xref: /openbmc/linux/kernel/irq/manage.c (revision b78412b8)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
172 			bool force)
173 {
174 	struct irq_desc *desc = irq_data_to_desc(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 	int ret;
177 
178 	ret = chip->irq_set_affinity(data, mask, force);
179 	switch (ret) {
180 	case IRQ_SET_MASK_OK:
181 	case IRQ_SET_MASK_OK_DONE:
182 		cpumask_copy(desc->irq_common_data.affinity, mask);
183 	case IRQ_SET_MASK_OK_NOCOPY:
184 		irq_set_thread_affinity(desc);
185 		ret = 0;
186 	}
187 
188 	return ret;
189 }
190 
191 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
192 			    bool force)
193 {
194 	struct irq_chip *chip = irq_data_get_irq_chip(data);
195 	struct irq_desc *desc = irq_data_to_desc(data);
196 	int ret = 0;
197 
198 	if (!chip || !chip->irq_set_affinity)
199 		return -EINVAL;
200 
201 	if (irq_can_move_pcntxt(data)) {
202 		ret = irq_do_set_affinity(data, mask, force);
203 	} else {
204 		irqd_set_move_pending(data);
205 		irq_copy_pending(desc, mask);
206 	}
207 
208 	if (desc->affinity_notify) {
209 		kref_get(&desc->affinity_notify->kref);
210 		schedule_work(&desc->affinity_notify->work);
211 	}
212 	irqd_set(data, IRQD_AFFINITY_SET);
213 
214 	return ret;
215 }
216 
217 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
218 {
219 	struct irq_desc *desc = irq_to_desc(irq);
220 	unsigned long flags;
221 	int ret;
222 
223 	if (!desc)
224 		return -EINVAL;
225 
226 	raw_spin_lock_irqsave(&desc->lock, flags);
227 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
228 	raw_spin_unlock_irqrestore(&desc->lock, flags);
229 	return ret;
230 }
231 
232 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
233 {
234 	unsigned long flags;
235 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
236 
237 	if (!desc)
238 		return -EINVAL;
239 	desc->affinity_hint = m;
240 	irq_put_desc_unlock(desc, flags);
241 	/* set the initial affinity to prevent every interrupt being on CPU0 */
242 	if (m)
243 		__irq_set_affinity(irq, m, false);
244 	return 0;
245 }
246 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
247 
248 static void irq_affinity_notify(struct work_struct *work)
249 {
250 	struct irq_affinity_notify *notify =
251 		container_of(work, struct irq_affinity_notify, work);
252 	struct irq_desc *desc = irq_to_desc(notify->irq);
253 	cpumask_var_t cpumask;
254 	unsigned long flags;
255 
256 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
257 		goto out;
258 
259 	raw_spin_lock_irqsave(&desc->lock, flags);
260 	if (irq_move_pending(&desc->irq_data))
261 		irq_get_pending(cpumask, desc);
262 	else
263 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
264 	raw_spin_unlock_irqrestore(&desc->lock, flags);
265 
266 	notify->notify(notify, cpumask);
267 
268 	free_cpumask_var(cpumask);
269 out:
270 	kref_put(&notify->kref, notify->release);
271 }
272 
273 /**
274  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
275  *	@irq:		Interrupt for which to enable/disable notification
276  *	@notify:	Context for notification, or %NULL to disable
277  *			notification.  Function pointers must be initialised;
278  *			the other fields will be initialised by this function.
279  *
280  *	Must be called in process context.  Notification may only be enabled
281  *	after the IRQ is allocated and must be disabled before the IRQ is
282  *	freed using free_irq().
283  */
284 int
285 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
286 {
287 	struct irq_desc *desc = irq_to_desc(irq);
288 	struct irq_affinity_notify *old_notify;
289 	unsigned long flags;
290 
291 	/* The release function is promised process context */
292 	might_sleep();
293 
294 	if (!desc)
295 		return -EINVAL;
296 
297 	/* Complete initialisation of *notify */
298 	if (notify) {
299 		notify->irq = irq;
300 		kref_init(&notify->kref);
301 		INIT_WORK(&notify->work, irq_affinity_notify);
302 	}
303 
304 	raw_spin_lock_irqsave(&desc->lock, flags);
305 	old_notify = desc->affinity_notify;
306 	desc->affinity_notify = notify;
307 	raw_spin_unlock_irqrestore(&desc->lock, flags);
308 
309 	if (old_notify)
310 		kref_put(&old_notify->kref, old_notify->release);
311 
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
315 
316 #ifndef CONFIG_AUTO_IRQ_AFFINITY
317 /*
318  * Generic version of the affinity autoselector.
319  */
320 int irq_setup_affinity(struct irq_desc *desc)
321 {
322 	struct cpumask *set = irq_default_affinity;
323 	int ret, node = irq_desc_get_node(desc);
324 	static DEFINE_RAW_SPINLOCK(mask_lock);
325 	static struct cpumask mask;
326 
327 	/* Excludes PER_CPU and NO_BALANCE interrupts */
328 	if (!__irq_can_set_affinity(desc))
329 		return 0;
330 
331 	raw_spin_lock(&mask_lock);
332 	/*
333 	 * Preserve the managed affinity setting and a userspace affinity
334 	 * setup, but make sure that one of the targets is online.
335 	 */
336 	if (irqd_affinity_is_managed(&desc->irq_data) ||
337 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
338 		if (cpumask_intersects(desc->irq_common_data.affinity,
339 				       cpu_online_mask))
340 			set = desc->irq_common_data.affinity;
341 		else
342 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
343 	}
344 
345 	cpumask_and(&mask, cpu_online_mask, set);
346 	if (node != NUMA_NO_NODE) {
347 		const struct cpumask *nodemask = cpumask_of_node(node);
348 
349 		/* make sure at least one of the cpus in nodemask is online */
350 		if (cpumask_intersects(&mask, nodemask))
351 			cpumask_and(&mask, &mask, nodemask);
352 	}
353 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
354 	raw_spin_unlock(&mask_lock);
355 	return ret;
356 }
357 #else
358 /* Wrapper for ALPHA specific affinity selector magic */
359 int irq_setup_affinity(struct irq_desc *desc)
360 {
361 	return irq_select_affinity(irq_desc_get_irq(desc));
362 }
363 #endif
364 
365 /*
366  * Called when a bogus affinity is set via /proc/irq
367  */
368 int irq_select_affinity_usr(unsigned int irq)
369 {
370 	struct irq_desc *desc = irq_to_desc(irq);
371 	unsigned long flags;
372 	int ret;
373 
374 	raw_spin_lock_irqsave(&desc->lock, flags);
375 	ret = irq_setup_affinity(desc);
376 	raw_spin_unlock_irqrestore(&desc->lock, flags);
377 	return ret;
378 }
379 #endif
380 
381 /**
382  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
383  *	@irq: interrupt number to set affinity
384  *	@vcpu_info: vCPU specific data
385  *
386  *	This function uses the vCPU specific data to set the vCPU
387  *	affinity for an irq. The vCPU specific data is passed from
388  *	outside, such as KVM. One example code path is as below:
389  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
390  */
391 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
392 {
393 	unsigned long flags;
394 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
395 	struct irq_data *data;
396 	struct irq_chip *chip;
397 	int ret = -ENOSYS;
398 
399 	if (!desc)
400 		return -EINVAL;
401 
402 	data = irq_desc_get_irq_data(desc);
403 	do {
404 		chip = irq_data_get_irq_chip(data);
405 		if (chip && chip->irq_set_vcpu_affinity)
406 			break;
407 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
408 		data = data->parent_data;
409 #else
410 		data = NULL;
411 #endif
412 	} while (data);
413 
414 	if (data)
415 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
416 	irq_put_desc_unlock(desc, flags);
417 
418 	return ret;
419 }
420 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
421 
422 void __disable_irq(struct irq_desc *desc)
423 {
424 	if (!desc->depth++)
425 		irq_disable(desc);
426 }
427 
428 static int __disable_irq_nosync(unsigned int irq)
429 {
430 	unsigned long flags;
431 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
432 
433 	if (!desc)
434 		return -EINVAL;
435 	__disable_irq(desc);
436 	irq_put_desc_busunlock(desc, flags);
437 	return 0;
438 }
439 
440 /**
441  *	disable_irq_nosync - disable an irq without waiting
442  *	@irq: Interrupt to disable
443  *
444  *	Disable the selected interrupt line.  Disables and Enables are
445  *	nested.
