xref: /openbmc/linux/kernel/irq/manage.c (revision a86854d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 					   const struct cpumask *dest)
211 {
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 
214 	irqd_set_move_pending(data);
215 	irq_copy_pending(desc, dest);
216 	return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 					   const struct cpumask *dest)
221 {
222 	return -EBUSY;
223 }
224 #endif
225 
226 static int irq_try_set_affinity(struct irq_data *data,
227 				const struct cpumask *dest, bool force)
228 {
229 	int ret = irq_do_set_affinity(data, dest, force);
230 
231 	/*
232 	 * In case that the underlying vector management is busy and the
233 	 * architecture supports the generic pending mechanism then utilize
234 	 * this to avoid returning an error to user space.
235 	 */
236 	if (ret == -EBUSY && !force)
237 		ret = irq_set_affinity_pending(data, dest);
238 	return ret;
239 }
240 
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 			    bool force)
243 {
244 	struct irq_chip *chip = irq_data_get_irq_chip(data);
245 	struct irq_desc *desc = irq_data_to_desc(data);
246 	int ret = 0;
247 
248 	if (!chip || !chip->irq_set_affinity)
249 		return -EINVAL;
250 
251 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 		ret = irq_try_set_affinity(data, mask, force);
253 	} else {
254 		irqd_set_move_pending(data);
255 		irq_copy_pending(desc, mask);
256 	}
257 
258 	if (desc->affinity_notify) {
259 		kref_get(&desc->affinity_notify->kref);
260 		schedule_work(&desc->affinity_notify->work);
261 	}
262 	irqd_set(data, IRQD_AFFINITY_SET);
263 
264 	return ret;
265 }
266 
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 	struct irq_desc *desc = irq_to_desc(irq);
270 	unsigned long flags;
271 	int ret;
272 
273 	if (!desc)
274 		return -EINVAL;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 	raw_spin_unlock_irqrestore(&desc->lock, flags);
279 	return ret;
280 }
281 
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 	unsigned long flags;
285 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286 
287 	if (!desc)
288 		return -EINVAL;
289 	desc->affinity_hint = m;
290 	irq_put_desc_unlock(desc, flags);
291 	/* set the initial affinity to prevent every interrupt being on CPU0 */
292 	if (m)
293 		__irq_set_affinity(irq, m, false);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297 
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 	struct irq_affinity_notify *notify =
301 		container_of(work, struct irq_affinity_notify, work);
302 	struct irq_desc *desc = irq_to_desc(notify->irq);
303 	cpumask_var_t cpumask;
304 	unsigned long flags;
305 
306 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 		goto out;
308 
309 	raw_spin_lock_irqsave(&desc->lock, flags);
310 	if (irq_move_pending(&desc->irq_data))
311 		irq_get_pending(cpumask, desc);
312 	else
313 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 	raw_spin_unlock_irqrestore(&desc->lock, flags);
315 
316 	notify->notify(notify, cpumask);
317 
318 	free_cpumask_var(cpumask);
319 out:
320 	kref_put(&notify->kref, notify->release);
321 }
322 
323 /**
324  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *	@irq:		Interrupt for which to enable/disable notification
326  *	@notify:	Context for notification, or %NULL to disable
327  *			notification.  Function pointers must be initialised;
328  *			the other fields will be initialised by this function.
329  *
330  *	Must be called in process context.  Notification may only be enabled
331  *	after the IRQ is allocated and must be disabled before the IRQ is
332  *	freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	struct irq_affinity_notify *old_notify;
339 	unsigned long flags;
340 
341 	/* The release function is promised process context */
342 	might_sleep();
343 
344 	if (!desc)
345 		return -EINVAL;
346 
347 	/* Complete initialisation of *notify */
348 	if (notify) {
349 		notify->irq = irq;
350 		kref_init(&notify->kref);
351 		INIT_WORK(&notify->work, irq_affinity_notify);
352 	}
353 
354 	raw_spin_lock_irqsave(&desc->lock, flags);
355 	old_notify = desc->affinity_notify;
356 	desc->affinity_notify = notify;
357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
358 
359 	if (old_notify)
360 		kref_put(&old_notify->kref, old_notify->release);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365 
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 	struct cpumask *set = irq_default_affinity;
373 	int ret, node = irq_desc_get_node(desc);
374 	static DEFINE_RAW_SPINLOCK(mask_lock);
375 	static struct cpumask mask;
376 
377 	/* Excludes PER_CPU and NO_BALANCE interrupts */
378 	if (!__irq_can_set_affinity(desc))
379 		return 0;
380 
381 	raw_spin_lock(&mask_lock);
382 	/*
383 	 * Preserve the managed affinity setting and a userspace affinity
384 	 * setup, but make sure that one of the targets is online.
385 	 */
386 	if (irqd_affinity_is_managed(&desc->irq_data) ||
387 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 		if (cpumask_intersects(desc->irq_common_data.affinity,
389 				       cpu_online_mask))
390 			set = desc->irq_common_data.affinity;
391 		else
392 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 	}
394 
395 	cpumask_and(&mask, cpu_online_mask, set);
396 	if (node != NUMA_NO_NODE) {
397 		const struct cpumask *nodemask = cpumask_of_node(node);
398 
399 		/* make sure at least one of the cpus in nodemask is online */
400 		if (cpumask_intersects(&mask, nodemask))
401 			cpumask_and(&mask, &mask, nodemask);
402 	}
403 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404 	raw_spin_unlock(&mask_lock);
405 	return ret;
406 }
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
410 {
411 	return irq_select_affinity(irq_desc_get_irq(desc));
412 }
413 #endif
414 
415 /*
416  * Called when a bogus affinity is set via /proc/irq
417  */
418 int irq_select_affinity_usr(unsigned int irq)
419 {
420 	struct irq_desc *desc = irq_to_desc(irq);
421 	unsigned long flags;
422 	int ret;
423 
424 	raw_spin_lock_irqsave(&desc->lock, flags);
425 	ret = irq_setup_affinity(desc);
426 	raw_spin_unlock_irqrestore(&desc->lock, flags);
427 	return ret;
428 }
429 #endif
430 
431 /**
432  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433  *	@irq: interrupt number to set affinity
434  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435  *	            specific data for percpu_devid interrupts
436  *
437  *	This function uses the vCPU specific data to set the vCPU
438  *	affinity for an irq. The vCPU specific data is passed from
439  *	outside, such as KVM. One example code path is as below:
440  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
441  */
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
443 {
444 	unsigned long flags;
445 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446 	struct irq_data *data;
447 	struct irq_chip *chip;
448 	int ret = -ENOSYS;
449 
450 	if (!desc)
451 		return -EINVAL;
452 
453 	data = irq_desc_get_irq_data(desc);
454 	do {
455 		chip = irq_data_get_irq_chip(data);
456 		if (chip && chip->irq_set_vcpu_affinity)
457 			break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459 		data = data->parent_data;
460 #else
461 		data = NULL;
462 #endif
463 	} while (data);
464 
465 	if (data)
466 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467 	irq_put_desc_unlock(desc, flags);
468 
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
472 
473 void __disable_irq(struct irq_desc *desc)
474 {
475 	if (!desc->depth++)
476 		irq_disable(desc);
477 }
478 
479 static int __disable_irq_nosync(unsigned int irq)
480 {
481 	unsigned long flags;
482 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
483 
484 	if (!desc)
485 		return -EINVAL;
486 	__disable_irq(desc);
487 	irq_put_desc_busunlock(desc, flags);
488 	return 0;
489 }
490 
491 /**
492  *	disable_irq_nosync - disable an irq without waiting
493  *	@irq: Interrupt to disable
494  *
495  *	Disable the selected interrupt line.  Disables and Enables are
496  *	nested.
