xref: /openbmc/linux/kernel/irq/manage.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 
28 static int __init setup_forced_irqthreads(char *arg)
29 {
30 	force_irqthreads = true;
31 	return 0;
32 }
33 early_param("threadirqs", setup_forced_irqthreads);
34 #endif
35 
36 static void __synchronize_hardirq(struct irq_desc *desc)
37 {
38 	bool inprogress;
39 
40 	do {
41 		unsigned long flags;
42 
43 		/*
44 		 * Wait until we're out of the critical section.  This might
45 		 * give the wrong answer due to the lack of memory barriers.
46 		 */
47 		while (irqd_irq_inprogress(&desc->irq_data))
48 			cpu_relax();
49 
50 		/* Ok, that indicated we're done: double-check carefully. */
51 		raw_spin_lock_irqsave(&desc->lock, flags);
52 		inprogress = irqd_irq_inprogress(&desc->irq_data);
53 		raw_spin_unlock_irqrestore(&desc->lock, flags);
54 
55 		/* Oops, that failed? */
56 	} while (inprogress);
57 }
58 
59 /**
60  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
61  *	@irq: interrupt number to wait for
62  *
63  *	This function waits for any pending hard IRQ handlers for this
64  *	interrupt to complete before returning. If you use this
65  *	function while holding a resource the IRQ handler may need you
66  *	will deadlock. It does not take associated threaded handlers
67  *	into account.
68  *
69  *	Do not use this for shutdown scenarios where you must be sure
70  *	that all parts (hardirq and threaded handler) have completed.
71  *
72  *	Returns: false if a threaded handler is active.
73  *
74  *	This function may be called - with care - from IRQ context.
75  */
76 bool synchronize_hardirq(unsigned int irq)
77 {
78 	struct irq_desc *desc = irq_to_desc(irq);
79 
80 	if (desc) {
81 		__synchronize_hardirq(desc);
82 		return !atomic_read(&desc->threads_active);
83 	}
84 
85 	return true;
86 }
87 EXPORT_SYMBOL(synchronize_hardirq);
88 
89 /**
90  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
91  *	@irq: interrupt number to wait for
92  *
93  *	This function waits for any pending IRQ handlers for this interrupt
94  *	to complete before returning. If you use this function while
95  *	holding a resource the IRQ handler may need you will deadlock.
96  *
97  *	This function may be called - with care - from IRQ context.
98  */
99 void synchronize_irq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc);
105 		/*
106 		 * We made sure that no hardirq handler is
107 		 * running. Now verify that no threaded handlers are
108 		 * active.
109 		 */
110 		wait_event(desc->wait_for_threads,
111 			   !atomic_read(&desc->threads_active));
112 	}
113 }
114 EXPORT_SYMBOL(synchronize_irq);
115 
116 #ifdef CONFIG_SMP
117 cpumask_var_t irq_default_affinity;
118 
119 static bool __irq_can_set_affinity(struct irq_desc *desc)
120 {
121 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
122 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
123 		return false;
124 	return true;
125 }
126 
127 /**
128  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
129  *	@irq:		Interrupt to check
130  *
131  */
132 int irq_can_set_affinity(unsigned int irq)
133 {
134 	return __irq_can_set_affinity(irq_to_desc(irq));
135 }
136 
137 /**
138  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
139  * @irq:	Interrupt to check
140  *
141  * Like irq_can_set_affinity() above, but additionally checks for the
142  * AFFINITY_MANAGED flag.
143  */
144 bool irq_can_set_affinity_usr(unsigned int irq)
145 {
146 	struct irq_desc *desc = irq_to_desc(irq);
147 
148 	return __irq_can_set_affinity(desc) &&
149 		!irqd_affinity_is_managed(&desc->irq_data);
150 }
151 
152 /**
153  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
154  *	@desc:		irq descriptor which has affitnity changed
155  *
156  *	We just set IRQTF_AFFINITY and delegate the affinity setting
157  *	to the interrupt thread itself. We can not call
158  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
159  *	code can be called from hard interrupt context.
160  */
161 void irq_set_thread_affinity(struct irq_desc *desc)
162 {
163 	struct irqaction *action;
164 
165 	for_each_action_of_desc(desc, action)
166 		if (action->thread)
167 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
168 }
169 
170 static void irq_validate_effective_affinity(struct irq_data *data)
171 {
172 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
173 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
174 	struct irq_chip *chip = irq_data_get_irq_chip(data);
175 
176 	if (!cpumask_empty(m))
177 		return;
178 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
179 		     chip->name, data->irq);
180 #endif
181 }
182 
183 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
184 			bool force)
185 {
186 	struct irq_desc *desc = irq_data_to_desc(data);
187 	struct irq_chip *chip = irq_data_get_irq_chip(data);
188 	int ret;
189 
190 	if (!chip || !chip->irq_set_affinity)
191 		return -EINVAL;
192 
193 	ret = chip->irq_set_affinity(data, mask, force);
194 	switch (ret) {
195 	case IRQ_SET_MASK_OK:
196 	case IRQ_SET_MASK_OK_DONE:
197 		cpumask_copy(desc->irq_common_data.affinity, mask);
198 	case IRQ_SET_MASK_OK_NOCOPY:
199 		irq_validate_effective_affinity(data);
200 		irq_set_thread_affinity(desc);
201 		ret = 0;
202 	}
203 
204 	return ret;
205 }
206 
207 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
208 			    bool force)
209 {
210 	struct irq_chip *chip = irq_data_get_irq_chip(data);
211 	struct irq_desc *desc = irq_data_to_desc(data);
212 	int ret = 0;
213 
214 	if (!chip || !chip->irq_set_affinity)
215 		return -EINVAL;
216 
217 	if (irq_can_move_pcntxt(data)) {
218 		ret = irq_do_set_affinity(data, mask, force);
219 	} else {
220 		irqd_set_move_pending(data);
221 		irq_copy_pending(desc, mask);
222 	}
223 
224 	if (desc->affinity_notify) {
225 		kref_get(&desc->affinity_notify->kref);
226 		schedule_work(&desc->affinity_notify->work);
227 	}
228 	irqd_set(data, IRQD_AFFINITY_SET);
229 
230 	return ret;
231 }
232 
233 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
234 {
235 	struct irq_desc *desc = irq_to_desc(irq);
236 	unsigned long flags;
237 	int ret;
238 
239 	if (!desc)
240 		return -EINVAL;
241 
242 	raw_spin_lock_irqsave(&desc->lock, flags);
243 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
244 	raw_spin_unlock_irqrestore(&desc->lock, flags);
245 	return ret;
246 }
247 
248 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
249 {
250 	unsigned long flags;
251 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
252 
253 	if (!desc)
254 		return -EINVAL;
255 	desc->affinity_hint = m;
256 	irq_put_desc_unlock(desc, flags);
257 	/* set the initial affinity to prevent every interrupt being on CPU0 */
258 	if (m)
259 		__irq_set_affinity(irq, m, false);
260 	return 0;
261 }
262 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
263 
264 static void irq_affinity_notify(struct work_struct *work)
265 {
266 	struct irq_affinity_notify *notify =
267 		container_of(work, struct irq_affinity_notify, work);
268 	struct irq_desc *desc = irq_to_desc(notify->irq);
269 	cpumask_var_t cpumask;
270 	unsigned long flags;
271 
272 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
273 		goto out;
274 
275 	raw_spin_lock_irqsave(&desc->lock, flags);
276 	if (irq_move_pending(&desc->irq_data))
277 		irq_get_pending(cpumask, desc);
278 	else
279 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
280 	raw_spin_unlock_irqrestore(&desc->lock, flags);
281 
282 	notify->notify(notify, cpumask);
283 
284 	free_cpumask_var(cpumask);
285 out:
286 	kref_put(&notify->kref, notify->release);
287 }
288 
289 /**
290  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
291  *	@irq:		Interrupt for which to enable/disable notification
292  *	@notify:	Context for notification, or %NULL to disable
293  *			notification.  Function pointers must be initialised;
294  *			the other fields will be initialised by this function.
295  *
296  *	Must be called in process context.  Notification may only be enabled
297  *	after the IRQ is allocated and must be disabled before the IRQ is
298  *	freed using free_irq().