446  *	Unlike disable_irq(), this function does not ensure existing
447  *	instances of the IRQ handler have completed before returning.
448  *
449  *	This function may be called from IRQ context.
450  */
451 void disable_irq_nosync(unsigned int irq)
452 {
453 	__disable_irq_nosync(irq);
454 }
455 EXPORT_SYMBOL(disable_irq_nosync);
456 
457 /**
458  *	disable_irq - disable an irq and wait for completion
459  *	@irq: Interrupt to disable
460  *
461  *	Disable the selected interrupt line.  Enables and Disables are
462  *	nested.
463  *	This function waits for any pending IRQ handlers for this interrupt
464  *	to complete before returning. If you use this function while
465  *	holding a resource the IRQ handler may need you will deadlock.
466  *
467  *	This function may be called - with care - from IRQ context.
468  */
469 void disable_irq(unsigned int irq)
470 {
471 	if (!__disable_irq_nosync(irq))
472 		synchronize_irq(irq);
473 }
474 EXPORT_SYMBOL(disable_irq);
475 
476 /**
477  *	disable_hardirq - disables an irq and waits for hardirq completion
478  *	@irq: Interrupt to disable
479  *
480  *	Disable the selected interrupt line.  Enables and Disables are
481  *	nested.
482  *	This function waits for any pending hard IRQ handlers for this
483  *	interrupt to complete before returning. If you use this function while
484  *	holding a resource the hard IRQ handler may need you will deadlock.
485  *
486  *	When used to optimistically disable an interrupt from atomic context
487  *	the return value must be checked.
488  *
489  *	Returns: false if a threaded handler is active.
490  *
491  *	This function may be called - with care - from IRQ context.
492  */
493 bool disable_hardirq(unsigned int irq)
494 {
495 	if (!__disable_irq_nosync(irq))
496 		return synchronize_hardirq(irq);
497 
498 	return false;
499 }
500 EXPORT_SYMBOL_GPL(disable_hardirq);
501 
502 void __enable_irq(struct irq_desc *desc)
503 {
504 	switch (desc->depth) {
505 	case 0:
506  err_out:
507 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
508 		     irq_desc_get_irq(desc));
509 		break;
510 	case 1: {
511 		if (desc->istate & IRQS_SUSPENDED)
512 			goto err_out;
513 		/* Prevent probing on this irq: */
514 		irq_settings_set_noprobe(desc);
515 		/*
516 		 * Call irq_startup() not irq_enable() here because the
517 		 * interrupt might be marked NOAUTOEN. So irq_startup()
518 		 * needs to be invoked when it gets enabled the first
519 		 * time. If it was already started up, then irq_startup()
520 		 * will invoke irq_enable() under the hood.
521 		 */
522 		irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
523 		break;
524 	}
525 	default:
526 		desc->depth--;
527 	}
528 }
529 
530 /**
531  *	enable_irq - enable handling of an irq
532  *	@irq: Interrupt to enable
533  *
534  *	Undoes the effect of one call to disable_irq().  If this
535  *	matches the last disable, processing of interrupts on this
536  *	IRQ line is re-enabled.
537  *
538  *	This function may be called from IRQ context only when
539  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
540  */
541 void enable_irq(unsigned int irq)
542 {
543 	unsigned long flags;
544 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
545 
546 	if (!desc)
547 		return;
548 	if (WARN(!desc->irq_data.chip,
549 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
550 		goto out;
551 
552 	__enable_irq(desc);
553 out:
554 	irq_put_desc_busunlock(desc, flags);
555 }
556 EXPORT_SYMBOL(enable_irq);
557 
558 static int set_irq_wake_real(unsigned int irq, unsigned int on)
559 {
560 	struct irq_desc *desc = irq_to_desc(irq);
561 	int ret = -ENXIO;
562 
563 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
564 		return 0;
565 
566 	if (desc->irq_data.chip->irq_set_wake)
567 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
568 
569 	return ret;
570 }
571 
572 /**
573  *	irq_set_irq_wake - control irq power management wakeup
574  *	@irq:	interrupt to control
575  *	@on:	enable/disable power management wakeup
576  *
577  *	Enable/disable power management wakeup mode, which is
578  *	disabled by default.  Enables and disables must match,
579  *	just as they match for non-wakeup mode support.
580  *
581  *	Wakeup mode lets this IRQ wake the system from sleep
582  *	states like "suspend to RAM".
583  */
584 int irq_set_irq_wake(unsigned int irq, unsigned int on)
585 {
586 	unsigned long flags;
587 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
588 	int ret = 0;
589 
590 	if (!desc)
591 		return -EINVAL;
592 
593 	/* wakeup-capable irqs can be shared between drivers that
594 	 * don't need to have the same sleep mode behaviors.
595 	 */
596 	if (on) {
597 		if (desc->wake_depth++ == 0) {
598 			ret = set_irq_wake_real(irq, on);
599 			if (ret)
600 				desc->wake_depth = 0;
601 			else
602 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
603 		}
604 	} else {
605 		if (desc->wake_depth == 0) {
606 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
607 		} else if (--desc->wake_depth == 0) {
608 			ret = set_irq_wake_real(irq, on);
609 			if (ret)
610 				desc->wake_depth = 1;
611 			else
612 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
613 		}
614 	}
615 	irq_put_desc_busunlock(desc, flags);
616 	return ret;
617 }
618 EXPORT_SYMBOL(irq_set_irq_wake);
619 
620 /*
621  * Internal function that tells the architecture code whether a
622  * particular irq has been exclusively allocated or is available
623  * for driver use.
624  */
625 int can_request_irq(unsigned int irq, unsigned long irqflags)
626 {
627 	unsigned long flags;
628 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
629 	int canrequest = 0;
630 
631 	if (!desc)
632 		return 0;
633 
634 	if (irq_settings_can_request(desc)) {
635 		if (!desc->action ||
636 		    irqflags & desc->action->flags & IRQF_SHARED)
637 			canrequest = 1;
638 	}
639 	irq_put_desc_unlock(desc, flags);
640 	return canrequest;
641 }
642 
643 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
644 {
645 	struct irq_chip *chip = desc->irq_data.chip;
646 	int ret, unmask = 0;
647 
648 	if (!chip || !chip->irq_set_type) {
649 		/*
650 		 * IRQF_TRIGGER_* but the PIC does not support multiple
651 		 * flow-types?