497  *	Unlike disable_irq(), this function does not ensure existing
498  *	instances of the IRQ handler have completed before returning.
499  *
500  *	This function may be called from IRQ context.
501  */
502 void disable_irq_nosync(unsigned int irq)
503 {
504 	__disable_irq_nosync(irq);
505 }
506 EXPORT_SYMBOL(disable_irq_nosync);
507 
508 /**
509  *	disable_irq - disable an irq and wait for completion
510  *	@irq: Interrupt to disable
511  *
512  *	Disable the selected interrupt line.  Enables and Disables are
513  *	nested.
514  *	This function waits for any pending IRQ handlers for this interrupt
515  *	to complete before returning. If you use this function while
516  *	holding a resource the IRQ handler may need you will deadlock.
517  *
518  *	This function may be called - with care - from IRQ context.
519  */
520 void disable_irq(unsigned int irq)
521 {
522 	if (!__disable_irq_nosync(irq))
523 		synchronize_irq(irq);
524 }
525 EXPORT_SYMBOL(disable_irq);
526 
527 /**
528  *	disable_hardirq - disables an irq and waits for hardirq completion
529  *	@irq: Interrupt to disable
530  *
531  *	Disable the selected interrupt line.  Enables and Disables are
532  *	nested.
533  *	This function waits for any pending hard IRQ handlers for this
534  *	interrupt to complete before returning. If you use this function while
535  *	holding a resource the hard IRQ handler may need you will deadlock.
536  *
537  *	When used to optimistically disable an interrupt from atomic context
538  *	the return value must be checked.
539  *
540  *	Returns: false if a threaded handler is active.
541  *
542  *	This function may be called - with care - from IRQ context.
543  */
544 bool disable_hardirq(unsigned int irq)
545 {
546 	if (!__disable_irq_nosync(irq))
547 		return synchronize_hardirq(irq);
548 
549 	return false;
550 }
551 EXPORT_SYMBOL_GPL(disable_hardirq);
552 
553 void __enable_irq(struct irq_desc *desc)
554 {
555 	switch (desc->depth) {
556 	case 0:
557  err_out:
558 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559 		     irq_desc_get_irq(desc));
560 		break;
561 	case 1: {
562 		if (desc->istate & IRQS_SUSPENDED)
563 			goto err_out;
564 		/* Prevent probing on this irq: */
565 		irq_settings_set_noprobe(desc);
566 		/*
567 		 * Call irq_startup() not irq_enable() here because the
568 		 * interrupt might be marked NOAUTOEN. So irq_startup()
569 		 * needs to be invoked when it gets enabled the first
570 		 * time. If it was already started up, then irq_startup()
571 		 * will invoke irq_enable() under the hood.
572 		 */
573 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574 		break;
575 	}
576 	default:
577 		desc->depth--;
578 	}
579 }
580 
581 /**
582  *	enable_irq - enable handling of an irq
583  *	@irq: Interrupt to enable
584  *
585  *	Undoes the effect of one call to disable_irq().  If this
586  *	matches the last disable, processing of interrupts on this
587  *	IRQ line is re-enabled.
588  *
589  *	This function may be called from IRQ context only when
590  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
591  */
592 void enable_irq(unsigned int irq)
593 {
594 	unsigned long flags;
595 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
596 
597 	if (!desc)
598 		return;
599 	if (WARN(!desc->irq_data.chip,
600 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601 		goto out;
602 
603 	__enable_irq(desc);
604 out:
605 	irq_put_desc_busunlock(desc, flags);
606 }
607 EXPORT_SYMBOL(enable_irq);
608 
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
610 {
611 	struct irq_desc *desc = irq_to_desc(irq);
612 	int ret = -ENXIO;
613 
614 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
615 		return 0;
616 
617 	if (desc->irq_data.chip->irq_set_wake)
618 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
619 
620 	return ret;
621 }
622 
623 /**
624  *	irq_set_irq_wake - control irq power management wakeup
625  *	@irq:	interrupt to control
626  *	@on:	enable/disable power management wakeup
627  *
628  *	Enable/disable power management wakeup mode, which is
629  *	disabled by default.  Enables and disables must match,
630  *	just as they match for non-wakeup mode support.
631  *
632  *	Wakeup mode lets this IRQ wake the system from sleep
633  *	states like "suspend to RAM".
634  */
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
636 {
637 	unsigned long flags;
638 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639 	int ret = 0;
640 
641 	if (!desc)
642 		return -EINVAL;
643 
644 	/* wakeup-capable irqs can be shared between drivers that
645 	 * don't need to have the same sleep mode behaviors.
646 	 */
647 	if (on) {
648 		if (desc->wake_depth++ == 0) {
649 			ret = set_irq_wake_real(irq, on);
650 			if (ret)
651 				desc->wake_depth = 0;
652 			else
653 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
654 		}
655 	} else {
656 		if (desc->wake_depth == 0) {
657 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658 		} else if (--desc->wake_depth == 0) {
659 			ret = set_irq_wake_real(irq, on);
660 			if (ret)
661 				desc->wake_depth = 1;
662 			else
663 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
664 		}
665 	}
666 	irq_put_desc_busunlock(desc, flags);
667 	return ret;
668 }
669 EXPORT_SYMBOL(irq_set_irq_wake);
670 
671 /*
672  * Internal function that tells the architecture code whether a
673  * particular irq has been exclusively allocated or is available
674  * for driver use.
675  */
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
677 {
678 	unsigned long flags;
679 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680 	int canrequest = 0;
681 
682 	if (!desc)
683 		return 0;
684 
685 	if (irq_settings_can_request(desc)) {
686 		if (!desc->action ||
687 		    irqflags & desc->action->flags & IRQF_SHARED)
688 			canrequest = 1;
689 	}
690 	irq_put_desc_unlock(desc, flags);
691 	return canrequest;
692 }
693 
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
695 {
696 	struct irq_chip *chip = desc->irq_data.chip;
697 	int ret, unmask = 0;
698 
699 	if (!chip || !chip->irq_set_type) {
700 		/*
701 		 * IRQF_TRIGGER_* but the PIC does not support multiple
702 		 * flow-types?
