_mput;
1332 		}
1333 	}
1334 
1335 	/*
1336 	 * Create a handler thread when a thread function is supplied
1337 	 * and the interrupt does not nest into another interrupt
1338 	 * thread.
1339 	 */
1340 	if (new->thread_fn && !nested) {
1341 		ret = setup_irq_thread(new, irq, false);
1342 		if (ret)
1343 			goto out_mput;
1344 		if (new->secondary) {
1345 			ret = setup_irq_thread(new->secondary, irq, true);
1346 			if (ret)
1347 				goto out_thread;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Drivers are often written to work w/o knowledge about the
1353 	 * underlying irq chip implementation, so a request for a
1354 	 * threaded irq without a primary hard irq context handler
1355 	 * requires the ONESHOT flag to be set. Some irq chips like
1356 	 * MSI based interrupts are per se one shot safe. Check the
1357 	 * chip flags, so we can avoid the unmask dance at the end of
1358 	 * the threaded handler for those.
1359 	 */
1360 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1361 		new->flags &= ~IRQF_ONESHOT;
1362 
1363 	/*
1364 	 * Protects against a concurrent __free_irq() call which might wait
1365 	 * for synchronize_hardirq() to complete without holding the optional
1366 	 * chip bus lock and desc->lock. Also protects against handing out
1367 	 * a recycled oneshot thread_mask bit while it's still in use by
1368 	 * its previous owner.
1369 	 */
1370 	mutex_lock(&desc->request_mutex);
1371 
1372 	/*
1373 	 * Acquire bus lock as the irq_request_resources() callback below
1374 	 * might rely on the serialization or the magic power management
1375 	 * functions which are abusing the irq_bus_lock() callback,
1376 	 */
1377 	chip_bus_lock(desc);
1378 
1379 	/* First installed action requests resources. */
1380 	if (!desc->action) {
1381 		ret = irq_request_resources(desc);
1382 		if (ret) {
1383 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1384 			       new->name, irq, desc->irq_data.chip->name);
1385 			goto out_bus_unlock;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * The following block of code has to be executed atomically
1391 	 * protected against a concurrent interrupt and any of the other
1392 	 * management calls which are not serialized via
1393 	 * desc->request_mutex or the optional bus lock.
1394 	 */
1395 	raw_spin_lock_irqsave(&desc->lock, flags);
1396 	old_ptr = &desc->action;
1397 	old = *old_ptr;
1398 	if (old) {
1399 		/*
1400 		 * Can't share interrupts unless both agree to and are
1401 		 * the same type (level, edge, polarity). So both flag
1402 		 * fields must have IRQF_SHARED set and the bits which
1403 		 * set the trigger type must match. Also all must
1404 		 * agree on ONESHOT.
1405 		 * Interrupt lines used for NMIs cannot be shared.
1406 		 */
1407 		unsigned int oldtype;
1408 
1409 		if (desc->istate & IRQS_NMI) {
1410 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1411 				new->name, irq, desc->irq_data.chip->name);
1412 			ret = -EINVAL;
1413 			goto out_unlock;
1414 		}
1415 
1416 		/*
1417 		 * If nobody did set the configuration before, inherit
1418 		 * the one provided by the requester.
1419 		 */
1420 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1421 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1422 		} else {
1423 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1424 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1425 		}
1426 
1427 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1428 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1429 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1430 			goto mismatch;
1431 
1432 		/* All handlers must agree on per-cpuness */
1433 		if ((old->flags & IRQF_PERCPU) !=
1434 		    (new->flags & IRQF_PERCPU))
1435 			goto mismatch;
1436 
1437 		/* add new interrupt at end of irq queue */
1438 		do {
1439 			/*
1440 			 * Or all existing action->thread_mask bits,
1441 			 * so we can find the next zero bit for this
1442 			 * new action.
1443 			 */
1444 			thread_mask |= old->thread_mask;
1445 			old_ptr = &old->next;
1446 			old = *old_ptr;
1447 		} while (old);
1448 		shared = 1;
1449 	}
1450 
1451 	/*
1452 	 * Setup the thread mask for this irqaction for ONESHOT. For
1453 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1454 	 * conditional in irq_wake_thread().
1455 	 */
1456 	if (new->flags & IRQF_ONESHOT) {
1457 		/*
1458 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1459 		 * but who knows.
1460 		 */
1461 		if (thread_mask == ~0UL) {
1462 			ret = -EBUSY;
1463 			goto out_unlock;
1464 		}
1465 		/*
1466 		 * The thread_mask for the action is or'ed to
1467 		 * desc->thread_active to indicate that the
1468 		 * IRQF_ONESHOT thread handler has been woken, but not
1469 		 * yet finished. The bit is cleared when a thread
1470 		 * completes. When all threads of a shared interrupt
1471 		 * line have completed desc->threads_active becomes
1472 		 * zero and the interrupt line is unmasked. See
1473 		 * handle.c:irq_wake_thread() for further information.
1474 		 *
1475 		 * If no thread is woken by primary (hard irq context)
1476 		 * interrupt handlers, then desc->threads_active is
1477 		 * also checked for zero to unmask the irq line in the
1478 		 * affected hard irq flow handlers
1479 		 * (handle_[fasteoi|level]_irq).
1480 		 *
1481 		 * The new action gets the first zero bit of
1482 		 * thread_mask assigned. See the loop above which or's
1483 		 * all existing action->thread_mask bits.