299  */
300 int
301 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
302 {
303 	struct irq_desc *desc = irq_to_desc(irq);
304 	struct irq_affinity_notify *old_notify;
305 	unsigned long flags;
306 
307 	/* The release function is promised process context */
308 	might_sleep();
309 
310 	if (!desc)
311 		return -EINVAL;
312 
313 	/* Complete initialisation of *notify */
314 	if (notify) {
315 		notify->irq = irq;
316 		kref_init(&notify->kref);
317 		INIT_WORK(&notify->work, irq_affinity_notify);
318 	}
319 
320 	raw_spin_lock_irqsave(&desc->lock, flags);
321 	old_notify = desc->affinity_notify;
322 	desc->affinity_notify = notify;
323 	raw_spin_unlock_irqrestore(&desc->lock, flags);
324 
325 	if (old_notify)
326 		kref_put(&old_notify->kref, old_notify->release);
327 
328 	return 0;
329 }
330 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
331 
332 #ifndef CONFIG_AUTO_IRQ_AFFINITY
333 /*
334  * Generic version of the affinity autoselector.
335  */
336 int irq_setup_affinity(struct irq_desc *desc)
337 {
338 	struct cpumask *set = irq_default_affinity;
339 	int ret, node = irq_desc_get_node(desc);
340 	static DEFINE_RAW_SPINLOCK(mask_lock);
341 	static struct cpumask mask;
342 
343 	/* Excludes PER_CPU and NO_BALANCE interrupts */
344 	if (!__irq_can_set_affinity(desc))
345 		return 0;
346 
347 	raw_spin_lock(&mask_lock);
348 	/*
349 	 * Preserve the managed affinity setting and a userspace affinity
350 	 * setup, but make sure that one of the targets is online.
351 	 */
352 	if (irqd_affinity_is_managed(&desc->irq_data) ||
353 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
354 		if (cpumask_intersects(desc->irq_common_data.affinity,
355 				       cpu_online_mask))
356 			set = desc->irq_common_data.affinity;
357 		else
358 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
359 	}
360 
361 	cpumask_and(&mask, cpu_online_mask, set);
362 	if (node != NUMA_NO_NODE) {
363 		const struct cpumask *nodemask = cpumask_of_node(node);
364 
365 		/* make sure at least one of the cpus in nodemask is online */
366 		if (cpumask_intersects(&mask, nodemask))
367 			cpumask_and(&mask, &mask, nodemask);
368 	}
369 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
370 	raw_spin_unlock(&mask_lock);
371 	return ret;
372 }
373 #else
374 /* Wrapper for ALPHA specific affinity selector magic */
375 int irq_setup_affinity(struct irq_desc *desc)
376 {
377 	return irq_select_affinity(irq_desc_get_irq(desc));
378 }
379 #endif
380 
381 /*
382  * Called when a bogus affinity is set via /proc/irq
383  */
384 int irq_select_affinity_usr(unsigned int irq)
385 {
386 	struct irq_desc *desc = irq_to_desc(irq);
387 	unsigned long flags;
388 	int ret;
389 
390 	raw_spin_lock_irqsave(&desc->lock, flags);
391 	ret = irq_setup_affinity(desc);
392 	raw_spin_unlock_irqrestore(&desc->lock, flags);
393 	return ret;
394 }
395 #endif
396 
397 /**
398  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
399  *	@irq: interrupt number to set affinity
400  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
401  *	            specific data for percpu_devid interrupts
402  *
403  *	This function uses the vCPU specific data to set the vCPU
404  *	affinity for an irq. The vCPU specific data is passed from
405  *	outside, such as KVM. One example code path is as below:
406  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
407  */
408 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
409 {
410 	unsigned long flags;
411 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
412 	struct irq_data *data;
413 	struct irq_chip *chip;
414 	int ret = -ENOSYS;
415 
416 	if (!desc)
417 		return -EINVAL;
418 
419 	data = irq_desc_get_irq_data(desc);
420 	do {
421 		chip = irq_data_get_irq_chip(data);
422 		if (chip && chip->irq_set_vcpu_affinity)
423 			break;
424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
425 		data = data->parent_data;
426 #else
427 		data = NULL;
428 #endif
429 	} while (data);
430 
431 	if (data)
432 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
433 	irq_put_desc_unlock(desc, flags);
434 
435 	return ret;
436 }
437 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
438 
439 void __disable_irq(struct irq_desc *desc)
440 {
441 	if (!desc->depth++)
442 		irq_disable(desc);
443 }
444 
445 static int __disable_irq_nosync(unsigned int irq)
446 {
447 	unsigned long flags;
448 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
449 
450 	if (!desc)
451 		return -EINVAL;
452 	__disable_irq(desc);
453 	irq_put_desc_busunlock(desc, flags);
454 	return 0;
455 }
456 
457 /**
458  *	disable_irq_nosync - disable an irq without waiting
459  *	@irq: Interrupt to disable
460  *
461  *	Disable the selected interrupt line.  Disables and Enables are
462  *	nested.
463  *	Unlike disable_irq(), this function does not ensure existing
464  *	instances of the IRQ handler have completed before returning.
465  *
466  *	This function may be called from IRQ context.
467  */
468 void disable_irq_nosync(unsigned int irq)
469 {
470 	__disable_irq_nosync(irq);
471 }
472 EXPORT_SYMBOL(disable_irq_nosync);
473 
474 /**
475  *	disable_irq - disable an irq and wait for completion
476  *	@irq: Interrupt to disable
477  *
478  *	Disable the selected interrupt line.  Enables and Disables are
479  *	nested.
480  *	This function waits for any pending IRQ handlers for this interrupt
481  *	to complete before returning. If you use this function while
482  *	holding a resource the IRQ handler may need you will deadlock.
483  *
484  *	This function may be called - with care - from IRQ context.
485  */
486 void disable_irq(unsigned int irq)
487 {
488 	if (!__disable_irq_nosync(irq))
489 		synchronize_irq(irq);
490 }
491 EXPORT_SYMBOL(disable_irq);
492 
493 /**
494  *	disable_hardirq - disables an irq and waits for hardirq completion
495  *	@irq: Interrupt to disable
496  *
497  *	Disable the selected interrupt line.  Enables and Disables are
498  *	nested.
499  *	This function waits for any pending hard IRQ handlers for this
500  *	interrupt to complete before returning. If you use this function while
501  *	holding a resource the hard IRQ handler may need you will deadlock.
502  *
503  *	When used to optimistically disable an interrupt from atomic context
504  *	the return value must be checked.
505  *
506  *	Returns: false if a threaded handler is active.
507  *
508  *	This function may be called - with care - from IRQ context.
509  */
510 bool disable_hardirq(unsigned int irq)
511 {
512 	if (!__disable_irq_nosync(irq))
513 		return synchronize_hardirq(irq);
514 
515 	return false;
516 }
517 EXPORT_SYMBOL_GPL(disable_hardirq);
518 
519 void __enable_irq(struct irq_desc *desc)
520 {
521 	switch (desc->depth) {
522 	case 0:
523  err_out:
524 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
525 		     irq_desc_get_irq(desc));
526 		break;
527 	case 1: {
528 		if (desc->istate & IRQS_SUSPENDED)
529 			goto err_out;
530 		/* Prevent probing on this irq: */
531 		irq_settings_set_noprobe(desc);
532 		/*
533 		 * Call irq_startup() not irq_enable() here because the
534 		 * interrupt might be marked NOAUTOEN. So irq_startup()
535 		 * needs to be invoked when it gets enabled the first
536 		 * time. If it was already started up, then irq_startup()
537 		 * will invoke irq_enable() under the hood.
538 		 */
539 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
540 		break;
541 	}
542 	default:
543 		desc->depth--;
544 	}
545 }
546 
547 /**
548  *	enable_irq - enable handling of an irq
549  *	@irq: Interrupt to enable
550  *
551  *	Undoes the effect of one call to disable_irq().  If this
552  *	matches the last disable, processing of interrupts on this
553  *	IRQ line is re-enabled.
554  *
555  *	This function may be called from IRQ context only when
556  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
557  */
558 void enable_irq(unsigned int irq)
559 {
560 	unsigned long flags;
561 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
562 
563 	if (!desc)
564 		return;
565 	if (WARN(!desc->irq_data.chip,
566 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
567 		goto out;
568 
569 	__enable_irq(desc);
570 out:
571 	irq_put_desc_busunlock(desc, flags);
572 }
573 EXPORT_SYMBOL(enable_irq);
574 
575 static int set_irq_wake_real(unsigned int irq, unsigned int on)
576 {
577 	struct irq_desc *desc = irq_to_desc(irq);
578 	int ret = -ENXIO;
579 
580 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
581 		return 0;
582 
583 	if (desc->irq_data.chip->irq_set_wake)
584 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
585 
586 	return ret;
587 }
588 
589 /**
590  *	irq_set_irq_wake - control irq power management wakeup
591  *	@irq:	interrupt to control
592  *	@on:	enable/disable power management wakeup
593  *
594  *	Enable/disable power management wakeup mode, which is
595  *	disabled by default.  Enables and disables must match,
596  *	just as they match for non-wakeup mode support.