703 		 */
704 		pr_debug("No set_type function for IRQ %d (%s)\n",
705 			 irq_desc_get_irq(desc),
706 			 chip ? (chip->name ? : "unknown") : "unknown");
707 		return 0;
708 	}
709 
710 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711 		if (!irqd_irq_masked(&desc->irq_data))
712 			mask_irq(desc);
713 		if (!irqd_irq_disabled(&desc->irq_data))
714 			unmask = 1;
715 	}
716 
717 	/* Mask all flags except trigger mode */
718 	flags &= IRQ_TYPE_SENSE_MASK;
719 	ret = chip->irq_set_type(&desc->irq_data, flags);
720 
721 	switch (ret) {
722 	case IRQ_SET_MASK_OK:
723 	case IRQ_SET_MASK_OK_DONE:
724 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725 		irqd_set(&desc->irq_data, flags);
726 
727 	case IRQ_SET_MASK_OK_NOCOPY:
728 		flags = irqd_get_trigger_type(&desc->irq_data);
729 		irq_settings_set_trigger_mask(desc, flags);
730 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
731 		irq_settings_clr_level(desc);
732 		if (flags & IRQ_TYPE_LEVEL_MASK) {
733 			irq_settings_set_level(desc);
734 			irqd_set(&desc->irq_data, IRQD_LEVEL);
735 		}
736 
737 		ret = 0;
738 		break;
739 	default:
740 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
742 	}
743 	if (unmask)
744 		unmask_irq(desc);
745 	return ret;
746 }
747 
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
750 {
751 	unsigned long flags;
752 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
753 
754 	if (!desc)
755 		return -EINVAL;
756 
757 	desc->parent_irq = parent_irq;
758 
759 	irq_put_desc_unlock(desc, flags);
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
764 
765 /*
766  * Default primary interrupt handler for threaded interrupts. Is
767  * assigned as primary handler when request_threaded_irq is called
768  * with handler == NULL. Useful for oneshot interrupts.
769  */
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
771 {
772 	return IRQ_WAKE_THREAD;
773 }
774 
775 /*
776  * Primary handler for nested threaded interrupts. Should never be
777  * called.
778  */
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
780 {
781 	WARN(1, "Primary handler called for nested irq %d\n", irq);
782 	return IRQ_NONE;
783 }
784 
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
786 {
787 	WARN(1, "Secondary action handler called for irq %d\n", irq);
788 	return IRQ_NONE;
789 }
790 
791 static int irq_wait_for_interrupt(struct irqaction *action)
792 {
793 	set_current_state(TASK_INTERRUPTIBLE);
794 
795 	while (!kthread_should_stop()) {
796 
797 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
798 				       &action->thread_flags)) {
799 			__set_current_state(TASK_RUNNING);
800 			return 0;
801 		}
802 		schedule();
803 		set_current_state(TASK_INTERRUPTIBLE);
804 	}
805 	__set_current_state(TASK_RUNNING);
806 	return -1;
807 }
808 
809 /*
810  * Oneshot interrupts keep the irq line masked until the threaded
811  * handler finished. unmask if the interrupt has not been disabled and
812  * is marked MASKED.
813  */
814 static void irq_finalize_oneshot(struct irq_desc *desc,
815 				 struct irqaction *action)
816 {
817 	if (!(desc->istate & IRQS_ONESHOT) ||
818 	    action->handler == irq_forced_secondary_handler)
819 		return;
820 again:
821 	chip_bus_lock(desc);
822 	raw_spin_lock_irq(&desc->lock);
823 
824 	/*
825 	 * Implausible though it may be we need to protect us against
826 	 * the following scenario:
827 	 *
828 	 * The thread is faster done than the hard interrupt handler
829 	 * on the other CPU. If we unmask the irq line then the
830 	 * interrupt can come in again and masks the line, leaves due
831 	 * to IRQS_INPROGRESS and the irq line is masked forever.
832 	 *
833 	 * This also serializes the state of shared oneshot handlers
834 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
835 	 * irq_wake_thread(). See the comment there which explains the
836 	 * serialization.
837 	 */
838 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
839 		raw_spin_unlock_irq(&desc->lock);
840 		chip_bus_sync_unlock(desc);
841 		cpu_relax();
842 		goto again;
843 	}
844 
845 	/*
846 	 * Now check again, whether the thread should run. Otherwise
847 	 * we would clear the threads_oneshot bit of this thread which
848 	 * was just set.
849 	 */
850 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
851 		goto out_unlock;
852 
853 	desc->threads_oneshot &= ~action->thread_mask;
854 
855 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
856 	    irqd_irq_masked(&desc->irq_data))
857 		unmask_threaded_irq(desc);
858 
859 out_unlock:
860 	raw_spin_unlock_irq(&desc->lock);
861 	chip_bus_sync_unlock(desc);
862 }
863 
864 #ifdef CONFIG_SMP
865 /*
866  * Check whether we need to change the affinity of the interrupt thread.
867  */
868 static void
869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
870 {
871 	cpumask_var_t mask;
872 	bool valid = true;
873 
874 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
875 		return;
876 
877 	/*
878 	 * In case we are out of memory we set IRQTF_AFFINITY again and
879 	 * try again next time
880 	 */
881 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
882 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
883 		return;
884 	}
885 
886 	raw_spin_lock_irq(&desc->lock);
887 	/*
888 	 * This code is triggered unconditionally. Check the affinity
889 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
890 	 */
891 	if (cpumask_available(desc->irq_common_data.affinity)) {
892 		const struct cpumask *m;
893 
894 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
895 		cpumask_copy(mask, m);
896 	} else {
897 		valid = false;
898 	}
899 	raw_spin_unlock_irq(&desc->lock);
900 
901 	if (valid)
902 		set_cpus_allowed_ptr(current, mask);
903 	free_cpumask_var(mask);
904 }
905 #else
906 static inline void
907 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
908 #endif
909 
910 /*
911  * Interrupts which are not explicitely requested as threaded
912  * interrupts rely on the implicit bh/preempt disable of the hard irq
913  * context. So we need to disable bh here to avoid deadlocks and other
914  * side effects.
915  */
916 static irqreturn_t
917 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
918 {
919 	irqreturn_t ret;
920 
921 	local_bh_disable();
922 	ret = action->thread_fn(action->irq, action->dev_id);
923 	irq_finalize_oneshot(desc, action);
924 	local_bh_enable();
925 	return ret;
926 }
927 
928 /*
929  * Interrupts explicitly requested as threaded interrupts want to be
930  * preemtible - many of them need to sleep and wait for slow busses to
931  * complete.
932  */
933 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
934 		struct irqaction *action)
935 {
936 	irqreturn_t ret;
937 
938 	ret = action->thread_fn(action->irq, action->dev_id);
939 	irq_finalize_oneshot(desc, action);
940 	return ret;
941 }
942 
943 static void wake_threads_waitq(struct irq_desc *desc)
944 {
945 	if (atomic_dec_and_test(&desc->threads_active))
946 		wake_up(&desc->wait_for_threads);
947 }
948 
949 static void irq_thread_dtor(struct callback_head *unused)
950 {
951 	struct task_struct *tsk = current;
952 	struct irq_desc *desc;
953 	struct irqaction *action;
954 
955 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
956 		return;
957 
958 	action = kthread_data(tsk);
959 
960 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
961 	       tsk->comm, tsk->pid, action->irq);
962 
963 
964 	desc = irq_to_desc(action->irq);
965 	/*
966 	 * If IRQTF_RUNTHREAD is set, we need to decrement
967 	 * desc->threads_active and wake possible waiters.