1484 		 */
1485 		new->thread_mask = 1UL << ffz(thread_mask);
1486 
1487 	} else if (new->handler == irq_default_primary_handler &&
1488 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1489 		/*
1490 		 * The interrupt was requested with handler = NULL, so
1491 		 * we use the default primary handler for it. But it
1492 		 * does not have the oneshot flag set. In combination
1493 		 * with level interrupts this is deadly, because the
1494 		 * default primary handler just wakes the thread, then
1495 		 * the irq lines is reenabled, but the device still
1496 		 * has the level irq asserted. Rinse and repeat....
1497 		 *
1498 		 * While this works for edge type interrupts, we play
1499 		 * it safe and reject unconditionally because we can't
1500 		 * say for sure which type this interrupt really
1501 		 * has. The type flags are unreliable as the
1502 		 * underlying chip implementation can override them.
1503 		 */
1504 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1505 		       irq);
1506 		ret = -EINVAL;
1507 		goto out_unlock;
1508 	}
1509 
1510 	if (!shared) {
1511 		init_waitqueue_head(&desc->wait_for_threads);
1512 
1513 		/* Setup the type (level, edge polarity) if configured: */
1514 		if (new->flags & IRQF_TRIGGER_MASK) {
1515 			ret = __irq_set_trigger(desc,
1516 						new->flags & IRQF_TRIGGER_MASK);
1517 
1518 			if (ret)
1519 				goto out_unlock;
1520 		}
1521 
1522 		/*
1523 		 * Activate the interrupt. That activation must happen
1524 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1525 		 * and the callers are supposed to handle
1526 		 * that. enable_irq() of an interrupt requested with
1527 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1528 		 * keeps it in shutdown mode, it merily associates
1529 		 * resources if necessary and if that's not possible it
1530 		 * fails. Interrupts which are in managed shutdown mode
1531 		 * will simply ignore that activation request.
1532 		 */
1533 		ret = irq_activate(desc);
1534 		if (ret)
1535 			goto out_unlock;
1536 
1537 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1538 				  IRQS_ONESHOT | IRQS_WAITING);
1539 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1540 
1541 		if (new->flags & IRQF_PERCPU) {
1542 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1543 			irq_settings_set_per_cpu(desc);
1544 		}
1545 
1546 		if (new->flags & IRQF_ONESHOT)
1547 			desc->istate |= IRQS_ONESHOT;
1548 
1549 		/* Exclude IRQ from balancing if requested */
1550 		if (new->flags & IRQF_NOBALANCING) {
1551 			irq_settings_set_no_balancing(desc);
1552 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1553 		}
1554 
1555 		if (irq_settings_can_autoenable(desc)) {
1556 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1557 		} else {
1558 			/*
1559 			 * Shared interrupts do not go well with disabling
1560 			 * auto enable. The sharing interrupt might request
1561 			 * it while it's still disabled and then wait for
1562 			 * interrupts forever.
1563 			 */
1564 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1565 			/* Undo nested disables: */
1566 			desc->depth = 1;
1567 		}
1568 
1569 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1570 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1571 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1572 
1573 		if (nmsk != omsk)
1574 			/* hope the handler works with current  trigger mode */
1575 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1576 				irq, omsk, nmsk);
1577 	}
1578 
1579 	*old_ptr = new;
1580 
1581 	irq_pm_install_action(desc, new);
1582 
1583 	/* Reset broken irq detection when installing new handler */
1584 	desc->irq_count = 0;
1585 	desc->irqs_unhandled = 0;
1586 
1587 	/*
1588 	 * Check whether we disabled the irq via the spurious handler
1589 	 * before. Reenable it and give it another chance.
1590 	 */
1591 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1592 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1593 		__enable_irq(desc);
1594 	}
1595 
1596 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1597 	chip_bus_sync_unlock(desc);
1598 	mutex_unlock(&desc->request_mutex);
1599 
1600 	irq_setup_timings(desc, new);
1601 
1602 	/*
1603 	 * Strictly no need to wake it up, but hung_task complains
1604 	 * when no hard interrupt wakes the thread up.
1605 	 */
1606 	if (new->thread)
1607 		wake_up_process(new->thread);
1608 	if (new->secondary)
1609 		wake_up_process(new->secondary->thread);
1610 
1611 	register_irq_proc(irq, desc);
1612 	new->dir = NULL;
1613 	register_handler_proc(irq, new);
1614 	return 0;
1615 
1616 mismatch:
1617 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1618 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1619 		       irq, new->flags, new->name, old->flags, old->name);
1620 #ifdef CONFIG_DEBUG_SHIRQ
1621 		dump_stack();
1622 #endif
1623 	}
1624 	ret = -EBUSY;
1625 
1626 out_unlock:
1627 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1628 
1629 	if (!desc->action)
1630 		irq_release_resources(desc);
1631 out_bus_unlock:
1632 	chip_bus_sync_unlock(desc);
1633 	mutex_unlock(&desc->request_mutex);
1634 
1635 out_thread:
1636 	if (new->thread) {
1637 		struct task_struct *t = new->thread;
1638 
1639 		new->thread = NULL;
1640 		kthread_stop(t);
1641 		put_task_struct(t);
1642 	}
1643 	if (new->secondary && new->secondary->thread) {
1644 		struct task_struct *t = new->secondary->thread;
1645 
1646 		new->secondary->thread = NULL;
1647 		kthread_stop(t);
1648 		put_task_struct(t);
1649 	}
1650 out_mput:
1651 	module_put(desc->owner);
1652 	return ret;
1653 }
1654 
1655 /**
1656  *	setup_irq - setup an interrupt
1657  *	@irq: Interrupt line to setup
1658  *	@act: irqaction for the interrupt
1659  *
1660  * Used to statically setup interrupts in the early boot process.