597  *
598  *	Wakeup mode lets this IRQ wake the system from sleep
599  *	states like "suspend to RAM".
600  */
601 int irq_set_irq_wake(unsigned int irq, unsigned int on)
602 {
603 	unsigned long flags;
604 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
605 	int ret = 0;
606 
607 	if (!desc)
608 		return -EINVAL;
609 
610 	/* wakeup-capable irqs can be shared between drivers that
611 	 * don't need to have the same sleep mode behaviors.
612 	 */
613 	if (on) {
614 		if (desc->wake_depth++ == 0) {
615 			ret = set_irq_wake_real(irq, on);
616 			if (ret)
617 				desc->wake_depth = 0;
618 			else
619 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
620 		}
621 	} else {
622 		if (desc->wake_depth == 0) {
623 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
624 		} else if (--desc->wake_depth == 0) {
625 			ret = set_irq_wake_real(irq, on);
626 			if (ret)
627 				desc->wake_depth = 1;
628 			else
629 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
630 		}
631 	}
632 	irq_put_desc_busunlock(desc, flags);
633 	return ret;
634 }
635 EXPORT_SYMBOL(irq_set_irq_wake);
636 
637 /*
638  * Internal function that tells the architecture code whether a
639  * particular irq has been exclusively allocated or is available
640  * for driver use.
641  */
642 int can_request_irq(unsigned int irq, unsigned long irqflags)
643 {
644 	unsigned long flags;
645 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
646 	int canrequest = 0;
647 
648 	if (!desc)
649 		return 0;
650 
651 	if (irq_settings_can_request(desc)) {
652 		if (!desc->action ||
653 		    irqflags & desc->action->flags & IRQF_SHARED)
654 			canrequest = 1;
655 	}
656 	irq_put_desc_unlock(desc, flags);
657 	return canrequest;
658 }
659 
660 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
661 {
662 	struct irq_chip *chip = desc->irq_data.chip;
663 	int ret, unmask = 0;
664 
665 	if (!chip || !chip->irq_set_type) {
666 		/*
667 		 * IRQF_TRIGGER_* but the PIC does not support multiple
668 		 * flow-types?
669 		 */
670 		pr_debug("No set_type function for IRQ %d (%s)\n",
671 			 irq_desc_get_irq(desc),
672 			 chip ? (chip->name ? : "unknown") : "unknown");
673 		return 0;
674 	}
675 
676 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
677 		if (!irqd_irq_masked(&desc->irq_data))
678 			mask_irq(desc);
679 		if (!irqd_irq_disabled(&desc->irq_data))
680 			unmask = 1;
681 	}
682 
683 	/* Mask all flags except trigger mode */
684 	flags &= IRQ_TYPE_SENSE_MASK;
685 	ret = chip->irq_set_type(&desc->irq_data, flags);
686 
687 	switch (ret) {
688 	case IRQ_SET_MASK_OK:
689 	case IRQ_SET_MASK_OK_DONE:
690 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
691 		irqd_set(&desc->irq_data, flags);
692 
693 	case IRQ_SET_MASK_OK_NOCOPY:
694 		flags = irqd_get_trigger_type(&desc->irq_data);
695 		irq_settings_set_trigger_mask(desc, flags);
696 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
697 		irq_settings_clr_level(desc);
698 		if (flags & IRQ_TYPE_LEVEL_MASK) {
699 			irq_settings_set_level(desc);
700 			irqd_set(&desc->irq_data, IRQD_LEVEL);
701 		}
702 
703 		ret = 0;
704 		break;
705 	default:
706 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
707 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
708 	}
709 	if (unmask)
710 		unmask_irq(desc);
711 	return ret;
712 }
713 
714 #ifdef CONFIG_HARDIRQS_SW_RESEND
715 int irq_set_parent(int irq, int parent_irq)
716 {
717 	unsigned long flags;
718 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
719 
720 	if (!desc)
721 		return -EINVAL;
722 
723 	desc->parent_irq = parent_irq;
724 
725 	irq_put_desc_unlock(desc, flags);
726 	return 0;
727 }
728 EXPORT_SYMBOL_GPL(irq_set_parent);
729 #endif
730 
731 /*
732  * Default primary interrupt handler for threaded interrupts. Is
733  * assigned as primary handler when request_threaded_irq is called
734  * with handler == NULL. Useful for oneshot interrupts.
735  */
736 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
737 {
738 	return IRQ_WAKE_THREAD;
739 }
740 
741 /*
742  * Primary handler for nested threaded interrupts. Should never be
743  * called.
744  */
745 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
746 {
747 	WARN(1, "Primary handler called for nested irq %d\n", irq);
748 	return IRQ_NONE;
749 }
750 
751 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
752 {
753 	WARN(1, "Secondary action handler called for irq %d\n", irq);
754 	return IRQ_NONE;
755 }
756 
757 static int irq_wait_for_interrupt(struct irqaction *action)
758 {
759 	set_current_state(TASK_INTERRUPTIBLE);
760 
761 	while (!kthread_should_stop()) {
762 
763 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
764 				       &action->thread_flags)) {
765 			__set_current_state(TASK_RUNNING);
766 			return 0;
767 		}
768 		schedule();
769 		set_current_state(TASK_INTERRUPTIBLE);
770 	}
771 	__set_current_state(TASK_RUNNING);
772 	return -1;
773 }
774 
775 /*
776  * Oneshot interrupts keep the irq line masked until the threaded
777  * handler finished. unmask if the interrupt has not been disabled and
778  * is marked MASKED.
779  */
780 static void irq_finalize_oneshot(struct irq_desc *desc,
781 				 struct irqaction *action)
782 {
783 	if (!(desc->istate & IRQS_ONESHOT) ||
784 	    action->handler == irq_forced_secondary_handler)
785 		return;
786 again:
787 	chip_bus_lock(desc);
788 	raw_spin_lock_irq(&desc->lock);
789 
790 	/*
791 	 * Implausible though it may be we need to protect us against
792 	 * the following scenario:
793 	 *
794 	 * The thread is faster done than the hard interrupt handler
795 	 * on the other CPU. If we unmask the irq line then the
796 	 * interrupt can come in again and masks the line, leaves due
797 	 * to IRQS_INPROGRESS and the irq line is masked forever.
798 	 *
799 	 * This also serializes the state of shared oneshot handlers
800 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
801 	 * irq_wake_thread(). See the comment there which explains the
802 	 * serialization.
803 	 */
804 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
805 		raw_spin_unlock_irq(&desc->lock);
806 		chip_bus_sync_unlock(desc);
807 		cpu_relax();
808 		goto again;
809 	}
810 
811 	/*
812 	 * Now check again, whether the thread should run. Otherwise
813 	 * we would clear the threads_oneshot bit of this thread which
814 	 * was just set.
815 	 */
816 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
817 		goto out_unlock;
818 
819 	desc->threads_oneshot &= ~action->thread_mask;
820 
821 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
822 	    irqd_irq_masked(&desc->irq_data))
823 		unmask_threaded_irq(desc);
824 
825 out_unlock:
826 	raw_spin_unlock_irq(&desc->lock);
827 	chip_bus_sync_unlock(desc);
828 }
829 
830 #ifdef CONFIG_SMP
831 /*
832  * Check whether we need to change the affinity of the interrupt thread.
833  */
834 static void
835 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
836 {
837 	cpumask_var_t mask;
838 	bool valid = true;
839 
840 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
841 		return;
842 
843 	/*
844 	 * In case we are out of memory we set IRQTF_AFFINITY again and
845 	 * try again next time
846 	 */
847 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
848 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
849 		return;
850 	}
851 
852 	raw_spin_lock_irq(&desc->lock);
853 	/*
854 	 * This code is triggered unconditionally. Check the affinity
855 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
856 	 */
857 	if (cpumask_available(desc->irq_common_data.affinity)) {
858 		const struct cpumask *m;
859 
860 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
861 		cpumask_copy(mask, m);
862 	} else {
863 		valid = false;
864 	}
865 	raw_spin_unlock_irq(&desc->lock);
866 
867 	if (valid)
868 		set_cpus_allowed_ptr(current, mask);
869 	free_cpumask_var(mask);
870 }
871 #else
872 static inline void
873 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
874 #endif
875 
876 /*
877  * Interrupts which are not explicitely requested as threaded
878  * interrupts rely on the implicit bh/preempt disable of the hard irq
879  * context. So we need to disable bh here to avoid deadlocks and other
880  * side effects.