968 	 */
969 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
970 		wake_threads_waitq(desc);
971 
972 	/* Prevent a stale desc->threads_oneshot */
973 	irq_finalize_oneshot(desc, action);
974 }
975 
976 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
977 {
978 	struct irqaction *secondary = action->secondary;
979 
980 	if (WARN_ON_ONCE(!secondary))
981 		return;
982 
983 	raw_spin_lock_irq(&desc->lock);
984 	__irq_wake_thread(desc, secondary);
985 	raw_spin_unlock_irq(&desc->lock);
986 }
987 
988 /*
989  * Interrupt handler thread
990  */
991 static int irq_thread(void *data)
992 {
993 	struct callback_head on_exit_work;
994 	struct irqaction *action = data;
995 	struct irq_desc *desc = irq_to_desc(action->irq);
996 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
997 			struct irqaction *action);
998 
999 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1000 					&action->thread_flags))
1001 		handler_fn = irq_forced_thread_fn;
1002 	else
1003 		handler_fn = irq_thread_fn;
1004 
1005 	init_task_work(&on_exit_work, irq_thread_dtor);
1006 	task_work_add(current, &on_exit_work, false);
1007 
1008 	irq_thread_check_affinity(desc, action);
1009 
1010 	while (!irq_wait_for_interrupt(action)) {
1011 		irqreturn_t action_ret;
1012 
1013 		irq_thread_check_affinity(desc, action);
1014 
1015 		action_ret = handler_fn(desc, action);
1016 		if (action_ret == IRQ_HANDLED)
1017 			atomic_inc(&desc->threads_handled);
1018 		if (action_ret == IRQ_WAKE_THREAD)
1019 			irq_wake_secondary(desc, action);
1020 
1021 		wake_threads_waitq(desc);
1022 	}
1023 
1024 	/*
1025 	 * This is the regular exit path. __free_irq() is stopping the
1026 	 * thread via kthread_stop() after calling
1027 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
1028 	 * oneshot mask bit can be set. We cannot verify that as we
1029 	 * cannot touch the oneshot mask at this point anymore as
1030 	 * __setup_irq() might have given out currents thread_mask
1031 	 * again.
1032 	 */
1033 	task_work_cancel(current, irq_thread_dtor);
1034 	return 0;
1035 }
1036 
1037 /**
1038  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1039  *	@irq:		Interrupt line
1040  *	@dev_id:	Device identity for which the thread should be woken
1041  *
1042  */
1043 void irq_wake_thread(unsigned int irq, void *dev_id)
1044 {
1045 	struct irq_desc *desc = irq_to_desc(irq);
1046 	struct irqaction *action;
1047 	unsigned long flags;
1048 
1049 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1050 		return;
1051 
1052 	raw_spin_lock_irqsave(&desc->lock, flags);
1053 	for_each_action_of_desc(desc, action) {
1054 		if (action->dev_id == dev_id) {
1055 			if (action->thread)
1056 				__irq_wake_thread(desc, action);
1057 			break;
1058 		}
1059 	}
1060 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1061 }
1062 EXPORT_SYMBOL_GPL(irq_wake_thread);
1063 
1064 static int irq_setup_forced_threading(struct irqaction *new)
1065 {
1066 	if (!force_irqthreads)
1067 		return 0;
1068 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1069 		return 0;
1070 
1071 	new->flags |= IRQF_ONESHOT;
1072 
1073 	/*
1074 	 * Handle the case where we have a real primary handler and a
1075 	 * thread handler. We force thread them as well by creating a
1076 	 * secondary action.
1077 	 */
1078 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1079 		/* Allocate the secondary action */
1080 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1081 		if (!new->secondary)
1082 			return -ENOMEM;
1083 		new->secondary->handler = irq_forced_secondary_handler;
1084 		new->secondary->thread_fn = new->thread_fn;
1085 		new->secondary->dev_id = new->dev_id;
1086 		new->secondary->irq = new->irq;
1087 		new->secondary->name = new->name;
1088 	}
1089 	/* Deal with the primary handler */
1090 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1091 	new->thread_fn = new->handler;
1092 	new->handler = irq_default_primary_handler;
1093 	return 0;
1094 }
1095 
1096 static int irq_request_resources(struct irq_desc *desc)
1097 {
1098 	struct irq_data *d = &desc->irq_data;
1099 	struct irq_chip *c = d->chip;
1100 
1101 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1102 }
1103 
1104 static void irq_release_resources(struct irq_desc *desc)
1105 {
1106 	struct irq_data *d = &desc->irq_data;
1107 	struct irq_chip *c = d->chip;
1108 
1109 	if (c->irq_release_resources)
1110 		c->irq_release_resources(d);
1111 }
1112 
1113 static int
1114 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1115 {
1116 	struct task_struct *t;
1117 	struct sched_param param = {
1118 		.sched_priority = MAX_USER_RT_PRIO/2,
1119 	};
1120 
1121 	if (!secondary) {
1122 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1123 				   new->name);
1124 	} else {
1125 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1126 				   new->name);
1127 		param.sched_priority -= 1;
1128 	}
1129 
1130 	if (IS_ERR(t))
1131 		return PTR_ERR(t);
1132 
1133 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1134 
1135 	/*
1136 	 * We keep the reference to the task struct even if
1137 	 * the thread dies to avoid that the interrupt code
1138 	 * references an already freed task_struct.
1139 	 */
1140 	get_task_struct(t);
1141 	new->thread = t;
1142 	/*
1143 	 * Tell the thread to set its affinity. This is
1144 	 * important for shared interrupt handlers as we do
1145 	 * not invoke setup_affinity() for the secondary
1146 	 * handlers as everything is already set up. Even for
1147 	 * interrupts marked with IRQF_NO_BALANCE this is
1148 	 * correct as we want the thread to move to the cpu(s)
1149 	 * on which the requesting code placed the interrupt.
1150 	 */
1151 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Internal function to register an irqaction - typically used to
1157  * allocate special interrupts that are part of the architecture.
1158  *
1159  * Locking rules:
1160  *
1161  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1162  *   chip_bus_lock	Provides serialization for slow bus operations
1163  *     desc->lock	Provides serialization against hard interrupts
1164  *
1165  * chip_bus_lock and desc->lock are sufficient for all other management and
1166  * interrupt related functions. desc->request_mutex solely serializes
1167  * request/free_irq().
1168  */
1169 static int
1170 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1171 {
1172 	struct irqaction *old, **old_ptr;
1173 	unsigned long flags, thread_mask = 0;
1174 	int ret, nested, shared = 0;
1175 
1176 	if (!desc)
1177 		return -EINVAL;
1178 
1179 	if (desc->irq_data.chip == &no_irq_chip)
1180 		return -ENOSYS;
1181 	if (!try_module_get(desc->owner))
1182 		return -ENODEV;
1183 
1184 	new->irq = irq;
1185 
1186 	/*
1187 	 * If the trigger type is not specified by the caller,
1188 	 * then use the default for this interrupt.
1189 	 */
1190 	if (!(new->flags & IRQF_TRIGGER_MASK))
1191 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1192 
1193 	/*
1194 	 * Check whether the interrupt nests into another interrupt
1195 	 * thread.
1196 	 */
1197 	nested = irq_settings_is_nested_thread(desc);
1198 	if (nested) {
1199 		if (!new->thread_fn) {
1200 			ret = -EINVAL;
1201 			goto out_mput;
1202 		}
1203 		/*
1204 		 * Replace the primary handler which was provided from
1205 		 * the driver for non nested interrupt handling by the
1206 		 * dummy function which warns when called.
1207 		 */
1208 		new->handler = irq_nested_primary_handler;
1209 	} else {
1210 		if (irq_settings_can_thread(desc)) {
1211 			ret = irq_setup_forced_threading(new);
1212 			if (ret)
1213 				goto out_mput;
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * Create a handler thread when a thread function is supplied
1219 	 * and the interrupt does not nest into another interrupt
1220 	 * thread.