1661  */
1662 int setup_irq(unsigned int irq, struct irqaction *act)
1663 {
1664 	int retval;
1665 	struct irq_desc *desc = irq_to_desc(irq);
1666 
1667 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1668 		return -EINVAL;
1669 
1670 	retval = irq_chip_pm_get(&desc->irq_data);
1671 	if (retval < 0)
1672 		return retval;
1673 
1674 	retval = __setup_irq(irq, desc, act);
1675 
1676 	if (retval)
1677 		irq_chip_pm_put(&desc->irq_data);
1678 
1679 	return retval;
1680 }
1681 EXPORT_SYMBOL_GPL(setup_irq);
1682 
1683 /*
1684  * Internal function to unregister an irqaction - used to free
1685  * regular and special interrupts that are part of the architecture.
1686  */
1687 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1688 {
1689 	unsigned irq = desc->irq_data.irq;
1690 	struct irqaction *action, **action_ptr;
1691 	unsigned long flags;
1692 
1693 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1694 
1695 	mutex_lock(&desc->request_mutex);
1696 	chip_bus_lock(desc);
1697 	raw_spin_lock_irqsave(&desc->lock, flags);
1698 
1699 	/*
1700 	 * There can be multiple actions per IRQ descriptor, find the right
1701 	 * one based on the dev_id:
1702 	 */
1703 	action_ptr = &desc->action;
1704 	for (;;) {
1705 		action = *action_ptr;
1706 
1707 		if (!action) {
1708 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1709 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1710 			chip_bus_sync_unlock(desc);
1711 			mutex_unlock(&desc->request_mutex);
1712 			return NULL;
1713 		}
1714 
1715 		if (action->dev_id == dev_id)
1716 			break;
1717 		action_ptr = &action->next;
1718 	}
1719 
1720 	/* Found it - now remove it from the list of entries: */
1721 	*action_ptr = action->next;
1722 
1723 	irq_pm_remove_action(desc, action);
1724 
1725 	/* If this was the last handler, shut down the IRQ line: */
1726 	if (!desc->action) {
1727 		irq_settings_clr_disable_unlazy(desc);
1728 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1729 		irq_shutdown(desc);
1730 	}
1731 
1732 #ifdef CONFIG_SMP
1733 	/* make sure affinity_hint is cleaned up */
1734 	if (WARN_ON_ONCE(desc->affinity_hint))
1735 		desc->affinity_hint = NULL;
1736 #endif
1737 
1738 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1739 	/*
1740 	 * Drop bus_lock here so the changes which were done in the chip
1741 	 * callbacks above are synced out to the irq chips which hang
1742 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1743 	 *
1744 	 * Aside of that the bus_lock can also be taken from the threaded
1745 	 * handler in irq_finalize_oneshot() which results in a deadlock
1746 	 * because kthread_stop() would wait forever for the thread to
1747 	 * complete, which is blocked on the bus lock.
1748 	 *
1749 	 * The still held desc->request_mutex() protects against a
1750 	 * concurrent request_irq() of this irq so the release of resources
1751 	 * and timing data is properly serialized.
1752 	 */
1753 	chip_bus_sync_unlock(desc);
1754 
1755 	unregister_handler_proc(irq, action);
1756 
1757 	/*
1758 	 * Make sure it's not being used on another CPU and if the chip
1759 	 * supports it also make sure that there is no (not yet serviced)
1760 	 * interrupt in flight at the hardware level.
1761 	 */
1762 	__synchronize_hardirq(desc, true);
1763 
1764 #ifdef CONFIG_DEBUG_SHIRQ
1765 	/*
1766 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1767 	 * event to happen even now it's being freed, so let's make sure that
1768 	 * is so by doing an extra call to the handler ....
1769 	 *
1770 	 * ( We do this after actually deregistering it, to make sure that a
1771 	 *   'real' IRQ doesn't run in parallel with our fake. )
1772 	 */
1773 	if (action->flags & IRQF_SHARED) {
1774 		local_irq_save(flags);
1775 		action->handler(irq, dev_id);
1776 		local_irq_restore(flags);
1777 	}
1778 #endif
1779 
1780 	/*
1781 	 * The action has already been removed above, but the thread writes
1782 	 * its oneshot mask bit when it completes. Though request_mutex is
1783 	 * held across this which prevents __setup_irq() from handing out
1784 	 * the same bit to a newly requested action.
1785 	 */
1786 	if (action->thread) {
1787 		kthread_stop(action->thread);
1788 		put_task_struct(action->thread);
1789 		if (action->secondary && action->secondary->thread) {
1790 			kthread_stop(action->secondary->thread);
1791 			put_task_struct(action->secondary->thread);
1792 		}
1793 	}
1794 
1795 	/* Last action releases resources */
1796 	if (!desc->action) {
1797 		/*
1798 		 * Reaquire bus lock as irq_release_resources() might
1799 		 * require it to deallocate resources over the slow bus.
1800 		 */
1801 		chip_bus_lock(desc);
1802 		/*
1803 		 * There is no interrupt on the fly anymore. Deactivate it
1804 		 * completely.
1805 		 */
1806 		raw_spin_lock_irqsave(&desc->lock, flags);
1807 		irq_domain_deactivate_irq(&desc->irq_data);
1808 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1809 
1810 		irq_release_resources(desc);
1811 		chip_bus_sync_unlock(desc);
1812 		irq_remove_timings(desc);
1813 	}
1814 
1815 	mutex_unlock(&desc->request_mutex);
1816 
1817 	irq_chip_pm_put(&desc->irq_data);
1818 	module_put(desc->owner);
1819 	kfree(action->secondary);
1820 	return action;
1821 }
1822 
1823 /**
1824  *	remove_irq - free an interrupt
1825  *	@irq: Interrupt line to free
1826  *	@act: irqaction for the interrupt
1827  *
1828  * Used to remove interrupts statically setup by the early boot process.