881  */
882 static irqreturn_t
883 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
884 {
885 	irqreturn_t ret;
886 
887 	local_bh_disable();
888 	ret = action->thread_fn(action->irq, action->dev_id);
889 	irq_finalize_oneshot(desc, action);
890 	local_bh_enable();
891 	return ret;
892 }
893 
894 /*
895  * Interrupts explicitly requested as threaded interrupts want to be
896  * preemtible - many of them need to sleep and wait for slow busses to
897  * complete.
898  */
899 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
900 		struct irqaction *action)
901 {
902 	irqreturn_t ret;
903 
904 	ret = action->thread_fn(action->irq, action->dev_id);
905 	irq_finalize_oneshot(desc, action);
906 	return ret;
907 }
908 
909 static void wake_threads_waitq(struct irq_desc *desc)
910 {
911 	if (atomic_dec_and_test(&desc->threads_active))
912 		wake_up(&desc->wait_for_threads);
913 }
914 
915 static void irq_thread_dtor(struct callback_head *unused)
916 {
917 	struct task_struct *tsk = current;
918 	struct irq_desc *desc;
919 	struct irqaction *action;
920 
921 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
922 		return;
923 
924 	action = kthread_data(tsk);
925 
926 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
927 	       tsk->comm, tsk->pid, action->irq);
928 
929 
930 	desc = irq_to_desc(action->irq);
931 	/*
932 	 * If IRQTF_RUNTHREAD is set, we need to decrement
933 	 * desc->threads_active and wake possible waiters.
934 	 */
935 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
936 		wake_threads_waitq(desc);
937 
938 	/* Prevent a stale desc->threads_oneshot */
939 	irq_finalize_oneshot(desc, action);
940 }
941 
942 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
943 {
944 	struct irqaction *secondary = action->secondary;
945 
946 	if (WARN_ON_ONCE(!secondary))
947 		return;
948 
949 	raw_spin_lock_irq(&desc->lock);
950 	__irq_wake_thread(desc, secondary);
951 	raw_spin_unlock_irq(&desc->lock);
952 }
953 
954 /*
955  * Interrupt handler thread
956  */
957 static int irq_thread(void *data)
958 {
959 	struct callback_head on_exit_work;
960 	struct irqaction *action = data;
961 	struct irq_desc *desc = irq_to_desc(action->irq);
962 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
963 			struct irqaction *action);
964 
965 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
966 					&action->thread_flags))
967 		handler_fn = irq_forced_thread_fn;
968 	else
969 		handler_fn = irq_thread_fn;
970 
971 	init_task_work(&on_exit_work, irq_thread_dtor);
972 	task_work_add(current, &on_exit_work, false);
973 
974 	irq_thread_check_affinity(desc, action);
975 
976 	while (!irq_wait_for_interrupt(action)) {
977 		irqreturn_t action_ret;
978 
979 		irq_thread_check_affinity(desc, action);
980 
981 		action_ret = handler_fn(desc, action);
982 		if (action_ret == IRQ_HANDLED)
983 			atomic_inc(&desc->threads_handled);
984 		if (action_ret == IRQ_WAKE_THREAD)
985 			irq_wake_secondary(desc, action);
986 
987 		wake_threads_waitq(desc);
988 	}
989 
990 	/*
991 	 * This is the regular exit path. __free_irq() is stopping the
992 	 * thread via kthread_stop() after calling
993 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
994 	 * oneshot mask bit can be set. We cannot verify that as we
995 	 * cannot touch the oneshot mask at this point anymore as
996 	 * __setup_irq() might have given out currents thread_mask
997 	 * again.
998 	 */
999 	task_work_cancel(current, irq_thread_dtor);
1000 	return 0;
1001 }
1002 
1003 /**
1004  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1005  *	@irq:		Interrupt line
1006  *	@dev_id:	Device identity for which the thread should be woken
1007  *
1008  */
1009 void irq_wake_thread(unsigned int irq, void *dev_id)
1010 {
1011 	struct irq_desc *desc = irq_to_desc(irq);
1012 	struct irqaction *action;
1013 	unsigned long flags;
1014 
1015 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1016 		return;
1017 
1018 	raw_spin_lock_irqsave(&desc->lock, flags);
1019 	for_each_action_of_desc(desc, action) {
1020 		if (action->dev_id == dev_id) {
1021 			if (action->thread)
1022 				__irq_wake_thread(desc, action);
1023 			break;
1024 		}
1025 	}
1026 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1027 }
1028 EXPORT_SYMBOL_GPL(irq_wake_thread);
1029 
1030 static int irq_setup_forced_threading(struct irqaction *new)
1031 {
1032 	if (!force_irqthreads)
1033 		return 0;
1034 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1035 		return 0;
1036 
1037 	new->flags |= IRQF_ONESHOT;
1038 
1039 	/*
1040 	 * Handle the case where we have a real primary handler and a
1041 	 * thread handler. We force thread them as well by creating a
1042 	 * secondary action.
1043 	 */
1044 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1045 		/* Allocate the secondary action */
1046 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1047 		if (!new->secondary)
1048 			return -ENOMEM;
1049 		new->secondary->handler = irq_forced_secondary_handler;
1050 		new->secondary->thread_fn = new->thread_fn;
1051 		new->secondary->dev_id = new->dev_id;
1052 		new->secondary->irq = new->irq;
1053 		new->secondary->name = new->name;
1054 	}
1055 	/* Deal with the primary handler */
1056 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1057 	new->thread_fn = new->handler;
1058 	new->handler = irq_default_primary_handler;
1059 	return 0;
1060 }
1061 
1062 static int irq_request_resources(struct irq_desc *desc)
1063 {
1064 	struct irq_data *d = &desc->irq_data;
1065 	struct irq_chip *c = d->chip;
1066 
1067 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1068 }
1069 
1070 static void irq_release_resources(struct irq_desc *desc)
1071 {
1072 	struct irq_data *d = &desc->irq_data;
1073 	struct irq_chip *c = d->chip;
1074 
1075 	if (c->irq_release_resources)
1076 		c->irq_release_resources(d);
1077 }
1078 
1079 static int
1080 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1081 {
1082 	struct task_struct *t;
1083 	struct sched_param param = {
1084 		.sched_priority = MAX_USER_RT_PRIO/2,
1085 	};
1086 
1087 	if (!secondary) {
1088 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1089 				   new->name);
1090 	} else {
1091 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1092 				   new->name);
1093 		param.sched_priority -= 1;
1094 	}
1095 
1096 	if (IS_ERR(t))
1097 		return PTR_ERR(t);
1098 
1099 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1100 
1101 	/*
1102 	 * We keep the reference to the task struct even if
1103 	 * the thread dies to avoid that the interrupt code
1104 	 * references an already freed task_struct.
1105 	 */
1106 	get_task_struct(t);
1107 	new->thread = t;
1108 	/*
1109 	 * Tell the thread to set its affinity. This is
1110 	 * important for shared interrupt handlers as we do
1111 	 * not invoke setup_affinity() for the secondary
1112 	 * handlers as everything is already set up. Even for
1113 	 * interrupts marked with IRQF_NO_BALANCE this is
1114 	 * correct as we want the thread to move to the cpu(s)
1115 	 * on which the requesting code placed the interrupt.
1116 	 */
1117 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Internal function to register an irqaction - typically used to
1123  * allocate special interrupts that are part of the architecture.
1124  *
1125  * Locking rules:
1126  *
1127  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1128  *   chip_bus_lock	Provides serialization for slow bus operations
1129  *     desc->lock	Provides serialization against hard interrupts
1130  *
1131  * chip_bus_lock and desc->lock are sufficient for all other management and
1132  * interrupt related functions. desc->request_mutex solely serializes
1133  * request/free_irq().
1134  */
1135 static int
1136 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1137 {
1138 	struct irqaction *old, **old_ptr;
1139 	unsigned long flags, thread_mask = 0;
1140 	int ret, nested, shared = 0;
1141 
1142 	if (!desc)
1143 		return -EINVAL;
1144 
1145 	if (desc->irq_data.chip == &no_irq_chip)
1146 		return -ENOSYS;
1147 	if (!try_module_get(desc->owner))
1148 		return -ENODEV;
1149 
1150 	new->irq = irq;
1151 
1152 	/*
1153 	 * If the trigger type is not specified by the caller,
1154 	 * then use the default for this interrupt.