652 		 */
653 		pr_debug("No set_type function for IRQ %d (%s)\n",
654 			 irq_desc_get_irq(desc),
655 			 chip ? (chip->name ? : "unknown") : "unknown");
656 		return 0;
657 	}
658 
659 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
660 		if (!irqd_irq_masked(&desc->irq_data))
661 			mask_irq(desc);
662 		if (!irqd_irq_disabled(&desc->irq_data))
663 			unmask = 1;
664 	}
665 
666 	/* Mask all flags except trigger mode */
667 	flags &= IRQ_TYPE_SENSE_MASK;
668 	ret = chip->irq_set_type(&desc->irq_data, flags);
669 
670 	switch (ret) {
671 	case IRQ_SET_MASK_OK:
672 	case IRQ_SET_MASK_OK_DONE:
673 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
674 		irqd_set(&desc->irq_data, flags);
675 
676 	case IRQ_SET_MASK_OK_NOCOPY:
677 		flags = irqd_get_trigger_type(&desc->irq_data);
678 		irq_settings_set_trigger_mask(desc, flags);
679 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
680 		irq_settings_clr_level(desc);
681 		if (flags & IRQ_TYPE_LEVEL_MASK) {
682 			irq_settings_set_level(desc);
683 			irqd_set(&desc->irq_data, IRQD_LEVEL);
684 		}
685 
686 		ret = 0;
687 		break;
688 	default:
689 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
690 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
691 	}
692 	if (unmask)
693 		unmask_irq(desc);
694 	return ret;
695 }
696 
697 #ifdef CONFIG_HARDIRQS_SW_RESEND
698 int irq_set_parent(int irq, int parent_irq)
699 {
700 	unsigned long flags;
701 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
702 
703 	if (!desc)
704 		return -EINVAL;
705 
706 	desc->parent_irq = parent_irq;
707 
708 	irq_put_desc_unlock(desc, flags);
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(irq_set_parent);
712 #endif
713 
714 /*
715  * Default primary interrupt handler for threaded interrupts. Is
716  * assigned as primary handler when request_threaded_irq is called
717  * with handler == NULL. Useful for oneshot interrupts.
718  */
719 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
720 {
721 	return IRQ_WAKE_THREAD;
722 }
723 
724 /*
725  * Primary handler for nested threaded interrupts. Should never be
726  * called.
727  */
728 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
729 {
730 	WARN(1, "Primary handler called for nested irq %d\n", irq);
731 	return IRQ_NONE;
732 }
733 
734 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
735 {
736 	WARN(1, "Secondary action handler called for irq %d\n", irq);
737 	return IRQ_NONE;
738 }
739 
740 static int irq_wait_for_interrupt(struct irqaction *action)
741 {
742 	set_current_state(TASK_INTERRUPTIBLE);
743 
744 	while (!kthread_should_stop()) {
745 
746 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
747 				       &action->thread_flags)) {
748 			__set_current_state(TASK_RUNNING);
749 			return 0;
750 		}
751 		schedule();
752 		set_current_state(TASK_INTERRUPTIBLE);
753 	}
754 	__set_current_state(TASK_RUNNING);
755 	return -1;
756 }
757 
758 /*
759  * Oneshot interrupts keep the irq line masked until the threaded
760  * handler finished. unmask if the interrupt has not been disabled and
761  * is marked MASKED.
762  */
763 static void irq_finalize_oneshot(struct irq_desc *desc,
764 				 struct irqaction *action)
765 {
766 	if (!(desc->istate & IRQS_ONESHOT) ||
767 	    action->handler == irq_forced_secondary_handler)
768 		return;
769 again:
770 	chip_bus_lock(desc);
771 	raw_spin_lock_irq(&desc->lock);
772 
773 	/*
774 	 * Implausible though it may be we need to protect us against
775 	 * the following scenario:
776 	 *
777 	 * The thread is faster done than the hard interrupt handler
778 	 * on the other CPU. If we unmask the irq line then the
779 	 * interrupt can come in again and masks the line, leaves due
780 	 * to IRQS_INPROGRESS and the irq line is masked forever.
781 	 *
782 	 * This also serializes the state of shared oneshot handlers
783 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
784 	 * irq_wake_thread(). See the comment there which explains the
785 	 * serialization.
786 	 */
787 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
788 		raw_spin_unlock_irq(&desc->lock);
789 		chip_bus_sync_unlock(desc);
790 		cpu_relax();
791 		goto again;
792 	}
793 
794 	/*
795 	 * Now check again, whether the thread should run. Otherwise
796 	 * we would clear the threads_oneshot bit of this thread which
797 	 * was just set.
798 	 */
799 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
800 		goto out_unlock;
801 
802 	desc->threads_oneshot &= ~action->thread_mask;
803 
804 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
805 	    irqd_irq_masked(&desc->irq_data))
806 		unmask_threaded_irq(desc);
807 
808 out_unlock:
809 	raw_spin_unlock_irq(&desc->lock);
810 	chip_bus_sync_unlock(desc);
811 }
812 
813 #ifdef CONFIG_SMP
814 /*
815  * Check whether we need to change the affinity of the interrupt thread.
816  */
817 static void
818 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
819 {
820 	cpumask_var_t mask;
821 	bool valid = true;
822 
823 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
824 		return;
825 
826 	/*
827 	 * In case we are out of memory we set IRQTF_AFFINITY again and
828 	 * try again next time
829 	 */
830 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
831 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
832 		return;
833 	}
834 
835 	raw_spin_lock_irq(&desc->lock);
836 	/*
837 	 * This code is triggered unconditionally. Check the affinity
838 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
839 	 */
840 	if (cpumask_available(desc->irq_common_data.affinity))
841 		cpumask_copy(mask, desc->irq_common_data.affinity);
842 	else
843 		valid = false;
844 	raw_spin_unlock_irq(&desc->lock);
845 
846 	if (valid)
847 		set_cpus_allowed_ptr(current, mask);
848 	free_cpumask_var(mask);
849 }
850 #else
851 static inline void
852 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
853 #endif
854 
855 /*
856  * Interrupts which are not explicitely requested as threaded
857  * interrupts rely on the implicit bh/preempt disable of the hard irq
858  * context. So we need to disable bh here to avoid deadlocks and other
859  * side effects.
860  */
861 static irqreturn_t
862 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
863 {
864 	irqreturn_t ret;
865 
866 	local_bh_disable();
867 	ret = action->thread_fn(action->irq, action->dev_id);
868 	irq_finalize_oneshot(desc, action);
869 	local_bh_enable();
870 	return ret;
871 }
872 
873 /*
874  * Interrupts explicitly requested as threaded interrupts want to be
875  * preemtible - many of them need to sleep and wait for slow busses to
876  * complete.
877  */
878 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
879 		struct irqaction *action)
880 {
881 	irqreturn_t ret;
882 
883 	ret = action->thread_fn(action->irq, action->dev_id);
884 	irq_finalize_oneshot(desc, action);
885 	return ret;
886 }
887 
888 static void wake_threads_waitq(struct irq_desc *desc)
889 {
890 	if (atomic_dec_and_test(&desc->threads_active))
891 		wake_up(&desc->wait_for_threads);
892 }
893 
894 static void irq_thread_dtor(struct callback_head *unused)
895 {
896 	struct task_struct *tsk = current;
897 	struct irq_desc *desc;
898 	struct irqaction *action;
899 
900 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
901 		return;
902 
903 	action = kthread_data(tsk);
904 
905 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
906 	       tsk->comm, tsk->pid, action->irq);
907 
908 
909 	desc = irq_to_desc(action->irq);
910 	/*
911 	 * If IRQTF_RUNTHREAD is set, we need to decrement
912 	 * desc->threads_active and wake possible waiters.
913 	 */
914 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
915 		wake_threads_waitq(desc);
916 
917 	/* Prevent a stale desc->threads_oneshot */
918 	irq_finalize_oneshot(desc, action);
919 }
920 
921 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
922 {
923 	struct irqaction *secondary = action->secondary;
924 
925 	if (WARN_ON_ONCE(!secondary))
926 		return;
927 
928 	raw_spin_lock_irq(&desc->lock);
929 	__irq_wake_thread(desc, secondary);
930 	raw_spin_unlock_irq(&desc->lock);
931 }
932 
933 /*
934  * Interrupt handler thread
935  */
936 static int irq_thread(void *data)
937 {
938 	struct callback_head on_exit_work;
939 	struct irqaction *action = data;
940 	struct irq_desc *desc = irq_to_desc(action->irq);
941 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
942 			struct irqaction *action);
943 
944 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
945 					&action->thread_flags))
946 		handler_fn = irq_forced_thread_fn;
947 	else
948 		handler_fn = irq_thread_fn;
949 
950 	init_task_work(&on_exit_work, irq_thread_dtor);
951 	task_work_add(current, &on_exit_work, false);
952 
953 	irq_thread_check_affinity(desc, action);
954 
955 	while (!irq_wait_for_interrupt(action)) {
956 		irqreturn_t action_ret;
957 
958 		irq_thread_check_affinity(desc, action);
959 
960 		action_ret = handler_fn(desc, action);
961 		if (action_ret == IRQ_HANDLED)
962 			atomic_inc(&desc->threads_handled);
963 		if (action_ret == IRQ_WAKE_THREAD)
964 			irq_wake_secondary(desc, action);
965 
966 		wake_threads_waitq(desc);
967 	}
968 
969 	/*
970 	 * This is the regular exit path. __free_irq() is stopping the
971 	 * thread via kthread_stop() after calling
972 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
973 	 * oneshot mask bit can be set. We cannot verify that as we
974 	 * cannot touch the oneshot mask at this point anymore as
975 	 * __setup_irq() might have given out currents thread_mask
976 	 * again.