1829  */
1830 void remove_irq(unsigned int irq, struct irqaction *act)
1831 {
1832 	struct irq_desc *desc = irq_to_desc(irq);
1833 
1834 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1835 		__free_irq(desc, act->dev_id);
1836 }
1837 EXPORT_SYMBOL_GPL(remove_irq);
1838 
1839 /**
1840  *	free_irq - free an interrupt allocated with request_irq
1841  *	@irq: Interrupt line to free
1842  *	@dev_id: Device identity to free
1843  *
1844  *	Remove an interrupt handler. The handler is removed and if the
1845  *	interrupt line is no longer in use by any driver it is disabled.
1846  *	On a shared IRQ the caller must ensure the interrupt is disabled
1847  *	on the card it drives before calling this function. The function
1848  *	does not return until any executing interrupts for this IRQ
1849  *	have completed.
1850  *
1851  *	This function must not be called from interrupt context.
1852  *
1853  *	Returns the devname argument passed to request_irq.
1854  */
1855 const void *free_irq(unsigned int irq, void *dev_id)
1856 {
1857 	struct irq_desc *desc = irq_to_desc(irq);
1858 	struct irqaction *action;
1859 	const char *devname;
1860 
1861 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1862 		return NULL;
1863 
1864 #ifdef CONFIG_SMP
1865 	if (WARN_ON(desc->affinity_notify))
1866 		desc->affinity_notify = NULL;
1867 #endif
1868 
1869 	action = __free_irq(desc, dev_id);
1870 
1871 	if (!action)
1872 		return NULL;
1873 
1874 	devname = action->name;
1875 	kfree(action);
1876 	return devname;
1877 }
1878 EXPORT_SYMBOL(free_irq);
1879 
1880 /* This function must be called with desc->lock held */
1881 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1882 {
1883 	const char *devname = NULL;
1884 
1885 	desc->istate &= ~IRQS_NMI;
1886 
1887 	if (!WARN_ON(desc->action == NULL)) {
1888 		irq_pm_remove_action(desc, desc->action);
1889 		devname = desc->action->name;
1890 		unregister_handler_proc(irq, desc->action);
1891 
1892 		kfree(desc->action);
1893 		desc->action = NULL;
1894 	}
1895 
1896 	irq_settings_clr_disable_unlazy(desc);
1897 	irq_shutdown_and_deactivate(desc);
1898 
1899 	irq_release_resources(desc);
1900 
1901 	irq_chip_pm_put(&desc->irq_data);
1902 	module_put(desc->owner);
1903 
1904 	return devname;
1905 }
1906 
1907 const void *free_nmi(unsigned int irq, void *dev_id)
1908 {
1909 	struct irq_desc *desc = irq_to_desc(irq);
1910 	unsigned long flags;
1911 	const void *devname;
1912 
1913 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1914 		return NULL;
1915 
1916 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1917 		return NULL;
1918 
1919 	/* NMI still enabled */
1920 	if (WARN_ON(desc->depth == 0))
1921 		disable_nmi_nosync(irq);
1922 
1923 	raw_spin_lock_irqsave(&desc->lock, flags);
1924 
1925 	irq_nmi_teardown(desc);
1926 	devname = __cleanup_nmi(irq, desc);
1927 
1928 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1929 
1930 	return devname;
1931 }
1932 
1933 /**
1934  *	request_threaded_irq - allocate an interrupt line
1935  *	@irq: Interrupt line to allocate
1936  *	@handler: Function to be called when the IRQ occurs.
1937  *		  Primary handler for threaded interrupts
1938  *		  If NULL and thread_fn != NULL the default
1939  *		  primary handler is installed
1940  *	@thread_fn: Function called from the irq handler thread
1941  *		    If NULL, no irq thread is created
1942  *	@irqflags: Interrupt type flags
1943  *	@devname: An ascii name for the claiming device
1944  *	@dev_id: A cookie passed back to the handler function
1945  *
1946  *	This call allocates interrupt resources and enables the
1947  *	interrupt line and IRQ handling. From the point this
1948  *	call is made your handler function may be invoked. Since
1949  *	your handler function must clear any interrupt the board
1950  *	raises, you must take care both to initialise your hardware
1951  *	and to set up the interrupt handler in the right order.
1952  *
1953  *	If you want to set up a threaded irq handler for your device
1954  *	then you need to supply @handler and @thread_fn. @handler is
1955  *	still called in hard interrupt context and has to check
1956  *	whether the interrupt originates from the device. If yes it
1957  *	needs to disable the interrupt on the device and return
1958  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1959  *	@thread_fn. This split handler design is necessary to support
1960  *	shared interrupts.
1961  *
1962  *	Dev_id must be globally unique. Normally the address of the
1963  *	device data structure is used as the cookie. Since the handler
1964  *	receives this value it makes sense to use it.
1965  *
1966  *	If your interrupt is shared you must pass a non NULL dev_id
1967  *	as this is required when freeing the interrupt.
1968  *
1969  *	Flags:
1970  *
1971  *	IRQF_SHARED		Interrupt is shared
1972  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1973  *
1974  */
1975 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1976 			 irq_handler_t thread_fn, unsigned long irqflags,
1977 			 const char *devname, void *dev_id)
1978 {
1979 	struct irqaction *action;
1980 	struct irq_desc *desc;
1981 	int retval;
1982 
1983 	if (irq == IRQ_NOTCONNECTED)
1984 		return -ENOTCONN;
1985 
1986 	/*
1987 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1988 	 * otherwise we'll have trouble later trying to figure out
1989 	 * which interrupt is which (messes up the interrupt freeing
1990 	 * logic etc).