1155 	 */
1156 	if (!(new->flags & IRQF_TRIGGER_MASK))
1157 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1158 
1159 	/*
1160 	 * Check whether the interrupt nests into another interrupt
1161 	 * thread.
1162 	 */
1163 	nested = irq_settings_is_nested_thread(desc);
1164 	if (nested) {
1165 		if (!new->thread_fn) {
1166 			ret = -EINVAL;
1167 			goto out_mput;
1168 		}
1169 		/*
1170 		 * Replace the primary handler which was provided from
1171 		 * the driver for non nested interrupt handling by the
1172 		 * dummy function which warns when called.
1173 		 */
1174 		new->handler = irq_nested_primary_handler;
1175 	} else {
1176 		if (irq_settings_can_thread(desc)) {
1177 			ret = irq_setup_forced_threading(new);
1178 			if (ret)
1179 				goto out_mput;
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * Create a handler thread when a thread function is supplied
1185 	 * and the interrupt does not nest into another interrupt
1186 	 * thread.
1187 	 */
1188 	if (new->thread_fn && !nested) {
1189 		ret = setup_irq_thread(new, irq, false);
1190 		if (ret)
1191 			goto out_mput;
1192 		if (new->secondary) {
1193 			ret = setup_irq_thread(new->secondary, irq, true);
1194 			if (ret)
1195 				goto out_thread;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Drivers are often written to work w/o knowledge about the
1201 	 * underlying irq chip implementation, so a request for a
1202 	 * threaded irq without a primary hard irq context handler
1203 	 * requires the ONESHOT flag to be set. Some irq chips like
1204 	 * MSI based interrupts are per se one shot safe. Check the
1205 	 * chip flags, so we can avoid the unmask dance at the end of
1206 	 * the threaded handler for those.
1207 	 */
1208 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1209 		new->flags &= ~IRQF_ONESHOT;
1210 
1211 	/*
1212 	 * Protects against a concurrent __free_irq() call which might wait
1213 	 * for synchronize_irq() to complete without holding the optional
1214 	 * chip bus lock and desc->lock.
1215 	 */
1216 	mutex_lock(&desc->request_mutex);
1217 
1218 	/*
1219 	 * Acquire bus lock as the irq_request_resources() callback below
1220 	 * might rely on the serialization or the magic power management
1221 	 * functions which are abusing the irq_bus_lock() callback,
1222 	 */
1223 	chip_bus_lock(desc);
1224 
1225 	/* First installed action requests resources. */
1226 	if (!desc->action) {
1227 		ret = irq_request_resources(desc);
1228 		if (ret) {
1229 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1230 			       new->name, irq, desc->irq_data.chip->name);
1231 			goto out_bus_unlock;
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * The following block of code has to be executed atomically
1237 	 * protected against a concurrent interrupt and any of the other
1238 	 * management calls which are not serialized via
1239 	 * desc->request_mutex or the optional bus lock.
1240 	 */
1241 	raw_spin_lock_irqsave(&desc->lock, flags);
1242 	old_ptr = &desc->action;
1243 	old = *old_ptr;
1244 	if (old) {
1245 		/*
1246 		 * Can't share interrupts unless both agree to and are
1247 		 * the same type (level, edge, polarity). So both flag
1248 		 * fields must have IRQF_SHARED set and the bits which
1249 		 * set the trigger type must match. Also all must
1250 		 * agree on ONESHOT.
1251 		 */
1252 		unsigned int oldtype;
1253 
1254 		/*
1255 		 * If nobody did set the configuration before, inherit
1256 		 * the one provided by the requester.
1257 		 */
1258 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1259 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1260 		} else {
1261 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1262 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1263 		}
1264 
1265 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1266 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1267 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1268 			goto mismatch;
1269 
1270 		/* All handlers must agree on per-cpuness */
1271 		if ((old->flags & IRQF_PERCPU) !=
1272 		    (new->flags & IRQF_PERCPU))
1273 			goto mismatch;
1274 
1275 		/* add new interrupt at end of irq queue */
1276 		do {
1277 			/*
1278 			 * Or all existing action->thread_mask bits,
1279 			 * so we can find the next zero bit for this
1280 			 * new action.
1281 			 */
1282 			thread_mask |= old->thread_mask;
1283 			old_ptr = &old->next;
1284 			old = *old_ptr;
1285 		} while (old);
1286 		shared = 1;
1287 	}
1288 
1289 	/*
1290 	 * Setup the thread mask for this irqaction for ONESHOT. For
1291 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1292 	 * conditional in irq_wake_thread().
1293 	 */
1294 	if (new->flags & IRQF_ONESHOT) {
1295 		/*
1296 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1297 		 * but who knows.
1298 		 */
1299 		if (thread_mask == ~0UL) {
1300 			ret = -EBUSY;
1301 			goto out_unlock;
1302 		}
1303 		/*
1304 		 * The thread_mask for the action is or'ed to
1305 		 * desc->thread_active to indicate that the
1306 		 * IRQF_ONESHOT thread handler has been woken, but not
1307 		 * yet finished. The bit is cleared when a thread
1308 		 * completes. When all threads of a shared interrupt
1309 		 * line have completed desc->threads_active becomes
1310 		 * zero and the interrupt line is unmasked. See
1311 		 * handle.c:irq_wake_thread() for further information.
1312 		 *
1313 		 * If no thread is woken by primary (hard irq context)
1314 		 * interrupt handlers, then desc->threads_active is
1315 		 * also checked for zero to unmask the irq line in the
1316 		 * affected hard irq flow handlers
1317 		 * (handle_[fasteoi|level]_irq).
1318 		 *
1319 		 * The new action gets the first zero bit of
1320 		 * thread_mask assigned. See the loop above which or's
1321 		 * all existing action->thread_mask bits.
1322 		 */
1323 		new->thread_mask = 1UL << ffz(thread_mask);
1324 
1325 	} else if (new->handler == irq_default_primary_handler &&
1326 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1327 		/*
1328 		 * The interrupt was requested with handler = NULL, so
1329 		 * we use the default primary handler for it. But it
1330 		 * does not have the oneshot flag set. In combination
1331 		 * with level interrupts this is deadly, because the
1332 		 * default primary handler just wakes the thread, then
1333 		 * the irq lines is reenabled, but the device still
1334 		 * has the level irq asserted. Rinse and repeat....
1335 		 *
1336 		 * While this works for edge type interrupts, we play
1337 		 * it safe and reject unconditionally because we can't
1338 		 * say for sure which type this interrupt really
1339 		 * has. The type flags are unreliable as the
1340 		 * underlying chip implementation can override them.
1341 		 */
1342 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1343 		       irq);
1344 		ret = -EINVAL;
1345 		goto out_unlock;
1346 	}
1347 
1348 	if (!shared) {
1349 		init_waitqueue_head(&desc->wait_for_threads);
1350 
1351 		/* Setup the type (level, edge polarity) if configured: */
1352 		if (new->flags & IRQF_TRIGGER_MASK) {
1353 			ret = __irq_set_trigger(desc,
1354 						new->flags & IRQF_TRIGGER_MASK);
1355 
1356 			if (ret)
1357 				goto out_unlock;
1358 		}
1359 
1360 		/*
1361 		 * Activate the interrupt. That activation must happen
1362 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1363 		 * and the callers are supposed to handle
1364 		 * that. enable_irq() of an interrupt requested with
1365 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1366 		 * keeps it in shutdown mode, it merily associates
1367 		 * resources if necessary and if that's not possible it
1368 		 * fails. Interrupts which are in managed shutdown mode
1369 		 * will simply ignore that activation request.
1370 		 */
1371 		ret = irq_activate(desc);
1372 		if (ret)
1373 			goto out_unlock;
1374 
1375 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1376 				  IRQS_ONESHOT | IRQS_WAITING);
1377 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1378 
1379 		if (new->flags & IRQF_PERCPU) {
1380 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1381 			irq_settings_set_per_cpu(desc);
1382 		}
1383 
1384 		if (new->flags & IRQF_ONESHOT)
1385 			desc->istate |= IRQS_ONESHOT;
1386 
1387 		/* Exclude IRQ from balancing if requested */
1388 		if (new->flags & IRQF_NOBALANCING) {
1389 			irq_settings_set_no_balancing(desc);
1390 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1391 		}
1392 
1393 		if (irq_settings_can_autoenable(desc)) {
1394 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1395 		} else {
1396 			/*
1397 			 * Shared interrupts do not go well with disabling
1398 			 * auto enable. The sharing interrupt might request
1399 			 * it while it's still disabled and then wait for
1400 			 * interrupts forever.