1221 	 */
1222 	if (new->thread_fn && !nested) {
1223 		ret = setup_irq_thread(new, irq, false);
1224 		if (ret)
1225 			goto out_mput;
1226 		if (new->secondary) {
1227 			ret = setup_irq_thread(new->secondary, irq, true);
1228 			if (ret)
1229 				goto out_thread;
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Drivers are often written to work w/o knowledge about the
1235 	 * underlying irq chip implementation, so a request for a
1236 	 * threaded irq without a primary hard irq context handler
1237 	 * requires the ONESHOT flag to be set. Some irq chips like
1238 	 * MSI based interrupts are per se one shot safe. Check the
1239 	 * chip flags, so we can avoid the unmask dance at the end of
1240 	 * the threaded handler for those.
1241 	 */
1242 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1243 		new->flags &= ~IRQF_ONESHOT;
1244 
1245 	/*
1246 	 * Protects against a concurrent __free_irq() call which might wait
1247 	 * for synchronize_irq() to complete without holding the optional
1248 	 * chip bus lock and desc->lock.
1249 	 */
1250 	mutex_lock(&desc->request_mutex);
1251 
1252 	/*
1253 	 * Acquire bus lock as the irq_request_resources() callback below
1254 	 * might rely on the serialization or the magic power management
1255 	 * functions which are abusing the irq_bus_lock() callback,
1256 	 */
1257 	chip_bus_lock(desc);
1258 
1259 	/* First installed action requests resources. */
1260 	if (!desc->action) {
1261 		ret = irq_request_resources(desc);
1262 		if (ret) {
1263 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1264 			       new->name, irq, desc->irq_data.chip->name);
1265 			goto out_bus_unlock;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * The following block of code has to be executed atomically
1271 	 * protected against a concurrent interrupt and any of the other
1272 	 * management calls which are not serialized via
1273 	 * desc->request_mutex or the optional bus lock.
1274 	 */
1275 	raw_spin_lock_irqsave(&desc->lock, flags);
1276 	old_ptr = &desc->action;
1277 	old = *old_ptr;
1278 	if (old) {
1279 		/*
1280 		 * Can't share interrupts unless both agree to and are
1281 		 * the same type (level, edge, polarity). So both flag
1282 		 * fields must have IRQF_SHARED set and the bits which
1283 		 * set the trigger type must match. Also all must
1284 		 * agree on ONESHOT.
1285 		 */
1286 		unsigned int oldtype;
1287 
1288 		/*
1289 		 * If nobody did set the configuration before, inherit
1290 		 * the one provided by the requester.
1291 		 */
1292 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1293 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1294 		} else {
1295 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1296 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1297 		}
1298 
1299 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1300 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1301 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1302 			goto mismatch;
1303 
1304 		/* All handlers must agree on per-cpuness */
1305 		if ((old->flags & IRQF_PERCPU) !=
1306 		    (new->flags & IRQF_PERCPU))
1307 			goto mismatch;
1308 
1309 		/* add new interrupt at end of irq queue */
1310 		do {
1311 			/*
1312 			 * Or all existing action->thread_mask bits,
1313 			 * so we can find the next zero bit for this
1314 			 * new action.
1315 			 */
1316 			thread_mask |= old->thread_mask;
1317 			old_ptr = &old->next;
1318 			old = *old_ptr;
1319 		} while (old);
1320 		shared = 1;
1321 	}
1322 
1323 	/*
1324 	 * Setup the thread mask for this irqaction for ONESHOT. For
1325 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1326 	 * conditional in irq_wake_thread().
1327 	 */
1328 	if (new->flags & IRQF_ONESHOT) {
1329 		/*
1330 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1331 		 * but who knows.
1332 		 */
1333 		if (thread_mask == ~0UL) {
1334 			ret = -EBUSY;
1335 			goto out_unlock;
1336 		}
1337 		/*
1338 		 * The thread_mask for the action is or'ed to
1339 		 * desc->thread_active to indicate that the
1340 		 * IRQF_ONESHOT thread handler has been woken, but not
1341 		 * yet finished. The bit is cleared when a thread
1342 		 * completes. When all threads of a shared interrupt
1343 		 * line have completed desc->threads_active becomes
1344 		 * zero and the interrupt line is unmasked. See
1345 		 * handle.c:irq_wake_thread() for further information.
1346 		 *
1347 		 * If no thread is woken by primary (hard irq context)
1348 		 * interrupt handlers, then desc->threads_active is
1349 		 * also checked for zero to unmask the irq line in the
1350 		 * affected hard irq flow handlers
1351 		 * (handle_[fasteoi|level]_irq).
1352 		 *
1353 		 * The new action gets the first zero bit of
1354 		 * thread_mask assigned. See the loop above which or's
1355 		 * all existing action->thread_mask bits.
1356 		 */
1357 		new->thread_mask = 1UL << ffz(thread_mask);
1358 
1359 	} else if (new->handler == irq_default_primary_handler &&
1360 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1361 		/*
1362 		 * The interrupt was requested with handler = NULL, so
1363 		 * we use the default primary handler for it. But it
1364 		 * does not have the oneshot flag set. In combination
1365 		 * with level interrupts this is deadly, because the
1366 		 * default primary handler just wakes the thread, then
1367 		 * the irq lines is reenabled, but the device still
1368 		 * has the level irq asserted. Rinse and repeat....
1369 		 *
1370 		 * While this works for edge type interrupts, we play
1371 		 * it safe and reject unconditionally because we can't
1372 		 * say for sure which type this interrupt really
1373 		 * has. The type flags are unreliable as the
1374 		 * underlying chip implementation can override them.
1375 		 */
1376 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1377 		       irq);
1378 		ret = -EINVAL;
1379 		goto out_unlock;
1380 	}
1381 
1382 	if (!shared) {
1383 		init_waitqueue_head(&desc->wait_for_threads);
1384 
1385 		/* Setup the type (level, edge polarity) if configured: */
1386 		if (new->flags & IRQF_TRIGGER_MASK) {
1387 			ret = __irq_set_trigger(desc,
1388 						new->flags & IRQF_TRIGGER_MASK);
1389 
1390 			if (ret)
1391 				goto out_unlock;
1392 		}
1393 
1394 		/*
1395 		 * Activate the interrupt. That activation must happen
1396 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1397 		 * and the callers are supposed to handle
1398 		 * that. enable_irq() of an interrupt requested with
1399 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1400 		 * keeps it in shutdown mode, it merily associates
1401 		 * resources if necessary and if that's not possible it
1402 		 * fails. Interrupts which are in managed shutdown mode
1403 		 * will simply ignore that activation request.
1404 		 */
1405 		ret = irq_activate(desc);
1406 		if (ret)
1407 			goto out_unlock;
1408 
1409 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1410 				  IRQS_ONESHOT | IRQS_WAITING);
1411 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1412 
1413 		if (new->flags & IRQF_PERCPU) {
1414 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1415 			irq_settings_set_per_cpu(desc);
1416 		}
1417 
1418 		if (new->flags & IRQF_ONESHOT)
1419 			desc->istate |= IRQS_ONESHOT;
1420 
1421 		/* Exclude IRQ from balancing if requested */
1422 		if (new->flags & IRQF_NOBALANCING) {
1423 			irq_settings_set_no_balancing(desc);
1424 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1425 		}
1426 
1427 		if (irq_settings_can_autoenable(desc)) {
1428 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1429 		} else {
1430 			/*
1431 			 * Shared interrupts do not go well with disabling
1432 			 * auto enable. The sharing interrupt might request
1433 			 * it while it's still disabled and then wait for
1434 			 * interrupts forever.