1991 	 *
1992 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1993 	 * it cannot be set along with IRQF_NO_SUSPEND.
1994 	 */
1995 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1996 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1997 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1998 		return -EINVAL;
1999 
2000 	desc = irq_to_desc(irq);
2001 	if (!desc)
2002 		return -EINVAL;
2003 
2004 	if (!irq_settings_can_request(desc) ||
2005 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2006 		return -EINVAL;
2007 
2008 	if (!handler) {
2009 		if (!thread_fn)
2010 			return -EINVAL;
2011 		handler = irq_default_primary_handler;
2012 	}
2013 
2014 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2015 	if (!action)
2016 		return -ENOMEM;
2017 
2018 	action->handler = handler;
2019 	action->thread_fn = thread_fn;
2020 	action->flags = irqflags;
2021 	action->name = devname;
2022 	action->dev_id = dev_id;
2023 
2024 	retval = irq_chip_pm_get(&desc->irq_data);
2025 	if (retval < 0) {
2026 		kfree(action);
2027 		return retval;
2028 	}
2029 
2030 	retval = __setup_irq(irq, desc, action);
2031 
2032 	if (retval) {
2033 		irq_chip_pm_put(&desc->irq_data);
2034 		kfree(action->secondary);
2035 		kfree(action);
2036 	}
2037 
2038 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2039 	if (!retval && (irqflags & IRQF_SHARED)) {
2040 		/*
2041 		 * It's a shared IRQ -- the driver ought to be prepared for it
2042 		 * to happen immediately, so let's make sure....
2043 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2044 		 * run in parallel with our fake.
2045 		 */
2046 		unsigned long flags;
2047 
2048 		disable_irq(irq);
2049 		local_irq_save(flags);
2050 
2051 		handler(irq, dev_id);
2052 
2053 		local_irq_restore(flags);
2054 		enable_irq(irq);
2055 	}
2056 #endif
2057 	return retval;
2058 }
2059 EXPORT_SYMBOL(request_threaded_irq);
2060 
2061 /**
2062  *	request_any_context_irq - allocate an interrupt line
2063  *	@irq: Interrupt line to allocate
2064  *	@handler: Function to be called when the IRQ occurs.
2065  *		  Threaded handler for threaded interrupts.
2066  *	@flags: Interrupt type flags
2067  *	@name: An ascii name for the claiming device
2068  *	@dev_id: A cookie passed back to the handler function
2069  *
2070  *	This call allocates interrupt resources and enables the
2071  *	interrupt line and IRQ handling. It selects either a
2072  *	hardirq or threaded handling method depending on the
2073  *	context.
2074  *
2075  *	On failure, it returns a negative value. On success,
2076  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2077  */
2078 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2079 			    unsigned long flags, const char *name, void *dev_id)
2080 {
2081 	struct irq_desc *desc;
2082 	int ret;
2083 
2084 	if (irq == IRQ_NOTCONNECTED)
2085 		return -ENOTCONN;
2086 
2087 	desc = irq_to_desc(irq);
2088 	if (!desc)
2089 		return -EINVAL;
2090 
2091 	if (irq_settings_is_nested_thread(desc)) {
2092 		ret = request_threaded_irq(irq, NULL, handler,
2093 					   flags, name, dev_id);
2094 		return !ret ? IRQC_IS_NESTED : ret;
2095 	}
2096 
2097 	ret = request_irq(irq, handler, flags, name, dev_id);
2098 	return !ret ? IRQC_IS_HARDIRQ : ret;
2099 }
2100 EXPORT_SYMBOL_GPL(request_any_context_irq);
2101 
2102 /**
2103  *	request_nmi - allocate an interrupt line for NMI delivery
2104  *	@irq: Interrupt line to allocate
2105  *	@handler: Function to be called when the IRQ occurs.
2106  *		  Threaded handler for threaded interrupts.
2107  *	@irqflags: Interrupt type flags
2108  *	@name: An ascii name for the claiming device
2109  *	@dev_id: A cookie passed back to the handler function
2110  *
2111  *	This call allocates interrupt resources and enables the
2112  *	interrupt line and IRQ handling. It sets up the IRQ line
2113  *	to be handled as an NMI.
2114  *
2115  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2116  *	cannot be threaded.
2117  *
2118  *	Interrupt lines requested for NMI delivering must produce per cpu
2119  *	interrupts and have auto enabling setting disabled.
2120  *
2121  *	Dev_id must be globally unique. Normally the address of the
2122  *	device data structure is used as the cookie. Since the handler
2123  *	receives this value it makes sense to use it.
2124  *
2125  *	If the interrupt line cannot be used to deliver NMIs, function
2126  *	will fail and return a negative value.