1401 			 */
1402 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1403 			/* Undo nested disables: */
1404 			desc->depth = 1;
1405 		}
1406 
1407 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1408 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1409 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1410 
1411 		if (nmsk != omsk)
1412 			/* hope the handler works with current  trigger mode */
1413 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1414 				irq, omsk, nmsk);
1415 	}
1416 
1417 	*old_ptr = new;
1418 
1419 	irq_pm_install_action(desc, new);
1420 
1421 	/* Reset broken irq detection when installing new handler */
1422 	desc->irq_count = 0;
1423 	desc->irqs_unhandled = 0;
1424 
1425 	/*
1426 	 * Check whether we disabled the irq via the spurious handler
1427 	 * before. Reenable it and give it another chance.
1428 	 */
1429 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1430 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1431 		__enable_irq(desc);
1432 	}
1433 
1434 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1435 	chip_bus_sync_unlock(desc);
1436 	mutex_unlock(&desc->request_mutex);
1437 
1438 	irq_setup_timings(desc, new);
1439 
1440 	/*
1441 	 * Strictly no need to wake it up, but hung_task complains
1442 	 * when no hard interrupt wakes the thread up.
1443 	 */
1444 	if (new->thread)
1445 		wake_up_process(new->thread);
1446 	if (new->secondary)
1447 		wake_up_process(new->secondary->thread);
1448 
1449 	register_irq_proc(irq, desc);
1450 	new->dir = NULL;
1451 	register_handler_proc(irq, new);
1452 	return 0;
1453 
1454 mismatch:
1455 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1456 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1457 		       irq, new->flags, new->name, old->flags, old->name);
1458 #ifdef CONFIG_DEBUG_SHIRQ
1459 		dump_stack();
1460 #endif
1461 	}
1462 	ret = -EBUSY;
1463 
1464 out_unlock:
1465 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1466 
1467 	if (!desc->action)
1468 		irq_release_resources(desc);
1469 out_bus_unlock:
1470 	chip_bus_sync_unlock(desc);
1471 	mutex_unlock(&desc->request_mutex);
1472 
1473 out_thread:
1474 	if (new->thread) {
1475 		struct task_struct *t = new->thread;
1476 
1477 		new->thread = NULL;
1478 		kthread_stop(t);
1479 		put_task_struct(t);
1480 	}
1481 	if (new->secondary && new->secondary->thread) {
1482 		struct task_struct *t = new->secondary->thread;
1483 
1484 		new->secondary->thread = NULL;
1485 		kthread_stop(t);
1486 		put_task_struct(t);
1487 	}
1488 out_mput:
1489 	module_put(desc->owner);
1490 	return ret;
1491 }
1492 
1493 /**
1494  *	setup_irq - setup an interrupt
1495  *	@irq: Interrupt line to setup
1496  *	@act: irqaction for the interrupt
1497  *
1498  * Used to statically setup interrupts in the early boot process.
1499  */
1500 int setup_irq(unsigned int irq, struct irqaction *act)
1501 {
1502 	int retval;
1503 	struct irq_desc *desc = irq_to_desc(irq);
1504 
1505 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1506 		return -EINVAL;
1507 
1508 	retval = irq_chip_pm_get(&desc->irq_data);
1509 	if (retval < 0)
1510 		return retval;
1511 
1512 	retval = __setup_irq(irq, desc, act);
1513 
1514 	if (retval)
1515 		irq_chip_pm_put(&desc->irq_data);
1516 
1517 	return retval;
1518 }
1519 EXPORT_SYMBOL_GPL(setup_irq);
1520 
1521 /*
1522  * Internal function to unregister an irqaction - used to free
1523  * regular and special interrupts that are part of the architecture.
1524  */
1525 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1526 {
1527 	unsigned irq = desc->irq_data.irq;
1528 	struct irqaction *action, **action_ptr;
1529 	unsigned long flags;
1530 
1531 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1532 
1533 	if (!desc)
1534 		return NULL;
1535 
1536 	mutex_lock(&desc->request_mutex);
1537 	chip_bus_lock(desc);
1538 	raw_spin_lock_irqsave(&desc->lock, flags);
1539 
1540 	/*
1541 	 * There can be multiple actions per IRQ descriptor, find the right
1542 	 * one based on the dev_id:
1543 	 */
1544 	action_ptr = &desc->action;
1545 	for (;;) {
1546 		action = *action_ptr;
1547 
1548 		if (!action) {
1549 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1550 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1551 			chip_bus_sync_unlock(desc);
1552 			mutex_unlock(&desc->request_mutex);
1553 			return NULL;
1554 		}
1555 
1556 		if (action->dev_id == dev_id)
1557 			break;
1558 		action_ptr = &action->next;
1559 	}
1560 
1561 	/* Found it - now remove it from the list of entries: */
1562 	*action_ptr = action->next;
1563 
1564 	irq_pm_remove_action(desc, action);
1565 
1566 	/* If this was the last handler, shut down the IRQ line: */
1567 	if (!desc->action) {
1568 		irq_settings_clr_disable_unlazy(desc);
1569 		irq_shutdown(desc);
1570 	}
1571 
1572 #ifdef CONFIG_SMP
1573 	/* make sure affinity_hint is cleaned up */
1574 	if (WARN_ON_ONCE(desc->affinity_hint))
1575 		desc->affinity_hint = NULL;
1576 #endif
1577 
1578 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1579 	/*
1580 	 * Drop bus_lock here so the changes which were done in the chip
1581 	 * callbacks above are synced out to the irq chips which hang
1582 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1583 	 *
1584 	 * Aside of that the bus_lock can also be taken from the threaded
1585 	 * handler in irq_finalize_oneshot() which results in a deadlock
1586 	 * because synchronize_irq() would wait forever for the thread to
1587 	 * complete, which is blocked on the bus lock.
1588 	 *
1589 	 * The still held desc->request_mutex() protects against a
1590 	 * concurrent request_irq() of this irq so the release of resources
1591 	 * and timing data is properly serialized.
1592 	 */
1593 	chip_bus_sync_unlock(desc);
1594 
1595 	unregister_handler_proc(irq, action);
1596 
1597 	/* Make sure it's not being used on another CPU: */
1598 	synchronize_irq(irq);
1599 
1600 #ifdef CONFIG_DEBUG_SHIRQ
1601 	/*
1602 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1603 	 * event to happen even now it's being freed, so let's make sure that
1604 	 * is so by doing an extra call to the handler ....
1605 	 *
1606 	 * ( We do this after actually deregistering it, to make sure that a
1607 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1608 	 */
1609 	if (action->flags & IRQF_SHARED) {
1610 		local_irq_save(flags);
1611 		action->handler(irq, dev_id);
1612 		local_irq_restore(flags);
1613 	}
1614 #endif
1615 
1616 	if (action->thread) {
1617 		kthread_stop(action->thread);
1618 		put_task_struct(action->thread);
1619 		if (action->secondary && action->secondary->thread) {
1620 			kthread_stop(action->secondary->thread);
1621 			put_task_struct(action->secondary->thread);
1622 		}
1623 	}
1624 
1625 	/* Last action releases resources */
1626 	if (!desc->action) {
1627 		/*
1628 		 * Reaquire bus lock as irq_release_resources() might
1629 		 * require it to deallocate resources over the slow bus.
1630 		 */
1631 		chip_bus_lock(desc);
1632 		irq_release_resources(desc);
1633 		chip_bus_sync_unlock(desc);
1634 		irq_remove_timings(desc);
1635 	}
1636 
1637 	mutex_unlock(&desc->request_mutex);
1638 
1639 	irq_chip_pm_put(&desc->irq_data);
1640 	module_put(desc->owner);
1641 	kfree(action->secondary);
1642 	return action;
1643 }
1644 
1645 /**
1646  *	remove_irq - free an interrupt
1647  *	@irq: Interrupt line to free
1648  *	@act: irqaction for the interrupt
1649  *
1650  * Used to remove interrupts statically setup by the early boot process.
1651  */
1652 void remove_irq(unsigned int irq, struct irqaction *act)
1653 {
1654 	struct irq_desc *desc = irq_to_desc(irq);
1655 
1656 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1657 		__free_irq(desc, act->dev_id);
1658 }
1659 EXPORT_SYMBOL_GPL(remove_irq);
1660 
1661 /**
1662  *	free_irq - free an interrupt allocated with request_irq
1663  *	@irq: Interrupt line to free
1664  *	@dev_id: Device identity to free
1665  *
1666  *	Remove an interrupt handler. The handler is removed and if the
1667  *	interrupt line is no longer in use by any driver it is disabled.