1435 			 */
1436 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1437 			/* Undo nested disables: */
1438 			desc->depth = 1;
1439 		}
1440 
1441 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1442 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1443 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1444 
1445 		if (nmsk != omsk)
1446 			/* hope the handler works with current  trigger mode */
1447 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1448 				irq, omsk, nmsk);
1449 	}
1450 
1451 	*old_ptr = new;
1452 
1453 	irq_pm_install_action(desc, new);
1454 
1455 	/* Reset broken irq detection when installing new handler */
1456 	desc->irq_count = 0;
1457 	desc->irqs_unhandled = 0;
1458 
1459 	/*
1460 	 * Check whether we disabled the irq via the spurious handler
1461 	 * before. Reenable it and give it another chance.
1462 	 */
1463 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1464 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1465 		__enable_irq(desc);
1466 	}
1467 
1468 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1469 	chip_bus_sync_unlock(desc);
1470 	mutex_unlock(&desc->request_mutex);
1471 
1472 	irq_setup_timings(desc, new);
1473 
1474 	/*
1475 	 * Strictly no need to wake it up, but hung_task complains
1476 	 * when no hard interrupt wakes the thread up.
1477 	 */
1478 	if (new->thread)
1479 		wake_up_process(new->thread);
1480 	if (new->secondary)
1481 		wake_up_process(new->secondary->thread);
1482 
1483 	register_irq_proc(irq, desc);
1484 	new->dir = NULL;
1485 	register_handler_proc(irq, new);
1486 	return 0;
1487 
1488 mismatch:
1489 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1490 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1491 		       irq, new->flags, new->name, old->flags, old->name);
1492 #ifdef CONFIG_DEBUG_SHIRQ
1493 		dump_stack();
1494 #endif
1495 	}
1496 	ret = -EBUSY;
1497 
1498 out_unlock:
1499 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1500 
1501 	if (!desc->action)
1502 		irq_release_resources(desc);
1503 out_bus_unlock:
1504 	chip_bus_sync_unlock(desc);
1505 	mutex_unlock(&desc->request_mutex);
1506 
1507 out_thread:
1508 	if (new->thread) {
1509 		struct task_struct *t = new->thread;
1510 
1511 		new->thread = NULL;
1512 		kthread_stop(t);
1513 		put_task_struct(t);
1514 	}
1515 	if (new->secondary && new->secondary->thread) {
1516 		struct task_struct *t = new->secondary->thread;
1517 
1518 		new->secondary->thread = NULL;
1519 		kthread_stop(t);
1520 		put_task_struct(t);
1521 	}
1522 out_mput:
1523 	module_put(desc->owner);
1524 	return ret;
1525 }
1526 
1527 /**
1528  *	setup_irq - setup an interrupt
1529  *	@irq: Interrupt line to setup
1530  *	@act: irqaction for the interrupt
1531  *
1532  * Used to statically setup interrupts in the early boot process.
1533  */
1534 int setup_irq(unsigned int irq, struct irqaction *act)
1535 {
1536 	int retval;
1537 	struct irq_desc *desc = irq_to_desc(irq);
1538 
1539 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1540 		return -EINVAL;
1541 
1542 	retval = irq_chip_pm_get(&desc->irq_data);
1543 	if (retval < 0)
1544 		return retval;
1545 
1546 	retval = __setup_irq(irq, desc, act);
1547 
1548 	if (retval)
1549 		irq_chip_pm_put(&desc->irq_data);
1550 
1551 	return retval;
1552 }
1553 EXPORT_SYMBOL_GPL(setup_irq);
1554 
1555 /*
1556  * Internal function to unregister an irqaction - used to free
1557  * regular and special interrupts that are part of the architecture.
1558  */
1559 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1560 {
1561 	unsigned irq = desc->irq_data.irq;
1562 	struct irqaction *action, **action_ptr;
1563 	unsigned long flags;
1564 
1565 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1566 
1567 	if (!desc)
1568 		return NULL;
1569 
1570 	mutex_lock(&desc->request_mutex);
1571 	chip_bus_lock(desc);
1572 	raw_spin_lock_irqsave(&desc->lock, flags);
1573 
1574 	/*
1575 	 * There can be multiple actions per IRQ descriptor, find the right
1576 	 * one based on the dev_id:
1577 	 */
1578 	action_ptr = &desc->action;
1579 	for (;;) {
1580 		action = *action_ptr;
1581 
1582 		if (!action) {
1583 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1584 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1585 			chip_bus_sync_unlock(desc);
1586 			mutex_unlock(&desc->request_mutex);
1587 			return NULL;
1588 		}
1589 
1590 		if (action->dev_id == dev_id)
1591 			break;
1592 		action_ptr = &action->next;
1593 	}
1594 
1595 	/* Found it - now remove it from the list of entries: */
1596 	*action_ptr = action->next;
1597 
1598 	irq_pm_remove_action(desc, action);
1599 
1600 	/* If this was the last handler, shut down the IRQ line: */
1601 	if (!desc->action) {
1602 		irq_settings_clr_disable_unlazy(desc);
1603 		irq_shutdown(desc);
1604 	}
1605 
1606 #ifdef CONFIG_SMP
1607 	/* make sure affinity_hint is cleaned up */
1608 	if (WARN_ON_ONCE(desc->affinity_hint))
1609 		desc->affinity_hint = NULL;
1610 #endif
1611 
1612 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1613 	/*
1614 	 * Drop bus_lock here so the changes which were done in the chip
1615 	 * callbacks above are synced out to the irq chips which hang
1616 	 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1617 	 *
1618 	 * Aside of that the bus_lock can also be taken from the threaded
1619 	 * handler in irq_finalize_oneshot() which results in a deadlock
1620 	 * because synchronize_irq() would wait forever for the thread to
1621 	 * complete, which is blocked on the bus lock.
1622 	 *
1623 	 * The still held desc->request_mutex() protects against a
1624 	 * concurrent request_irq() of this irq so the release of resources
1625 	 * and timing data is properly serialized.
1626 	 */
1627 	chip_bus_sync_unlock(desc);
1628 
1629 	unregister_handler_proc(irq, action);
1630 
1631 	/* Make sure it's not being used on another CPU: */
1632 	synchronize_irq(irq);
1633 
1634 #ifdef CONFIG_DEBUG_SHIRQ
1635 	/*
1636 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1637 	 * event to happen even now it's being freed, so let's make sure that
1638 	 * is so by doing an extra call to the handler ....
1639 	 *
1640 	 * ( We do this after actually deregistering it, to make sure that a
1641 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1642 	 */
1643 	if (action->flags & IRQF_SHARED) {
1644 		local_irq_save(flags);
1645 		action->handler(irq, dev_id);
1646 		local_irq_restore(flags);
1647 	}
1648 #endif
1649 
1650 	if (action->thread) {
1651 		kthread_stop(action->thread);
1652 		put_task_struct(action->thread);
1653 		if (action->secondary && action->secondary->thread) {
1654 			kthread_stop(action->secondary->thread);
1655 			put_task_struct(action->secondary->thread);
1656 		}
1657 	}
1658 
1659 	/* Last action releases resources */
1660 	if (!desc->action) {
1661 		/*
1662 		 * Reaquire bus lock as irq_release_resources() might
1663 		 * require it to deallocate resources over the slow bus.