977 	 */
978 	task_work_cancel(current, irq_thread_dtor);
979 	return 0;
980 }
981 
982 /**
983  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
984  *	@irq:		Interrupt line
985  *	@dev_id:	Device identity for which the thread should be woken
986  *
987  */
988 void irq_wake_thread(unsigned int irq, void *dev_id)
989 {
990 	struct irq_desc *desc = irq_to_desc(irq);
991 	struct irqaction *action;
992 	unsigned long flags;
993 
994 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
995 		return;
996 
997 	raw_spin_lock_irqsave(&desc->lock, flags);
998 	for_each_action_of_desc(desc, action) {
999 		if (action->dev_id == dev_id) {
1000 			if (action->thread)
1001 				__irq_wake_thread(desc, action);
1002 			break;
1003 		}
1004 	}
1005 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1006 }
1007 EXPORT_SYMBOL_GPL(irq_wake_thread);
1008 
1009 static int irq_setup_forced_threading(struct irqaction *new)
1010 {
1011 	if (!force_irqthreads)
1012 		return 0;
1013 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1014 		return 0;
1015 
1016 	new->flags |= IRQF_ONESHOT;
1017 
1018 	/*
1019 	 * Handle the case where we have a real primary handler and a
1020 	 * thread handler. We force thread them as well by creating a
1021 	 * secondary action.
1022 	 */
1023 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1024 		/* Allocate the secondary action */
1025 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1026 		if (!new->secondary)
1027 			return -ENOMEM;
1028 		new->secondary->handler = irq_forced_secondary_handler;
1029 		new->secondary->thread_fn = new->thread_fn;
1030 		new->secondary->dev_id = new->dev_id;
1031 		new->secondary->irq = new->irq;
1032 		new->secondary->name = new->name;
1033 	}
1034 	/* Deal with the primary handler */
1035 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1036 	new->thread_fn = new->handler;
1037 	new->handler = irq_default_primary_handler;
1038 	return 0;
1039 }
1040 
1041 static int irq_request_resources(struct irq_desc *desc)
1042 {
1043 	struct irq_data *d = &desc->irq_data;
1044 	struct irq_chip *c = d->chip;
1045 
1046 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1047 }
1048 
1049 static void irq_release_resources(struct irq_desc *desc)
1050 {
1051 	struct irq_data *d = &desc->irq_data;
1052 	struct irq_chip *c = d->chip;
1053 
1054 	if (c->irq_release_resources)
1055 		c->irq_release_resources(d);
1056 }
1057 
1058 static int
1059 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1060 {
1061 	struct task_struct *t;
1062 	struct sched_param param = {
1063 		.sched_priority = MAX_USER_RT_PRIO/2,
1064 	};
1065 
1066 	if (!secondary) {
1067 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1068 				   new->name);
1069 	} else {
1070 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1071 				   new->name);
1072 		param.sched_priority -= 1;
1073 	}
1074 
1075 	if (IS_ERR(t))
1076 		return PTR_ERR(t);
1077 
1078 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1079 
1080 	/*
1081 	 * We keep the reference to the task struct even if
1082 	 * the thread dies to avoid that the interrupt code
1083 	 * references an already freed task_struct.
1084 	 */
1085 	get_task_struct(t);
1086 	new->thread = t;
1087 	/*
1088 	 * Tell the thread to set its affinity. This is
1089 	 * important for shared interrupt handlers as we do
1090 	 * not invoke setup_affinity() for the secondary
1091 	 * handlers as everything is already set up. Even for
1092 	 * interrupts marked with IRQF_NO_BALANCE this is
1093 	 * correct as we want the thread to move to the cpu(s)
1094 	 * on which the requesting code placed the interrupt.
1095 	 */
1096 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Internal function to register an irqaction - typically used to
1102  * allocate special interrupts that are part of the architecture.
1103  *
1104  * Locking rules:
1105  *
1106  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1107  *   chip_bus_lock	Provides serialization for slow bus operations
1108  *     desc->lock	Provides serialization against hard interrupts
1109  *
1110  * chip_bus_lock and desc->lock are sufficient for all other management and
1111  * interrupt related functions. desc->request_mutex solely serializes
1112  * request/free_irq().
1113  */
1114 static int
1115 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1116 {
1117 	struct irqaction *old, **old_ptr;
1118 	unsigned long flags, thread_mask = 0;
1119 	int ret, nested, shared = 0;
1120 
1121 	if (!desc)
1122 		return -EINVAL;
1123 
1124 	if (desc->irq_data.chip == &no_irq_chip)
1125 		return -ENOSYS;
1126 	if (!try_module_get(desc->owner))
1127 		return -ENODEV;
1128 
1129 	new->irq = irq;
1130 
1131 	/*
1132 	 * If the trigger type is not specified by the caller,
1133 	 * then use the default for this interrupt.
1134 	 */
1135 	if (!(new->flags & IRQF_TRIGGER_MASK))
1136 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1137 
1138 	/*
1139 	 * Check whether the interrupt nests into another interrupt
1140 	 * thread.
1141 	 */
1142 	nested = irq_settings_is_nested_thread(desc);
1143 	if (nested) {
1144 		if (!new->thread_fn) {
1145 			ret = -EINVAL;
1146 			goto out_mput;
1147 		}
1148 		/*
1149 		 * Replace the primary handler which was provided from
1150 		 * the driver for non nested interrupt handling by the
1151 		 * dummy function which warns when called.
1152 		 */
1153 		new->handler = irq_nested_primary_handler;
1154 	} else {
1155 		if (irq_settings_can_thread(desc)) {
1156 			ret = irq_setup_forced_threading(new);
1157 			if (ret)
1158 				goto out_mput;
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Create a handler thread when a thread function is supplied
1164 	 * and the interrupt does not nest into another interrupt
1165 	 * thread.
1166 	 */
1167 	if (new->thread_fn && !nested) {
1168 		ret = setup_irq_thread(new, irq, false);
1169 		if (ret)
1170 			goto out_mput;
1171 		if (new->secondary) {
1172 			ret = setup_irq_thread(new->secondary, irq, true);
1173 			if (ret)
1174 				goto out_thread;
1175 		}
1176 	}
1177 
1178 	/*
1179 	 * Drivers are often written to work w/o knowledge about the
1180 	 * underlying irq chip implementation, so a request for a
1181 	 * threaded irq without a primary hard irq context handler
1182 	 * requires the ONESHOT flag to be set. Some irq chips like
1183 	 * MSI based interrupts are per se one shot safe. Check the
1184 	 * chip flags, so we can avoid the unmask dance at the end of
1185 	 * the threaded handler for those.
1186 	 */
1187 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1188 		new->flags &= ~IRQF_ONESHOT;
1189 
1190 	/*
1191 	 * Protects against a concurrent __free_irq() call which might wait
1192 	 * for synchronize_irq() to complete without holding the optional
1193 	 * chip bus lock and desc->lock.