2127  */
2128 int request_nmi(unsigned int irq, irq_handler_t handler,
2129 		unsigned long irqflags, const char *name, void *dev_id)
2130 {
2131 	struct irqaction *action;
2132 	struct irq_desc *desc;
2133 	unsigned long flags;
2134 	int retval;
2135 
2136 	if (irq == IRQ_NOTCONNECTED)
2137 		return -ENOTCONN;
2138 
2139 	/* NMI cannot be shared, used for Polling */
2140 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2141 		return -EINVAL;
2142 
2143 	if (!(irqflags & IRQF_PERCPU))
2144 		return -EINVAL;
2145 
2146 	if (!handler)
2147 		return -EINVAL;
2148 
2149 	desc = irq_to_desc(irq);
2150 
2151 	if (!desc || irq_settings_can_autoenable(desc) ||
2152 	    !irq_settings_can_request(desc) ||
2153 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2154 	    !irq_supports_nmi(desc))
2155 		return -EINVAL;
2156 
2157 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2158 	if (!action)
2159 		return -ENOMEM;
2160 
2161 	action->handler = handler;
2162 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2163 	action->name = name;
2164 	action->dev_id = dev_id;
2165 
2166 	retval = irq_chip_pm_get(&desc->irq_data);
2167 	if (retval < 0)
2168 		goto err_out;
2169 
2170 	retval = __setup_irq(irq, desc, action);
2171 	if (retval)
2172 		goto err_irq_setup;
2173 
2174 	raw_spin_lock_irqsave(&desc->lock, flags);
2175 
2176 	/* Setup NMI state */
2177 	desc->istate |= IRQS_NMI;
2178 	retval = irq_nmi_setup(desc);
2179 	if (retval) {
2180 		__cleanup_nmi(irq, desc);
2181 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2182 		return -EINVAL;
2183 	}
2184 
2185 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2186 
2187 	return 0;
2188 
2189 err_irq_setup:
2190 	irq_chip_pm_put(&desc->irq_data);
2191 err_out:
2192 	kfree(action);
2193 
2194 	return retval;
2195 }
2196 
2197 void enable_percpu_irq(unsigned int irq, unsigned int type)
2198 {
2199 	unsigned int cpu = smp_processor_id();
2200 	unsigned long flags;
2201 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2202 
2203 	if (!desc)
2204 		return;
2205 
2206 	/*
2207 	 * If the trigger type is not specified by the caller, then
2208 	 * use the default for this interrupt.
2209 	 */
2210 	type &= IRQ_TYPE_SENSE_MASK;
2211 	if (type == IRQ_TYPE_NONE)
2212 		type = irqd_get_trigger_type(&desc->irq_data);
2213 
2214 	if (type != IRQ_TYPE_NONE) {
2215 		int ret;
2216 
2217 		ret = __irq_set_trigger(desc, type);
2218 
2219 		if (ret) {
2220 			WARN(1, "failed to set type for IRQ%d\n", irq);
2221 			goto out;
2222 		}
2223 	}
2224 
2225 	irq_percpu_enable(desc, cpu);
2226 out:
2227 	irq_put_desc_unlock(desc, flags);
2228 }
2229 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2230 
2231 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2232 {
2233 	enable_percpu_irq(irq, type);
2234 }
2235 
2236 /**
2237  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2238  * @irq:	Linux irq number to check for
2239  *
2240  * Must be called from a non migratable context. Returns the enable
2241  * state of a per cpu interrupt on the current cpu.
2242  */
2243 bool irq_percpu_is_enabled(unsigned int irq)
2244 {
2245 	unsigned int cpu = smp_processor_id();
2246 	struct irq_desc *desc;
2247 	unsigned long flags;
2248 	bool is_enabled;
2249 
2250 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2251 	if (!desc)
2252 		return false;
2253 
2254 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2255 	irq_put_desc_unlock(desc, flags);
2256 
2257 	return is_enabled;
2258 }
2259 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2260 
2261 void disable_percpu_irq(unsigned int irq)
2262 {
2263 	unsigned int cpu = smp_processor_id();
2264 	unsigned long flags;
2265 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2266 
2267 	if (!desc)
2268 		return;
2269 
2270 	irq_percpu_disable(desc, cpu);
2271 	irq_put_desc_unlock(desc, flags);
2272 }
2273 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2274 
2275 void disable_percpu_nmi(unsigned int irq)
2276 {
2277 	disable_percpu_irq(irq);
2278 }
2279 
2280 /*
2281  * Internal function to unregister a percpu irqaction.
2282  */
2283 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2284 {
2285 	struct irq_desc *desc = irq_to_desc(irq);
2286 	struct irqaction *action;
2287 	unsigned long flags;
2288 
2289 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2290 
2291 	if (!desc)
2292 		return NULL;
2293 
2294 	raw_spin_lock_irqsave(&desc->lock, flags);
2295 
2296 	action = desc->action;
2297 	if (!action || action->percpu_dev_id != dev_id) {
2298 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2299 		goto bad;
2300 	}
2301 
2302 	if (!cpumask_empty(desc->percpu_enabled)) {
2303 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2304 		     irq, cpumask_first(desc->percpu_enabled));
2305 		goto bad;
2306 	}
2307 
2308 	/* Found it - now remove it from the list of entries: */
2309 	desc->action = NULL;
2310 
2311 	desc->istate &= ~IRQS_NMI;
2312 
2313 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2314 
2315 	unregister_handler_proc(irq, action);
2316 
2317 	irq_chip_pm_put(&desc->irq_data);
2318 	module_put(desc->owner);
2319 	return action;
2320 
2321 bad:
2322 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2323 	return NULL;
2324 }
2325 
2326 /**
2327  *	remove_percpu_irq - free a per-cpu interrupt
2328  *	@irq: Interrupt line to free
2329  *	@act: irqaction for the interrupt
2330  *
2331  * Used to remove interrupts statically setup by the early boot process.
2332  */
2333 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2334 {
2335 	struct irq_desc *desc = irq_to_desc(irq);
2336 
2337 	if (desc && irq_settings_is_per_cpu_devid(desc))
2338 	    __free_percpu_irq(irq, act->percpu_dev_id);
2339 }
2340 
2341 /**
2342  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2343  *	@irq: Interrupt line to free
2344  *	@dev_id: Device identity to free
2345  *
2346  *	Remove a percpu interrupt handler. The handler is removed, but
2347  *	the interrupt line is not disabled. This must be done on each
2348  *	CPU before calling this function. The function does not return
2349  *	until any executing interrupts for this IRQ have completed.