1664 		 */
1665 		chip_bus_lock(desc);
1666 		irq_release_resources(desc);
1667 		chip_bus_sync_unlock(desc);
1668 		irq_remove_timings(desc);
1669 	}
1670 
1671 	mutex_unlock(&desc->request_mutex);
1672 
1673 	irq_chip_pm_put(&desc->irq_data);
1674 	module_put(desc->owner);
1675 	kfree(action->secondary);
1676 	return action;
1677 }
1678 
1679 /**
1680  *	remove_irq - free an interrupt
1681  *	@irq: Interrupt line to free
1682  *	@act: irqaction for the interrupt
1683  *
1684  * Used to remove interrupts statically setup by the early boot process.
1685  */
1686 void remove_irq(unsigned int irq, struct irqaction *act)
1687 {
1688 	struct irq_desc *desc = irq_to_desc(irq);
1689 
1690 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1691 		__free_irq(desc, act->dev_id);
1692 }
1693 EXPORT_SYMBOL_GPL(remove_irq);
1694 
1695 /**
1696  *	free_irq - free an interrupt allocated with request_irq
1697  *	@irq: Interrupt line to free
1698  *	@dev_id: Device identity to free
1699  *
1700  *	Remove an interrupt handler. The handler is removed and if the
1701  *	interrupt line is no longer in use by any driver it is disabled.
1702  *	On a shared IRQ the caller must ensure the interrupt is disabled
1703  *	on the card it drives before calling this function. The function
1704  *	does not return until any executing interrupts for this IRQ
1705  *	have completed.
1706  *
1707  *	This function must not be called from interrupt context.
1708  *
1709  *	Returns the devname argument passed to request_irq.
1710  */
1711 const void *free_irq(unsigned int irq, void *dev_id)
1712 {
1713 	struct irq_desc *desc = irq_to_desc(irq);
1714 	struct irqaction *action;
1715 	const char *devname;
1716 
1717 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1718 		return NULL;
1719 
1720 #ifdef CONFIG_SMP
1721 	if (WARN_ON(desc->affinity_notify))
1722 		desc->affinity_notify = NULL;
1723 #endif
1724 
1725 	action = __free_irq(desc, dev_id);
1726 
1727 	if (!action)
1728 		return NULL;
1729 
1730 	devname = action->name;
1731 	kfree(action);
1732 	return devname;
1733 }
1734 EXPORT_SYMBOL(free_irq);
1735 
1736 /**
1737  *	request_threaded_irq - allocate an interrupt line
1738  *	@irq: Interrupt line to allocate
1739  *	@handler: Function to be called when the IRQ occurs.
1740  *		  Primary handler for threaded interrupts
1741  *		  If NULL and thread_fn != NULL the default
1742  *		  primary handler is installed
1743  *	@thread_fn: Function called from the irq handler thread
1744  *		    If NULL, no irq thread is created
1745  *	@irqflags: Interrupt type flags
1746  *	@devname: An ascii name for the claiming device
1747  *	@dev_id: A cookie passed back to the handler function
1748  *
1749  *	This call allocates interrupt resources and enables the
1750  *	interrupt line and IRQ handling. From the point this
1751  *	call is made your handler function may be invoked. Since
1752  *	your handler function must clear any interrupt the board
1753  *	raises, you must take care both to initialise your hardware
1754  *	and to set up the interrupt handler in the right order.
1755  *
1756  *	If you want to set up a threaded irq handler for your device
1757  *	then you need to supply @handler and @thread_fn. @handler is
1758  *	still called in hard interrupt context and has to check
1759  *	whether the interrupt originates from the device. If yes it
1760  *	needs to disable the interrupt on the device and return
1761  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1762  *	@thread_fn. This split handler design is necessary to support
1763  *	shared interrupts.
1764  *
1765  *	Dev_id must be globally unique. Normally the address of the
1766  *	device data structure is used as the cookie. Since the handler
1767  *	receives this value it makes sense to use it.
1768  *
1769  *	If your interrupt is shared you must pass a non NULL dev_id
1770  *	as this is required when freeing the interrupt.
1771  *
1772  *	Flags:
1773  *
1774  *	IRQF_SHARED		Interrupt is shared
1775  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1776  *
1777  */
1778 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1779 			 irq_handler_t thread_fn, unsigned long irqflags,
1780 			 const char *devname, void *dev_id)
1781 {
1782 	struct irqaction *action;
1783 	struct irq_desc *desc;
1784 	int retval;
1785 
1786 	if (irq == IRQ_NOTCONNECTED)
1787 		return -ENOTCONN;
1788 
1789 	/*
1790 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1791 	 * otherwise we'll have trouble later trying to figure out
1792 	 * which interrupt is which (messes up the interrupt freeing
1793 	 * logic etc).
1794 	 *
1795 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1796 	 * it cannot be set along with IRQF_NO_SUSPEND.
1797 	 */
1798 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1799 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1800 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1801 		return -EINVAL;
1802 
1803 	desc = irq_to_desc(irq);
1804 	if (!desc)
1805 		return -EINVAL;
1806 
1807 	if (!irq_settings_can_request(desc) ||
1808 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1809 		return -EINVAL;
1810 
1811 	if (!handler) {
1812 		if (!thread_fn)
1813 			return -EINVAL;
1814 		handler = irq_default_primary_handler;
1815 	}
1816 
1817 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1818 	if (!action)
1819 		return -ENOMEM;
1820 
1821 	action->handler = handler;
1822 	action->thread_fn = thread_fn;
1823 	action->flags = irqflags;
1824 	action->name = devname;
1825 	action->dev_id = dev_id;
1826 
1827 	retval = irq_chip_pm_get(&desc->irq_data);
1828 	if (retval < 0) {
1829 		kfree(action);
1830 		return retval;
1831 	}
1832 
1833 	retval = __setup_irq(irq, desc, action);
1834 
1835 	if (retval) {
1836 		irq_chip_pm_put(&desc->irq_data);
1837 		kfree(action->secondary);
1838 		kfree(action);
1839 	}
1840 
1841 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1842 	if (!retval && (irqflags & IRQF_SHARED)) {
1843 		/*
1844 		 * It's a shared IRQ -- the driver ought to be prepared for it
1845 		 * to happen immediately, so let's make sure....
1846 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1847 		 * run in parallel with our fake.
1848 		 */
1849 		unsigned long flags;
1850 
1851 		disable_irq(irq);
1852 		local_irq_save(flags);
1853 
1854 		handler(irq, dev_id);
1855 
1856 		local_irq_restore(flags);
1857 		enable_irq(irq);
1858 	}
1859 #endif
1860 	return retval;
1861 }
1862 EXPORT_SYMBOL(request_threaded_irq);
1863 
1864 /**
1865  *	request_any_context_irq - allocate an interrupt line
1866  *	@irq: Interrupt line to allocate
1867  *	@handler: Function to be called when the IRQ occurs.
1868  *		  Threaded handler for threaded interrupts.
1869  *	@flags: Interrupt type flags
1870  *	@name: An ascii name for the claiming device
1871  *	@dev_id: A cookie passed back to the handler function
1872  *
1873  *	This call allocates interrupt resources and enables the
1874  *	interrupt line and IRQ handling. It selects either a
1875  *	hardirq or threaded handling method depending on the
1876  *	context.