1194 	 */
1195 	mutex_lock(&desc->request_mutex);
1196 
1197 	/*
1198 	 * Acquire bus lock as the irq_request_resources() callback below
1199 	 * might rely on the serialization or the magic power management
1200 	 * functions which are abusing the irq_bus_lock() callback,
1201 	 */
1202 	chip_bus_lock(desc);
1203 
1204 	/* First installed action requests resources. */
1205 	if (!desc->action) {
1206 		ret = irq_request_resources(desc);
1207 		if (ret) {
1208 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1209 			       new->name, irq, desc->irq_data.chip->name);
1210 			goto out_bus_unlock;
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * The following block of code has to be executed atomically
1216 	 * protected against a concurrent interrupt and any of the other
1217 	 * management calls which are not serialized via
1218 	 * desc->request_mutex or the optional bus lock.
1219 	 */
1220 	raw_spin_lock_irqsave(&desc->lock, flags);
1221 	old_ptr = &desc->action;
1222 	old = *old_ptr;
1223 	if (old) {
1224 		/*
1225 		 * Can't share interrupts unless both agree to and are
1226 		 * the same type (level, edge, polarity). So both flag
1227 		 * fields must have IRQF_SHARED set and the bits which
1228 		 * set the trigger type must match. Also all must
1229 		 * agree on ONESHOT.
1230 		 */
1231 		unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1232 
1233 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1234 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1235 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1236 			goto mismatch;
1237 
1238 		/* All handlers must agree on per-cpuness */
1239 		if ((old->flags & IRQF_PERCPU) !=
1240 		    (new->flags & IRQF_PERCPU))
1241 			goto mismatch;
1242 
1243 		/* add new interrupt at end of irq queue */
1244 		do {
1245 			/*
1246 			 * Or all existing action->thread_mask bits,
1247 			 * so we can find the next zero bit for this
1248 			 * new action.
1249 			 */
1250 			thread_mask |= old->thread_mask;
1251 			old_ptr = &old->next;
1252 			old = *old_ptr;
1253 		} while (old);
1254 		shared = 1;
1255 	}
1256 
1257 	/*
1258 	 * Setup the thread mask for this irqaction for ONESHOT. For
1259 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1260 	 * conditional in irq_wake_thread().
1261 	 */
1262 	if (new->flags & IRQF_ONESHOT) {
1263 		/*
1264 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1265 		 * but who knows.
1266 		 */
1267 		if (thread_mask == ~0UL) {
1268 			ret = -EBUSY;
1269 			goto out_unlock;
1270 		}
1271 		/*
1272 		 * The thread_mask for the action is or'ed to
1273 		 * desc->thread_active to indicate that the
1274 		 * IRQF_ONESHOT thread handler has been woken, but not
1275 		 * yet finished. The bit is cleared when a thread
1276 		 * completes. When all threads of a shared interrupt
1277 		 * line have completed desc->threads_active becomes
1278 		 * zero and the interrupt line is unmasked. See
1279 		 * handle.c:irq_wake_thread() for further information.
1280 		 *
1281 		 * If no thread is woken by primary (hard irq context)
1282 		 * interrupt handlers, then desc->threads_active is
1283 		 * also checked for zero to unmask the irq line in the
1284 		 * affected hard irq flow handlers
1285 		 * (handle_[fasteoi|level]_irq).
1286 		 *
1287 		 * The new action gets the first zero bit of
1288 		 * thread_mask assigned. See the loop above which or's
1289 		 * all existing action->thread_mask bits.
1290 		 */
1291 		new->thread_mask = 1 << ffz(thread_mask);
1292 
1293 	} else if (new->handler == irq_default_primary_handler &&
1294 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1295 		/*
1296 		 * The interrupt was requested with handler = NULL, so
1297 		 * we use the default primary handler for it. But it
1298 		 * does not have the oneshot flag set. In combination
1299 		 * with level interrupts this is deadly, because the
1300 		 * default primary handler just wakes the thread, then
1301 		 * the irq lines is reenabled, but the device still
1302 		 * has the level irq asserted. Rinse and repeat....
1303 		 *
1304 		 * While this works for edge type interrupts, we play
1305 		 * it safe and reject unconditionally because we can't
1306 		 * say for sure which type this interrupt really
1307 		 * has. The type flags are unreliable as the
1308 		 * underlying chip implementation can override them.
1309 		 */
1310 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1311 		       irq);
1312 		ret = -EINVAL;
1313 		goto out_unlock;
1314 	}
1315 
1316 	if (!shared) {
1317 		init_waitqueue_head(&desc->wait_for_threads);
1318 
1319 		/* Setup the type (level, edge polarity) if configured: */
1320 		if (new->flags & IRQF_TRIGGER_MASK) {
1321 			ret = __irq_set_trigger(desc,
1322 						new->flags & IRQF_TRIGGER_MASK);
1323 
1324 			if (ret)
1325 				goto out_unlock;
1326 		}
1327 
1328 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1329 				  IRQS_ONESHOT | IRQS_WAITING);
1330 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1331 
1332 		if (new->flags & IRQF_PERCPU) {
1333 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1334 			irq_settings_set_per_cpu(desc);
1335 		}
1336 
1337 		if (new->flags & IRQF_ONESHOT)
1338 			desc->istate |= IRQS_ONESHOT;
1339 
1340 		/* Exclude IRQ from balancing if requested */
1341 		if (new->flags & IRQF_NOBALANCING) {
1342 			irq_settings_set_no_balancing(desc);
1343 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1344 		}
1345 
1346 		if (irq_settings_can_autoenable(desc)) {
1347 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1348 		} else {
1349 			/*
1350 			 * Shared interrupts do not go well with disabling
1351 			 * auto enable. The sharing interrupt might request
1352 			 * it while it's still disabled and then wait for
1353 			 * interrupts forever.
1354 			 */
1355 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1356 			/* Undo nested disables: */
1357 			desc->depth = 1;
1358 		}
1359 
1360 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1361 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1362 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1363 
1364 		if (nmsk != omsk)
1365 			/* hope the handler works with current  trigger mode */
1366 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1367 				irq, omsk, nmsk);
1368 	}
1369 
1370 	*old_ptr = new;
1371 
1372 	irq_pm_install_action(desc, new);
1373 
1374 	/* Reset broken irq detection when installing new handler */
1375 	desc->irq_count = 0;
1376 	desc->irqs_unhandled = 0;
1377 
1378 	/*
1379 	 * Check whether we disabled the irq via the spurious handler
1380 	 * before. Reenable it and give it another chance.
1381 	 */
1382 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1383 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1384 		__enable_irq(desc);
1385 	}
1386 
1387 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1388 	chip_bus_sync_unlock(desc);
1389 	mutex_unlock(&desc->request_mutex);
1390 
1391 	irq_setup_timings(desc, new);
1392 
1393 	/*
1394 	 * Strictly no need to wake it up, but hung_task complains
1395 	 * when no hard interrupt wakes the thread up.
1396 	 */
1397 	if (new->thread)
1398 		wake_up_process(new->thread);
1399 	if (new->secondary)
1400 		wake_up_process(new->secondary->thread);
1401 
1402 	register_irq_proc(irq, desc);
1403 	irq_add_debugfs_entry(irq, desc);
1404 	new->dir = NULL;
1405 	register_handler_proc(irq, new);
1406 	return 0;
1407 
1408 mismatch:
1409 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1410 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1411 		       irq, new->flags, new->name, old->flags, old->name);
1412 #ifdef CONFIG_DEBUG_SHIRQ
1413 		dump_stack();
1414 #endif
1415 	}
1416 	ret = -EBUSY;
1417 
1418 out_unlock:
1419 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1420 
1421 	if (!desc->action)
1422 		irq_release_resources(desc);
1423 out_bus_unlock:
1424 	chip_bus_sync_unlock(desc);
1425 	mutex_unlock(&desc->request_mutex);
1426 
1427 out_thread:
1428 	if (new->thread) {
1429 		struct task_struct *t = new->thread;
1430 
1431 		new->thread = NULL;
1432 		kthread_stop(t);
1433 		put_task_struct(t);
1434 	}
1435 	if (new->secondary && new->secondary->thread) {
1436 		struct task_struct *t = new->secondary->thread;
1437 
1438 		new->secondary->thread = NULL;
1439 		kthread_stop(t);
1440 		put_task_struct(t);
1441 	}
1442 out_mput:
1443 	module_put(desc->owner);
1444 	return ret;
1445 }
1446 
1447 /**
1448  *	setup_irq - setup an interrupt
1449  *	@irq: Interrupt line to setup
1450  *	@act: irqaction for the interrupt
1451  *
1452  * Used to statically setup interrupts in the early boot process.