2350  *
2351  *	This function must not be called from interrupt context.
2352  */
2353 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2354 {
2355 	struct irq_desc *desc = irq_to_desc(irq);
2356 
2357 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2358 		return;
2359 
2360 	chip_bus_lock(desc);
2361 	kfree(__free_percpu_irq(irq, dev_id));
2362 	chip_bus_sync_unlock(desc);
2363 }
2364 EXPORT_SYMBOL_GPL(free_percpu_irq);
2365 
2366 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2367 {
2368 	struct irq_desc *desc = irq_to_desc(irq);
2369 
2370 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2371 		return;
2372 
2373 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2374 		return;
2375 
2376 	kfree(__free_percpu_irq(irq, dev_id));
2377 }
2378 
2379 /**
2380  *	setup_percpu_irq - setup a per-cpu interrupt
2381  *	@irq: Interrupt line to setup
2382  *	@act: irqaction for the interrupt
2383  *
2384  * Used to statically setup per-cpu interrupts in the early boot process.
2385  */
2386 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2387 {
2388 	struct irq_desc *desc = irq_to_desc(irq);
2389 	int retval;
2390 
2391 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2392 		return -EINVAL;
2393 
2394 	retval = irq_chip_pm_get(&desc->irq_data);
2395 	if (retval < 0)
2396 		return retval;
2397 
2398 	retval = __setup_irq(irq, desc, act);
2399 
2400 	if (retval)
2401 		irq_chip_pm_put(&desc->irq_data);
2402 
2403 	return retval;
2404 }
2405 
2406 /**
2407  *	__request_percpu_irq - allocate a percpu interrupt line
2408  *	@irq: Interrupt line to allocate
2409  *	@handler: Function to be called when the IRQ occurs.
2410  *	@flags: Interrupt type flags (IRQF_TIMER only)
2411  *	@devname: An ascii name for the claiming device
2412  *	@dev_id: A percpu cookie passed back to the handler function
2413  *
2414  *	This call allocates interrupt resources and enables the
2415  *	interrupt on the local CPU. If the interrupt is supposed to be
2416  *	enabled on other CPUs, it has to be done on each CPU using
2417  *	enable_percpu_irq().
2418  *
2419  *	Dev_id must be globally unique. It is a per-cpu variable, and
2420  *	the handler gets called with the interrupted CPU's instance of
2421  *	that variable.
2422  */
2423 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2424 			 unsigned long flags, const char *devname,
2425 			 void __percpu *dev_id)
2426 {
2427 	struct irqaction *action;
2428 	struct irq_desc *desc;
2429 	int retval;
2430 
2431 	if (!dev_id)
2432 		return -EINVAL;
2433 
2434 	desc = irq_to_desc(irq);
2435 	if (!desc || !irq_settings_can_request(desc) ||
2436 	    !irq_settings_is_per_cpu_devid(desc))
2437 		return -EINVAL;
2438 
2439 	if (flags && flags != IRQF_TIMER)
2440 		return -EINVAL;
2441 
2442 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2443 	if (!action)
2444 		return -ENOMEM;
2445 
2446 	action->handler = handler;
2447 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2448 	action->name = devname;
2449 	action->percpu_dev_id = dev_id;
2450 
2451 	retval = irq_chip_pm_get(&desc->irq_data);
2452 	if (retval < 0) {
2453 		kfree(action);
2454 		return retval;
2455 	}
2456 
2457 	retval = __setup_irq(irq, desc, action);
2458 
2459 	if (retval) {
2460 		irq_chip_pm_put(&desc->irq_data);
2461 		kfree(action);
2462 	}
2463 
2464 	return retval;
2465 }
2466 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2467 
2468 /**
2469  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2470  *	@irq: Interrupt line to allocate
2471  *	@handler: Function to be called when the IRQ occurs.
2472  *	@name: An ascii name for the claiming device
2473  *	@dev_id: A percpu cookie passed back to the handler function
2474  *
2475  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2476  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2477  *	being enabled on the same CPU by using enable_percpu_nmi().
2478  *
2479  *	Dev_id must be globally unique. It is a per-cpu variable, and
2480  *	the handler gets called with the interrupted CPU's instance of
2481  *	that variable.
2482  *
2483  *	Interrupt lines requested for NMI delivering should have auto enabling
2484  *	setting disabled.
2485  *
2486  *	If the interrupt line cannot be used to deliver NMIs, function
2487  *	will fail returning a negative value.
2488  */
2489 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2490 		       const char *name, void __percpu *dev_id)
2491 {
2492 	struct irqaction *action;
2493 	struct irq_desc *desc;
2494 	unsigned long flags;
2495 	int retval;
2496 
2497 	if (!handler)
2498 		return -EINVAL;
2499 
2500 	desc = irq_to_desc(irq);
2501 
2502 	if (!desc || !irq_settings_can_request(desc) ||
2503 	    !irq_settings_is_per_cpu_devid(desc) ||
2504 	    irq_settings_can_autoenable(desc) ||
2505 	    !irq_supports_nmi(desc))
2506 		return -EINVAL;
2507 
2508 	/* The line cannot already be NMI */
2509 	if (desc->istate & IRQS_NMI)
2510 		return -EINVAL;
2511 
2512 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2513 	if (!action)
2514 		return -ENOMEM;
2515 
2516 	action->handler = handler;
2517 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2518 		| IRQF_NOBALANCING;
2519 	action->name = name;
2520 	action->percpu_dev_id = dev_id;
2521 
2522 	retval = irq_chip_pm_get(&desc->irq_data);
2523 	if (retval < 0)
2524 		goto err_out;
2525 
2526 	retval = __setup_irq(irq, desc, action);
2527 	if (retval)
2528 		goto err_irq_setup;
2529 
2530 	raw_spin_lock_irqsave(&desc->lock, flags);
2531 	desc->istate |= IRQS_NMI;
2532 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2533 
2534 	return 0;
2535 
2536 err_irq_setup:
2537 	irq_chip_pm_put(&desc->irq_data);
2538 err_out:
2539 	kfree(action);
2540 
2541 	return retval;
2542 }
2543 
2544 /**
2545  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2546  *	@irq: Interrupt line to prepare for NMI delivery
2547  *
2548  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2549  *	before that interrupt line gets enabled with enable_percpu_nmi().