1668  *	On a shared IRQ the caller must ensure the interrupt is disabled
1669  *	on the card it drives before calling this function. The function
1670  *	does not return until any executing interrupts for this IRQ
1671  *	have completed.
1672  *
1673  *	This function must not be called from interrupt context.
1674  *
1675  *	Returns the devname argument passed to request_irq.
1676  */
1677 const void *free_irq(unsigned int irq, void *dev_id)
1678 {
1679 	struct irq_desc *desc = irq_to_desc(irq);
1680 	struct irqaction *action;
1681 	const char *devname;
1682 
1683 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1684 		return NULL;
1685 
1686 #ifdef CONFIG_SMP
1687 	if (WARN_ON(desc->affinity_notify))
1688 		desc->affinity_notify = NULL;
1689 #endif
1690 
1691 	action = __free_irq(desc, dev_id);
1692 
1693 	if (!action)
1694 		return NULL;
1695 
1696 	devname = action->name;
1697 	kfree(action);
1698 	return devname;
1699 }
1700 EXPORT_SYMBOL(free_irq);
1701 
1702 /**
1703  *	request_threaded_irq - allocate an interrupt line
1704  *	@irq: Interrupt line to allocate
1705  *	@handler: Function to be called when the IRQ occurs.
1706  *		  Primary handler for threaded interrupts
1707  *		  If NULL and thread_fn != NULL the default
1708  *		  primary handler is installed
1709  *	@thread_fn: Function called from the irq handler thread
1710  *		    If NULL, no irq thread is created
1711  *	@irqflags: Interrupt type flags
1712  *	@devname: An ascii name for the claiming device
1713  *	@dev_id: A cookie passed back to the handler function
1714  *
1715  *	This call allocates interrupt resources and enables the
1716  *	interrupt line and IRQ handling. From the point this
1717  *	call is made your handler function may be invoked. Since
1718  *	your handler function must clear any interrupt the board
1719  *	raises, you must take care both to initialise your hardware
1720  *	and to set up the interrupt handler in the right order.
1721  *
1722  *	If you want to set up a threaded irq handler for your device
1723  *	then you need to supply @handler and @thread_fn. @handler is
1724  *	still called in hard interrupt context and has to check
1725  *	whether the interrupt originates from the device. If yes it
1726  *	needs to disable the interrupt on the device and return
1727  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1728  *	@thread_fn. This split handler design is necessary to support
1729  *	shared interrupts.
1730  *
1731  *	Dev_id must be globally unique. Normally the address of the
1732  *	device data structure is used as the cookie. Since the handler
1733  *	receives this value it makes sense to use it.
1734  *
1735  *	If your interrupt is shared you must pass a non NULL dev_id
1736  *	as this is required when freeing the interrupt.
1737  *
1738  *	Flags:
1739  *
1740  *	IRQF_SHARED		Interrupt is shared
1741  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1742  *
1743  */
1744 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1745 			 irq_handler_t thread_fn, unsigned long irqflags,
1746 			 const char *devname, void *dev_id)
1747 {
1748 	struct irqaction *action;
1749 	struct irq_desc *desc;
1750 	int retval;
1751 
1752 	if (irq == IRQ_NOTCONNECTED)
1753 		return -ENOTCONN;
1754 
1755 	/*
1756 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1757 	 * otherwise we'll have trouble later trying to figure out
1758 	 * which interrupt is which (messes up the interrupt freeing
1759 	 * logic etc).
1760 	 *
1761 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1762 	 * it cannot be set along with IRQF_NO_SUSPEND.
1763 	 */
1764 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1765 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1766 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1767 		return -EINVAL;
1768 
1769 	desc = irq_to_desc(irq);
1770 	if (!desc)
1771 		return -EINVAL;
1772 
1773 	if (!irq_settings_can_request(desc) ||
1774 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1775 		return -EINVAL;
1776 
1777 	if (!handler) {
1778 		if (!thread_fn)
1779 			return -EINVAL;
1780 		handler = irq_default_primary_handler;
1781 	}
1782 
1783 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1784 	if (!action)
1785 		return -ENOMEM;
1786 
1787 	action->handler = handler;
1788 	action->thread_fn = thread_fn;
1789 	action->flags = irqflags;
1790 	action->name = devname;
1791 	action->dev_id = dev_id;
1792 
1793 	retval = irq_chip_pm_get(&desc->irq_data);
1794 	if (retval < 0) {
1795 		kfree(action);
1796 		return retval;
1797 	}
1798 
1799 	retval = __setup_irq(irq, desc, action);
1800 
1801 	if (retval) {
1802 		irq_chip_pm_put(&desc->irq_data);
1803 		kfree(action->secondary);
1804 		kfree(action);
1805 	}
1806 
1807 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1808 	if (!retval && (irqflags & IRQF_SHARED)) {
1809 		/*
1810 		 * It's a shared IRQ -- the driver ought to be prepared for it
1811 		 * to happen immediately, so let's make sure....
1812 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1813 		 * run in parallel with our fake.
1814 		 */
1815 		unsigned long flags;
1816 
1817 		disable_irq(irq);
1818 		local_irq_save(flags);
1819 
1820 		handler(irq, dev_id);
1821 
1822 		local_irq_restore(flags);
1823 		enable_irq(irq);
1824 	}
1825 #endif
1826 	return retval;
1827 }
1828 EXPORT_SYMBOL(request_threaded_irq);
1829 
1830 /**
1831  *	request_any_context_irq - allocate an interrupt line
1832  *	@irq: Interrupt line to allocate
1833  *	@handler: Function to be called when the IRQ occurs.
1834  *		  Threaded handler for threaded interrupts.
1835  *	@flags: Interrupt type flags
1836  *	@name: An ascii name for the claiming device
1837  *	@dev_id: A cookie passed back to the handler function
1838  *
1839  *	This call allocates interrupt resources and enables the
1840  *	interrupt line and IRQ handling. It selects either a
1841  *	hardirq or threaded handling method depending on the
1842  *	context.
1843  *
1844  *	On failure, it returns a negative value. On success,
1845  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1846  */
1847 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1848 			    unsigned long flags, const char *name, void *dev_id)
1849 {
1850 	struct irq_desc *desc;
1851 	int ret;
1852 
1853 	if (irq == IRQ_NOTCONNECTED)
1854 		return -ENOTCONN;
1855 
1856 	desc = irq_to_desc(irq);
1857 	if (!desc)
1858 		return -EINVAL;
1859 
1860 	if (irq_settings_is_nested_thread(desc)) {
1861 		ret = request_threaded_irq(irq, NULL, handler,
1862 					   flags, name, dev_id);
1863 		return !ret ? IRQC_IS_NESTED : ret;
1864 	}
1865 
1866 	ret = request_irq(irq, handler, flags, name, dev_id);
1867 	return !ret ? IRQC_IS_HARDIRQ : ret;
1868 }
1869 EXPORT_SYMBOL_GPL(request_any_context_irq);
1870 
1871 void enable_percpu_irq(unsigned int irq, unsigned int type)
1872 {
1873 	unsigned int cpu = smp_processor_id();
1874 	unsigned long flags;
1875 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1876 
1877 	if (!desc)
1878 		return;
1879 
1880 	/*
1881 	 * If the trigger type is not specified by the caller, then
1882 	 * use the default for this interrupt.
1883 	 */
1884 	type &= IRQ_TYPE_SENSE_MASK;
1885 	if (type == IRQ_TYPE_NONE)
1886 		type = irqd_get_trigger_type(&desc->irq_data);
1887 
1888 	if (type != IRQ_TYPE_NONE) {
1889 		int ret;
1890 
1891 		ret = __irq_set_trigger(desc, type);
1892 
1893 		if (ret) {
1894 			WARN(1, "failed to set type for IRQ%d\n", irq);
1895 			goto out;
1896 		}
1897 	}
1898 
1899 	irq_percpu_enable(desc, cpu);
1900 out:
1901 	irq_put_desc_unlock(desc, flags);
1902 }
1903 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1904 
1905 /**
1906  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1907  * @irq:	Linux irq number to check for
1908  *
1909  * Must be called from a non migratable context. Returns the enable
1910  * state of a per cpu interrupt on the current cpu.