1453  */
1454 int setup_irq(unsigned int irq, struct irqaction *act)
1455 {
1456 	int retval;
1457 	struct irq_desc *desc = irq_to_desc(irq);
1458 
1459 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1460 		return -EINVAL;
1461 
1462 	retval = irq_chip_pm_get(&desc->irq_data);
1463 	if (retval < 0)
1464 		return retval;
1465 
1466 	retval = __setup_irq(irq, desc, act);
1467 
1468 	if (retval)
1469 		irq_chip_pm_put(&desc->irq_data);
1470 
1471 	return retval;
1472 }
1473 EXPORT_SYMBOL_GPL(setup_irq);
1474 
1475 /*
1476  * Internal function to unregister an irqaction - used to free
1477  * regular and special interrupts that are part of the architecture.
1478  */
1479 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1480 {
1481 	struct irq_desc *desc = irq_to_desc(irq);
1482 	struct irqaction *action, **action_ptr;
1483 	unsigned long flags;
1484 
1485 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1486 
1487 	if (!desc)
1488 		return NULL;
1489 
1490 	mutex_lock(&desc->request_mutex);
1491 	chip_bus_lock(desc);
1492 	raw_spin_lock_irqsave(&desc->lock, flags);
1493 
1494 	/*
1495 	 * There can be multiple actions per IRQ descriptor, find the right
1496 	 * one based on the dev_id:
1497 	 */
1498 	action_ptr = &desc->action;
1499 	for (;;) {
1500 		action = *action_ptr;
1501 
1502 		if (!action) {
1503 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1504 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1505 			chip_bus_sync_unlock(desc);
1506 			mutex_unlock(&desc->request_mutex);
1507 			return NULL;
1508 		}
1509 
1510 		if (action->dev_id == dev_id)
1511 			break;
1512 		action_ptr = &action->next;
1513 	}
1514 
1515 	/* Found it - now remove it from the list of entries: */
1516 	*action_ptr = action->next;
1517 
1518 	irq_pm_remove_action(desc, action);
1519 
1520 	/* If this was the last handler, shut down the IRQ line: */
1521 	if (!desc->action) {
1522 		irq_settings_clr_disable_unlazy(desc);
1523 		irq_shutdown(desc);
1524 	}
1525 
1526 #ifdef CONFIG_SMP
1527 	/* make sure affinity_hint is cleaned up */
1528 	if (WARN_ON_ONCE(desc->affinity_hint))
1529 		desc->affinity_hint = NULL;
1530 #endif
1531 
1532 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1533 	/*
1534 	 * Drop bus_lock here so the changes which were done in the chip
1535 	 * callbacks above are synced out to the irq chips which hang
1536 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1537 	 *
1538 	 * Aside of that the bus_lock can also be taken from the threaded
1539 	 * handler in irq_finalize_oneshot() which results in a deadlock
1540 	 * because synchronize_irq() would wait forever for the thread to
1541 	 * complete, which is blocked on the bus lock.
1542 	 *
1543 	 * The still held desc->request_mutex() protects against a
1544 	 * concurrent request_irq() of this irq so the release of resources
1545 	 * and timing data is properly serialized.
1546 	 */
1547 	chip_bus_sync_unlock(desc);
1548 
1549 	unregister_handler_proc(irq, action);
1550 
1551 	/* Make sure it's not being used on another CPU: */
1552 	synchronize_irq(irq);
1553 
1554 #ifdef CONFIG_DEBUG_SHIRQ
1555 	/*
1556 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1557 	 * event to happen even now it's being freed, so let's make sure that
1558 	 * is so by doing an extra call to the handler ....
1559 	 *
1560 	 * ( We do this after actually deregistering it, to make sure that a
1561 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1562 	 */
1563 	if (action->flags & IRQF_SHARED) {
1564 		local_irq_save(flags);
1565 		action->handler(irq, dev_id);
1566 		local_irq_restore(flags);
1567 	}
1568 #endif
1569 
1570 	if (action->thread) {
1571 		kthread_stop(action->thread);
1572 		put_task_struct(action->thread);
1573 		if (action->secondary && action->secondary->thread) {
1574 			kthread_stop(action->secondary->thread);
1575 			put_task_struct(action->secondary->thread);
1576 		}
1577 	}
1578 
1579 	/* Last action releases resources */
1580 	if (!desc->action) {
1581 		/*
1582 		 * Reaquire bus lock as irq_release_resources() might
1583 		 * require it to deallocate resources over the slow bus.
1584 		 */
1585 		chip_bus_lock(desc);
1586 		irq_release_resources(desc);
1587 		chip_bus_sync_unlock(desc);
1588 		irq_remove_timings(desc);
1589 	}
1590 
1591 	mutex_unlock(&desc->request_mutex);
1592 
1593 	irq_chip_pm_put(&desc->irq_data);
1594 	module_put(desc->owner);
1595 	kfree(action->secondary);
1596 	return action;
1597 }
1598 
1599 /**
1600  *	remove_irq - free an interrupt
1601  *	@irq: Interrupt line to free
1602  *	@act: irqaction for the interrupt
1603  *
1604  * Used to remove interrupts statically setup by the early boot process.
1605  */
1606 void remove_irq(unsigned int irq, struct irqaction *act)
1607 {
1608 	struct irq_desc *desc = irq_to_desc(irq);
1609 
1610 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1611 		__free_irq(irq, act->dev_id);
1612 }
1613 EXPORT_SYMBOL_GPL(remove_irq);
1614 
1615 /**
1616  *	free_irq - free an interrupt allocated with request_irq
1617  *	@irq: Interrupt line to free
1618  *	@dev_id: Device identity to free
1619  *
1620  *	Remove an interrupt handler. The handler is removed and if the
1621  *	interrupt line is no longer in use by any driver it is disabled.
1622  *	On a shared IRQ the caller must ensure the interrupt is disabled
1623  *	on the card it drives before calling this function. The function
1624  *	does not return until any executing interrupts for this IRQ
1625  *	have completed.
1626  *
1627  *	This function must not be called from interrupt context.
1628  *
1629  *	Returns the devname argument passed to request_irq.
1630  */
1631 const void *free_irq(unsigned int irq, void *dev_id)
1632 {
1633 	struct irq_desc *desc = irq_to_desc(irq);
1634 	struct irqaction *action;
1635 	const char *devname;
1636 
1637 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1638 		return NULL;
1639 
1640 #ifdef CONFIG_SMP
1641 	if (WARN_ON(desc->affinity_notify))
1642 		desc->affinity_notify = NULL;
1643 #endif
1644 
1645 	action = __free_irq(irq, dev_id);
1646 
1647 	if (!action)
1648 		return NULL;
1649 
1650 	devname = action->name;
1651 	kfree(action);
1652 	return devname;
1653 }
1654 EXPORT_SYMBOL(free_irq);
1655 
1656 /**
1657  *	request_threaded_irq - allocate an interrupt line
1658  *	@irq: Interrupt line to allocate
1659  *	@handler: Function to be called when the IRQ occurs.