2550  *
2551  *	As a CPU local operation, this should be called from non-preemptible
2552  *	context.
2553  *
2554  *	If the interrupt line cannot be used to deliver NMIs, function
2555  *	will fail returning a negative value.
2556  */
2557 int prepare_percpu_nmi(unsigned int irq)
2558 {
2559 	unsigned long flags;
2560 	struct irq_desc *desc;
2561 	int ret = 0;
2562 
2563 	WARN_ON(preemptible());
2564 
2565 	desc = irq_get_desc_lock(irq, &flags,
2566 				 IRQ_GET_DESC_CHECK_PERCPU);
2567 	if (!desc)
2568 		return -EINVAL;
2569 
2570 	if (WARN(!(desc->istate & IRQS_NMI),
2571 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2572 		 irq)) {
2573 		ret = -EINVAL;
2574 		goto out;
2575 	}
2576 
2577 	ret = irq_nmi_setup(desc);
2578 	if (ret) {
2579 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2580 		goto out;
2581 	}
2582 
2583 out:
2584 	irq_put_desc_unlock(desc, flags);
2585 	return ret;
2586 }
2587 
2588 /**
2589  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2590  *	@irq: Interrupt line from which CPU local NMI configuration should be
2591  *	      removed
2592  *
2593  *	This call undoes the setup done by prepare_percpu_nmi().
2594  *
2595  *	IRQ line should not be enabled for the current CPU.
2596  *
2597  *	As a CPU local operation, this should be called from non-preemptible
2598  *	context.
2599  */
2600 void teardown_percpu_nmi(unsigned int irq)
2601 {
2602 	unsigned long flags;
2603 	struct irq_desc *desc;
2604 
2605 	WARN_ON(preemptible());
2606 
2607 	desc = irq_get_desc_lock(irq, &flags,
2608 				 IRQ_GET_DESC_CHECK_PERCPU);
2609 	if (!desc)
2610 		return;
2611 
2612 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2613 		goto out;
2614 
2615 	irq_nmi_teardown(desc);
2616 out:
2617 	irq_put_desc_unlock(desc, flags);
2618 }
2619 
2620 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2621 			    bool *state)
2622 {
2623 	struct irq_chip *chip;
2624 	int err = -EINVAL;
2625 
2626 	do {
2627 		chip = irq_data_get_irq_chip(data);
2628 		if (chip->irq_get_irqchip_state)
2629 			break;
2630 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2631 		data = data->parent_data;
2632 #else
2633 		data = NULL;
2634 #endif
2635 	} while (data);
2636 
2637 	if (data)
2638 		err = chip->irq_get_irqchip_state(data, which, state);
2639 	return err;
2640 }
2641 
2642 /**
2643  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2644  *	@irq: Interrupt line that is forwarded to a VM
2645  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2646  *	@state: a pointer to a boolean where the state is to be storeed
2647  *
2648  *	This call snapshots the internal irqchip state of an
2649  *	interrupt, returning into @state the bit corresponding to
2650  *	stage @which
2651  *
2652  *	This function should be called with preemption disabled if the
2653  *	interrupt controller has per-cpu registers.
2654  */
2655 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2656 			  bool *state)
2657 {
2658 	struct irq_desc *desc;
2659 	struct irq_data *data;
2660 	unsigned long flags;
2661 	int err = -EINVAL;
2662 
2663 	desc = irq_get_desc_buslock(irq, &flags, 0);
2664 	if (!desc)
2665 		return err;
2666 
2667 	data = irq_desc_get_irq_data(desc);
2668 
2669 	err = __irq_get_irqchip_state(data, which, state);
2670 
2671 	irq_put_desc_busunlock(desc, flags);
2672 	return err;
2673 }
2674 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2675 
2676 /**
2677  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2678  *	@irq: Interrupt line that is forwarded to a VM
2679  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2680  *	@val: Value corresponding to @which
2681  *
2682  *	This call sets the internal irqchip state of an interrupt,
2683  *	depending on the value of @which.
2684  *
2685  *	This function should be called with preemption disabled if the
2686  *	interrupt controller has per-cpu registers.
2687  */
2688 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2689 			  bool val)
2690 {
2691 	struct irq_desc *desc;
2692 	struct irq_data *data;
2693 	struct irq_chip *chip;
2694 	unsigned long flags;
2695 	int err = -EINVAL;
2696 
2697 	desc = irq_get_desc_buslock(irq, &flags, 0);
2698 	if (!desc)
2699 		return err;
2700 
2701 	data = irq_desc_get_irq_data(desc);
2702 
2703 	do {
2704 		chip = irq_data_get_irq_chip(data);
2705 		if (chip->irq_set_irqchip_state)
2706 			break;
2707 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2708 		data = data->parent_data;
2709 #else
2710 		data = NULL;
2711 #endif
2712 	} while (data);
2713 
2714 	if (data)
2715 		err = chip->irq_set_irqchip_state(data, which, val);
2716 
2717 	irq_put_desc_busunlock(desc, flags);
2718 	return err;
2719 }
2720 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2721