1911  */
1912 bool irq_percpu_is_enabled(unsigned int irq)
1913 {
1914 	unsigned int cpu = smp_processor_id();
1915 	struct irq_desc *desc;
1916 	unsigned long flags;
1917 	bool is_enabled;
1918 
1919 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1920 	if (!desc)
1921 		return false;
1922 
1923 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1924 	irq_put_desc_unlock(desc, flags);
1925 
1926 	return is_enabled;
1927 }
1928 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1929 
1930 void disable_percpu_irq(unsigned int irq)
1931 {
1932 	unsigned int cpu = smp_processor_id();
1933 	unsigned long flags;
1934 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1935 
1936 	if (!desc)
1937 		return;
1938 
1939 	irq_percpu_disable(desc, cpu);
1940 	irq_put_desc_unlock(desc, flags);
1941 }
1942 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1943 
1944 /*
1945  * Internal function to unregister a percpu irqaction.
1946  */
1947 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1948 {
1949 	struct irq_desc *desc = irq_to_desc(irq);
1950 	struct irqaction *action;
1951 	unsigned long flags;
1952 
1953 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1954 
1955 	if (!desc)
1956 		return NULL;
1957 
1958 	raw_spin_lock_irqsave(&desc->lock, flags);
1959 
1960 	action = desc->action;
1961 	if (!action || action->percpu_dev_id != dev_id) {
1962 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1963 		goto bad;
1964 	}
1965 
1966 	if (!cpumask_empty(desc->percpu_enabled)) {
1967 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1968 		     irq, cpumask_first(desc->percpu_enabled));
1969 		goto bad;
1970 	}
1971 
1972 	/* Found it - now remove it from the list of entries: */
1973 	desc->action = NULL;
1974 
1975 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1976 
1977 	unregister_handler_proc(irq, action);
1978 
1979 	irq_chip_pm_put(&desc->irq_data);
1980 	module_put(desc->owner);
1981 	return action;
1982 
1983 bad:
1984 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1985 	return NULL;
1986 }
1987 
1988 /**
1989  *	remove_percpu_irq - free a per-cpu interrupt
1990  *	@irq: Interrupt line to free
1991  *	@act: irqaction for the interrupt
1992  *
1993  * Used to remove interrupts statically setup by the early boot process.
1994  */
1995 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1996 {
1997 	struct irq_desc *desc = irq_to_desc(irq);
1998 
1999 	if (desc && irq_settings_is_per_cpu_devid(desc))
2000 	    __free_percpu_irq(irq, act->percpu_dev_id);
2001 }
2002 
2003 /**
2004  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2005  *	@irq: Interrupt line to free
2006  *	@dev_id: Device identity to free
2007  *
2008  *	Remove a percpu interrupt handler. The handler is removed, but
2009  *	the interrupt line is not disabled. This must be done on each
2010  *	CPU before calling this function. The function does not return
2011  *	until any executing interrupts for this IRQ have completed.
2012  *
2013  *	This function must not be called from interrupt context.
2014  */
2015 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2016 {
2017 	struct irq_desc *desc = irq_to_desc(irq);
2018 
2019 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2020 		return;
2021 
2022 	chip_bus_lock(desc);
2023 	kfree(__free_percpu_irq(irq, dev_id));
2024 	chip_bus_sync_unlock(desc);
2025 }
2026 EXPORT_SYMBOL_GPL(free_percpu_irq);
2027 
2028 /**
2029  *	setup_percpu_irq - setup a per-cpu interrupt
2030  *	@irq: Interrupt line to setup
2031  *	@act: irqaction for the interrupt
2032  *
2033  * Used to statically setup per-cpu interrupts in the early boot process.
2034  */
2035 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2036 {
2037 	struct irq_desc *desc = irq_to_desc(irq);
2038 	int retval;
2039 
2040 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2041 		return -EINVAL;
2042 
2043 	retval = irq_chip_pm_get(&desc->irq_data);
2044 	if (retval < 0)
2045 		return retval;
2046 
2047 	retval = __setup_irq(irq, desc, act);
2048 
2049 	if (retval)
2050 		irq_chip_pm_put(&desc->irq_data);
2051 
2052 	return retval;
2053 }
2054 
2055 /**
2056  *	__request_percpu_irq - allocate a percpu interrupt line
2057  *	@irq: Interrupt line to allocate
2058  *	@handler: Function to be called when the IRQ occurs.
2059  *	@flags: Interrupt type flags (IRQF_TIMER only)
2060  *	@devname: An ascii name for the claiming device
2061  *	@dev_id: A percpu cookie passed back to the handler function
2062  *
2063  *	This call allocates interrupt resources and enables the
2064  *	interrupt on the local CPU. If the interrupt is supposed to be
2065  *	enabled on other CPUs, it has to be done on each CPU using
2066  *	enable_percpu_irq().
2067  *
2068  *	Dev_id must be globally unique. It is a per-cpu variable, and
2069  *	the handler gets called with the interrupted CPU's instance of
2070  *	that variable.
2071  */
2072 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2073 			 unsigned long flags, const char *devname,
2074 			 void __percpu *dev_id)
2075 {
2076 	struct irqaction *action;
2077 	struct irq_desc *desc;
2078 	int retval;
2079 
2080 	if (!dev_id)
2081 		return -EINVAL;
2082 
2083 	desc = irq_to_desc(irq);
2084 	if (!desc || !irq_settings_can_request(desc) ||
2085 	    !irq_settings_is_per_cpu_devid(desc))
2086 		return -EINVAL;
2087 
2088 	if (flags && flags != IRQF_TIMER)
2089 		return -EINVAL;
2090 
2091 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2092 	if (!action)
2093 		return -ENOMEM;
2094 
2095 	action->handler = handler;
2096 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2097 	action->name = devname;
2098 	action->percpu_dev_id = dev_id;
2099 
2100 	retval = irq_chip_pm_get(&desc->irq_data);
2101 	if (retval < 0) {
2102 		kfree(action);
2103 		return retval;
2104 	}
2105 
2106 	retval = __setup_irq(irq, desc, action);
2107 
2108 	if (retval) {
2109 		irq_chip_pm_put(&desc->irq_data);
2110 		kfree(action);
2111 	}
2112 
2113 	return retval;
2114 }
2115 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2116 
2117 /**
2118  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2119  *	@irq: Interrupt line that is forwarded to a VM
2120  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2121  *	@state: a pointer to a boolean where the state is to be storeed
2122  *
2123  *	This call snapshots the internal irqchip state of an
2124  *	interrupt, returning into @state the bit corresponding to
2125  *	stage @which
2126  *
2127  *	This function should be called with preemption disabled if the
2128  *	interrupt controller has per-cpu registers.
2129  */
2130 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2131 			  bool *state)
2132 {
2133 	struct irq_desc *desc;
2134 	struct irq_data *data;
2135 	struct irq_chip *chip;
2136 	unsigned long flags;
2137 	int err = -EINVAL;
2138 
2139 	desc = irq_get_desc_buslock(irq, &flags, 0);
2140 	if (!desc)
2141 		return err;
2142 
2143 	data = irq_desc_get_irq_data(desc);
2144 
2145 	do {
2146 		chip = irq_data_get_irq_chip(data);
2147 		if (chip->irq_get_irqchip_state)
2148 			break;
2149 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2150 		data = data->parent_data;
2151 #else
2152 		data = NULL;
2153 #endif
2154 	} while (data);
2155 
2156 	if (data)
2157 		err = chip->irq_get_irqchip_state(data, which, state);
2158 
2159 	irq_put_desc_busunlock(desc, flags);
2160 	return err;
2161 }
2162 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2163 
2164 /**
2165  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2166  *	@irq: Interrupt line that is forwarded to a VM
2167  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2168  *	@val: Value corresponding to @which
2169  *
2170  *	This call sets the internal irqchip state of an interrupt,
2171  *	depending on the value of @which.
2172  *
2173  *	This function should be called with preemption disabled if the
2174  *	interrupt controller has per-cpu registers.
2175  */
2176 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2177 			  bool val)
2178 {
2179 	struct irq_desc *desc;
2180 	struct irq_data *data;
2181 	struct irq_chip *chip;
2182 	unsigned long flags;
2183 	int err = -EINVAL;
2184 
2185 	desc = irq_get_desc_buslock(irq, &flags, 0);
2186 	if (!desc)
2187 		return err;
2188 
2189 	data = irq_desc_get_irq_data(desc);
2190 
2191 	do {
2192 		chip = irq_data_get_irq_chip(data);
2193 		if (chip->irq_set_irqchip_state)
2194 			break;
2195 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2196 		data = data->parent_data;
2197 #else
2198 		data = NULL;
2199 #endif
2200 	} while (data);
2201 
2202 	if (data)
2203 		err = chip->irq_set_irqchip_state(data, which, val);
2204 
2205 	irq_put_desc_busunlock(desc, flags);
2206 	return err;
2207 }
2208 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2209