1660  *		  Primary handler for threaded interrupts
1661  *		  If NULL and thread_fn != NULL the default
1662  *		  primary handler is installed
1663  *	@thread_fn: Function called from the irq handler thread
1664  *		    If NULL, no irq thread is created
1665  *	@irqflags: Interrupt type flags
1666  *	@devname: An ascii name for the claiming device
1667  *	@dev_id: A cookie passed back to the handler function
1668  *
1669  *	This call allocates interrupt resources and enables the
1670  *	interrupt line and IRQ handling. From the point this
1671  *	call is made your handler function may be invoked. Since
1672  *	your handler function must clear any interrupt the board
1673  *	raises, you must take care both to initialise your hardware
1674  *	and to set up the interrupt handler in the right order.
1675  *
1676  *	If you want to set up a threaded irq handler for your device
1677  *	then you need to supply @handler and @thread_fn. @handler is
1678  *	still called in hard interrupt context and has to check
1679  *	whether the interrupt originates from the device. If yes it
1680  *	needs to disable the interrupt on the device and return
1681  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1682  *	@thread_fn. This split handler design is necessary to support
1683  *	shared interrupts.
1684  *
1685  *	Dev_id must be globally unique. Normally the address of the
1686  *	device data structure is used as the cookie. Since the handler
1687  *	receives this value it makes sense to use it.
1688  *
1689  *	If your interrupt is shared you must pass a non NULL dev_id
1690  *	as this is required when freeing the interrupt.
1691  *
1692  *	Flags:
1693  *
1694  *	IRQF_SHARED		Interrupt is shared
1695  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1696  *
1697  */
1698 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1699 			 irq_handler_t thread_fn, unsigned long irqflags,
1700 			 const char *devname, void *dev_id)
1701 {
1702 	struct irqaction *action;
1703 	struct irq_desc *desc;
1704 	int retval;
1705 
1706 	if (irq == IRQ_NOTCONNECTED)
1707 		return -ENOTCONN;
1708 
1709 	/*
1710 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1711 	 * otherwise we'll have trouble later trying to figure out
1712 	 * which interrupt is which (messes up the interrupt freeing
1713 	 * logic etc).
1714 	 *
1715 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1716 	 * it cannot be set along with IRQF_NO_SUSPEND.
1717 	 */
1718 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1719 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1720 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1721 		return -EINVAL;
1722 
1723 	desc = irq_to_desc(irq);
1724 	if (!desc)
1725 		return -EINVAL;
1726 
1727 	if (!irq_settings_can_request(desc) ||
1728 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1729 		return -EINVAL;
1730 
1731 	if (!handler) {
1732 		if (!thread_fn)
1733 			return -EINVAL;
1734 		handler = irq_default_primary_handler;
1735 	}
1736 
1737 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1738 	if (!action)
1739 		return -ENOMEM;
1740 
1741 	action->handler = handler;
1742 	action->thread_fn = thread_fn;
1743 	action->flags = irqflags;
1744 	action->name = devname;
1745 	action->dev_id = dev_id;
1746 
1747 	retval = irq_chip_pm_get(&desc->irq_data);
1748 	if (retval < 0) {
1749 		kfree(action);
1750 		return retval;
1751 	}
1752 
1753 	retval = __setup_irq(irq, desc, action);
1754 
1755 	if (retval) {
1756 		irq_chip_pm_put(&desc->irq_data);
1757 		kfree(action->secondary);
1758 		kfree(action);
1759 	}
1760 
1761 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1762 	if (!retval && (irqflags & IRQF_SHARED)) {
1763 		/*
1764 		 * It's a shared IRQ -- the driver ought to be prepared for it
1765 		 * to happen immediately, so let's make sure....
1766 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1767 		 * run in parallel with our fake.
1768 		 */
1769 		unsigned long flags;
1770 
1771 		disable_irq(irq);
1772 		local_irq_save(flags);
1773 
1774 		handler(irq, dev_id);
1775 
1776 		local_irq_restore(flags);
1777 		enable_irq(irq);
1778 	}
1779 #endif
1780 	return retval;
1781 }
1782 EXPORT_SYMBOL(request_threaded_irq);
1783 
1784 /**
1785  *	request_any_context_irq - allocate an interrupt line
1786  *	@irq: Interrupt line to allocate
1787  *	@handler: Function to be called when the IRQ occurs.
1788  *		  Threaded handler for threaded interrupts.
1789  *	@flags: Interrupt type flags
1790  *	@name: An ascii name for the claiming device
1791  *	@dev_id: A cookie passed back to the handler function
1792  *
1793  *	This call allocates interrupt resources and enables the
1794  *	interrupt line and IRQ handling. It selects either a
1795  *	hardirq or threaded handling method depending on the
1796  *	context.
1797  *
1798  *	On failure, it returns a negative value. On success,
1799  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1800  */
1801 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1802 			    unsigned long flags, const char *name, void *dev_id)
1803 {
1804 	struct irq_desc *desc;
1805 	int ret;
1806 
1807 	if (irq == IRQ_NOTCONNECTED)
1808 		return -ENOTCONN;
1809 
1810 	desc = irq_to_desc(irq);
1811 	if (!desc)
1812 		return -EINVAL;
1813 
1814 	if (irq_settings_is_nested_thread(desc)) {
1815 		ret = request_threaded_irq(irq, NULL, handler,
1816 					   flags, name, dev_id);
1817 		return !ret ? IRQC_IS_NESTED : ret;
1818 	}
1819 
1820 	ret = request_irq(irq, handler, flags, name, dev_id);
1821 	return !ret ? IRQC_IS_HARDIRQ : ret;
1822 }
1823 EXPORT_SYMBOL_GPL(request_any_context_irq);
1824 
1825 void enable_percpu_irq(unsigned int irq, unsigned int type)
1826 {
1827 	unsigned int cpu = smp_processor_id();
1828 	unsigned long flags;
1829 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1830 
1831 	if (!desc)
1832 		return;
1833 
1834 	/*
1835 	 * If the trigger type is not specified by the caller, then
1836 	 * use the default for this interrupt.
1837 	 */
1838 	type &= IRQ_TYPE_SENSE_MASK;
1839 	if (type == IRQ_TYPE_NONE)
1840 		type = irqd_get_trigger_type(&desc->irq_data);
1841 
1842 	if (type != IRQ_TYPE_NONE) {
1843 		int ret;
1844 
1845 		ret = __irq_set_trigger(desc, type);
1846 
1847 		if (ret) {
1848 			WARN(1, "failed to set type for IRQ%d\n", irq);
1849 			goto out;
1850 		}
1851 	}
1852 
1853 	irq_percpu_enable(desc, cpu);
1854 out:
1855 	irq_put_desc_unlock(desc, flags);
1856 }
1857 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1858 
1859 /**
1860  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1861  * @irq:	Linux irq number to check for
1862  *
1863  * Must be called from a non migratable context. Returns the enable
1864  * state of a per cpu interrupt on the current cpu.
1865  */
1866 bool irq_percpu_is_enabled(unsigned int irq)
1867 {
1868 	unsigned int cpu = smp_processor_id();
1869 	struct irq_desc *desc;
1870 	unsigned long flags;
1871 	bool is_enabled;
1872 
1873 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1874 	if (!desc)
1875 		return false;
1876 
1877 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1878 	irq_put_desc_unlock(desc, flags);
1879 
1880 	return is_enabled;
1881 }
1882 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1883 
1884 void disable_percpu_irq(unsigned int irq)
1885 {
1886 	unsigned int cpu = smp_processor_id();
1887 	unsigned long flags;
1888 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1889 
1890 	if (!desc)
1891 		return;
1892 
1893 	irq_percpu_disable(desc, cpu);
1894 	irq_put_desc_unlock(desc, flags);
1895 }
1896 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1897 
1898 /*
1899  * Internal function to unregister a percpu irqaction.
1900  */
1901 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1902 {
1903 	struct irq_desc *desc = irq_to_desc(irq);
1904 	struct irqaction *action;
1905 	unsigned long flags;
1906 
1907 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1908 
1909 	if (!desc)
1910 		return NULL;
1911 
1912 	raw_spin_lock_irqsave(&desc->lock, flags);
1913 
1914 	action = desc->action;
1915 	if (!action || action->percpu_dev_id != dev_id) {
1916 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1917 		goto bad;
1918 	}
1919 
1920 	if (!cpumask_empty(desc->percpu_enabled)) {
1921 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1922 		     irq, cpumask_first(desc->percpu_enabled));
1923 		goto bad;
1924 	}
1925 
1926 	/* Found it - now remove it from the list of entries: */
1927 	desc->action = NULL;
1928 
1929 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1930 
1931 	unregister_handler_proc(irq, action);
1932 
1933 	irq_chip_pm_put(&desc->irq_data);
1934 	module_put(desc->owner);
1935 	return action;
1936 
1937 bad:
1938 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1939 	return NULL;
1940 }
1941 
1942 /**
1943  *	remove_percpu_irq - free a per-cpu interrupt
1944  *	@irq: Interrupt line to free
1945  *	@act: irqaction for the interrupt
1946  *
1947  * Used to remove interrupts statically setup by the early boot process.
1948  */
1949 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1950 {
1951 	struct irq_desc *desc = irq_to_desc(irq);
1952 
1953 	if (desc && irq_settings_is_per_cpu_devid(desc))
1954 	    __free_percpu_irq(irq, act->percpu_dev_id);
1955 }
1956 
1957 /**
1958  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1959  *	@irq: Interrupt line to free
1960  *	@dev_id: Device identity to free
1961  *
1962  *	Remove a percpu interrupt handler. The handler is removed, but
1963  *	the interrupt line is not disabled. This must be done on each
1964  *	CPU before calling this function. The function does not return
1965  *	until any executing interrupts for this IRQ have completed.
1966  *
1967  *	This function must not be called from interrupt context.
1968  */
1969 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1970 {
1971 	struct irq_desc *desc = irq_to_desc(irq);
1972 
1973 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1974 		return;
1975 
1976 	chip_bus_lock(desc);
1977 	kfree(__free_percpu_irq(irq, dev_id));
1978 	chip_bus_sync_unlock(desc);
1979 }
1980 EXPORT_SYMBOL_GPL(free_percpu_irq);
1981 
1982 /**
1983  *	setup_percpu_irq - setup a per-cpu interrupt
1984  *	@irq: Interrupt line to setup
1985  *	@act: irqaction for the interrupt
1986  *
1987  * Used to statically setup per-cpu interrupts in the early boot process.
1988  */
1989 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1990 {
1991 	struct irq_desc *desc = irq_to_desc(irq);
1992 	int retval;
1993 
1994 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1995 		return -EINVAL;
1996 
1997 	retval = irq_chip_pm_get(&desc->irq_data);
1998 	if (retval < 0)
1999 		return retval;
2000 
2001 	retval = __setup_irq(irq, desc, act);
2002 
2003 	if (retval)
2004 		irq_chip_pm_put(&desc->irq_data);
2005 
2006 	return retval;
2007 }
2008 
2009 /**
2010  *	__request_percpu_irq - allocate a percpu interrupt line
2011  *	@irq: Interrupt line to allocate
2012  *	@handler: Function to be called when the IRQ occurs.
2013  *	@flags: Interrupt type flags (IRQF_TIMER only)
2014  *	@devname: An ascii name for the claiming device
2015  *	@dev_id: A percpu cookie passed back to the handler function
2016  *
2017  *	This call allocates interrupt resources and enables the
2018  *	interrupt on the local CPU. If the interrupt is supposed to be
2019  *	enabled on other CPUs, it has to be done on each CPU using
2020  *	enable_percpu_irq().
2021  *
2022  *	Dev_id must be globally unique. It is a per-cpu variable, and
2023  *	the handler gets called with the interrupted CPU's instance of
2024  *	that variable.
2025  */
2026 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2027 			 unsigned long flags, const char *devname,
2028 			 void __percpu *dev_id)
2029 {
2030 	struct irqaction *action;
2031 	struct irq_desc *desc;
2032 	int retval;
2033 
2034 	if (!dev_id)
2035 		return -EINVAL;
2036 
2037 	desc = irq_to_desc(irq);
2038 	if (!desc || !irq_settings_can_request(desc) ||
2039 	    !irq_settings_is_per_cpu_devid(desc))
2040 		return -EINVAL;
2041 
2042 	if (flags && flags != IRQF_TIMER)
2043 		return -EINVAL;
2044 
2045 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2046 	if (!action)
2047 		return -ENOMEM;
2048 
2049 	action->handler = handler;
2050 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2051 	action->name = devname;
2052 	action->percpu_dev_id = dev_id;
2053 
2054 	retval = irq_chip_pm_get(&desc->irq_data);
2055 	if (retval < 0) {
2056 		kfree(action);
2057 		return retval;
2058 	}
2059 
2060 	retval = __setup_irq(irq, desc, action);
2061 
2062 	if (retval) {
2063 		irq_chip_pm_put(&desc->irq_data);
2064 		kfree(action);
2065 	}
2066 
2067 	return retval;
2068 }
2069 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2070 
2071 /**
2072  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2073  *	@irq: Interrupt line that is forwarded to a VM
2074  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2075  *	@state: a pointer to a boolean where the state is to be storeed
2076  *
2077  *	This call snapshots the internal irqchip state of an
2078  *	interrupt, returning into @state the bit corresponding to
2079  *	stage @which
2080  *
2081  *	This function should be called with preemption disabled if the
2082  *	interrupt controller has per-cpu registers.
2083  */
2084 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2085 			  bool *state)
2086 {
2087 	struct irq_desc *desc;
2088 	struct irq_data *data;
2089 	struct irq_chip *chip;
2090 	unsigned long flags;
2091 	int err = -EINVAL;
2092 
2093 	desc = irq_get_desc_buslock(irq, &flags, 0);
2094 	if (!desc)
2095 		return err;
2096 
2097 	data = irq_desc_get_irq_data(desc);
2098 
2099 	do {
2100 		chip = irq_data_get_irq_chip(data);
2101 		if (chip->irq_get_irqchip_state)
2102 			break;
2103 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2104 		data = data->parent_data;
2105 #else
2106 		data = NULL;
2107 #endif
2108 	} while (data);
2109 
2110 	if (data)
2111 		err = chip->irq_get_irqchip_state(data, which, state);
2112 
2113 	irq_put_desc_busunlock(desc, flags);
2114 	return err;
2115 }
2116 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2117 
2118 /**
2119  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2120  *	@irq: Interrupt line that is forwarded to a VM
2121  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2122  *	@val: Value corresponding to @which
2123  *
2124  *	This call sets the internal irqchip state of an interrupt,
2125  *	depending on the value of @which.
2126  *
2127  *	This function should be called with preemption disabled if the
2128  *	interrupt controller has per-cpu registers.
2129  */
2130 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2131 			  bool val)
2132 {
2133 	struct irq_desc *desc;
2134 	struct irq_data *data;
2135 	struct irq_chip *chip;
2136 	unsigned long flags;
2137 	int err = -EINVAL;
2138 
2139 	desc = irq_get_desc_buslock(irq, &flags, 0);
2140 	if (!desc)
2141 		return err;
2142 
2143 	data = irq_desc_get_irq_data(desc);
2144 
2145 	do {
2146 		chip = irq_data_get_irq_chip(data);
2147 		if (chip->irq_set_irqchip_state)
2148 			break;
2149 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2150 		data = data->parent_data;
2151 #else
2152 		data = NULL;
2153 #endif
2154 	} while (data);
2155 
2156 	if (data)
2157 		err = chip->irq_set_irqchip_state(data, which, val);
2158 
2159 	irq_put_desc_busunlock(desc, flags);
2160 	return err;
2161 }
2162 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2163