1877  *
1878  *	On failure, it returns a negative value. On success,
1879  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1880  */
1881 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1882 			    unsigned long flags, const char *name, void *dev_id)
1883 {
1884 	struct irq_desc *desc;
1885 	int ret;
1886 
1887 	if (irq == IRQ_NOTCONNECTED)
1888 		return -ENOTCONN;
1889 
1890 	desc = irq_to_desc(irq);
1891 	if (!desc)
1892 		return -EINVAL;
1893 
1894 	if (irq_settings_is_nested_thread(desc)) {
1895 		ret = request_threaded_irq(irq, NULL, handler,
1896 					   flags, name, dev_id);
1897 		return !ret ? IRQC_IS_NESTED : ret;
1898 	}
1899 
1900 	ret = request_irq(irq, handler, flags, name, dev_id);
1901 	return !ret ? IRQC_IS_HARDIRQ : ret;
1902 }
1903 EXPORT_SYMBOL_GPL(request_any_context_irq);
1904 
1905 void enable_percpu_irq(unsigned int irq, unsigned int type)
1906 {
1907 	unsigned int cpu = smp_processor_id();
1908 	unsigned long flags;
1909 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1910 
1911 	if (!desc)
1912 		return;
1913 
1914 	/*
1915 	 * If the trigger type is not specified by the caller, then
1916 	 * use the default for this interrupt.
1917 	 */
1918 	type &= IRQ_TYPE_SENSE_MASK;
1919 	if (type == IRQ_TYPE_NONE)
1920 		type = irqd_get_trigger_type(&desc->irq_data);
1921 
1922 	if (type != IRQ_TYPE_NONE) {
1923 		int ret;
1924 
1925 		ret = __irq_set_trigger(desc, type);
1926 
1927 		if (ret) {
1928 			WARN(1, "failed to set type for IRQ%d\n", irq);
1929 			goto out;
1930 		}
1931 	}
1932 
1933 	irq_percpu_enable(desc, cpu);
1934 out:
1935 	irq_put_desc_unlock(desc, flags);
1936 }
1937 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1938 
1939 /**
1940  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1941  * @irq:	Linux irq number to check for
1942  *
1943  * Must be called from a non migratable context. Returns the enable
1944  * state of a per cpu interrupt on the current cpu.
1945  */
1946 bool irq_percpu_is_enabled(unsigned int irq)
1947 {
1948 	unsigned int cpu = smp_processor_id();
1949 	struct irq_desc *desc;
1950 	unsigned long flags;
1951 	bool is_enabled;
1952 
1953 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1954 	if (!desc)
1955 		return false;
1956 
1957 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1958 	irq_put_desc_unlock(desc, flags);
1959 
1960 	return is_enabled;
1961 }
1962 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1963 
1964 void disable_percpu_irq(unsigned int irq)
1965 {
1966 	unsigned int cpu = smp_processor_id();
1967 	unsigned long flags;
1968 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1969 
1970 	if (!desc)
1971 		return;
1972 
1973 	irq_percpu_disable(desc, cpu);
1974 	irq_put_desc_unlock(desc, flags);
1975 }
1976 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1977 
1978 /*
1979  * Internal function to unregister a percpu irqaction.
1980  */
1981 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1982 {
1983 	struct irq_desc *desc = irq_to_desc(irq);
1984 	struct irqaction *action;
1985 	unsigned long flags;
1986 
1987 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1988 
1989 	if (!desc)
1990 		return NULL;
1991 
1992 	raw_spin_lock_irqsave(&desc->lock, flags);
1993 
1994 	action = desc->action;
1995 	if (!action || action->percpu_dev_id != dev_id) {
1996 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1997 		goto bad;
1998 	}
1999 
2000 	if (!cpumask_empty(desc->percpu_enabled)) {
2001 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2002 		     irq, cpumask_first(desc->percpu_enabled));
2003 		goto bad;
2004 	}
2005 
2006 	/* Found it - now remove it from the list of entries: */
2007 	desc->action = NULL;
2008 
2009 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2010 
2011 	unregister_handler_proc(irq, action);
2012 
2013 	irq_chip_pm_put(&desc->irq_data);
2014 	module_put(desc->owner);
2015 	return action;
2016 
2017 bad:
2018 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2019 	return NULL;
2020 }
2021 
2022 /**
2023  *	remove_percpu_irq - free a per-cpu interrupt
2024  *	@irq: Interrupt line to free
2025  *	@act: irqaction for the interrupt
2026  *
2027  * Used to remove interrupts statically setup by the early boot process.
2028  */
2029 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2030 {
2031 	struct irq_desc *desc = irq_to_desc(irq);
2032 
2033 	if (desc && irq_settings_is_per_cpu_devid(desc))
2034 	    __free_percpu_irq(irq, act->percpu_dev_id);
2035 }
2036 
2037 /**
2038  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2039  *	@irq: Interrupt line to free
2040  *	@dev_id: Device identity to free
2041  *
2042  *	Remove a percpu interrupt handler. The handler is removed, but
2043  *	the interrupt line is not disabled. This must be done on each
2044  *	CPU before calling this function. The function does not return
2045  *	until any executing interrupts for this IRQ have completed.
2046  *
2047  *	This function must not be called from interrupt context.
2048  */
2049 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2050 {
2051 	struct irq_desc *desc = irq_to_desc(irq);
2052 
2053 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2054 		return;
2055 
2056 	chip_bus_lock(desc);
2057 	kfree(__free_percpu_irq(irq, dev_id));
2058 	chip_bus_sync_unlock(desc);
2059 }
2060 EXPORT_SYMBOL_GPL(free_percpu_irq);
2061 
2062 /**
2063  *	setup_percpu_irq - setup a per-cpu interrupt
2064  *	@irq: Interrupt line to setup
2065  *	@act: irqaction for the interrupt
2066  *
2067  * Used to statically setup per-cpu interrupts in the early boot process.
2068  */
2069 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2070 {
2071 	struct irq_desc *desc = irq_to_desc(irq);
2072 	int retval;
2073 
2074 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2075 		return -EINVAL;
2076 
2077 	retval = irq_chip_pm_get(&desc->irq_data);
2078 	if (retval < 0)
2079 		return retval;
2080 
2081 	retval = __setup_irq(irq, desc, act);
2082 
2083 	if (retval)
2084 		irq_chip_pm_put(&desc->irq_data);
2085 
2086 	return retval;
2087 }
2088 
2089 /**
2090  *	__request_percpu_irq - allocate a percpu interrupt line
2091  *	@irq: Interrupt line to allocate
2092  *	@handler: Function to be called when the IRQ occurs.
2093  *	@flags: Interrupt type flags (IRQF_TIMER only)
2094  *	@devname: An ascii name for the claiming device
2095  *	@dev_id: A percpu cookie passed back to the handler function
2096  *
2097  *	This call allocates interrupt resources and enables the
2098  *	interrupt on the local CPU. If the interrupt is supposed to be
2099  *	enabled on other CPUs, it has to be done on each CPU using
2100  *	enable_percpu_irq().
2101  *
2102  *	Dev_id must be globally unique. It is a per-cpu variable, and
2103  *	the handler gets called with the interrupted CPU's instance of
2104  *	that variable.
2105  */
2106 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2107 			 unsigned long flags, const char *devname,
2108 			 void __percpu *dev_id)
2109 {
2110 	struct irqaction *action;
2111 	struct irq_desc *desc;
2112 	int retval;
2113 
2114 	if (!dev_id)
2115 		return -EINVAL;
2116 
2117 	desc = irq_to_desc(irq);
2118 	if (!desc || !irq_settings_can_request(desc) ||
2119 	    !irq_settings_is_per_cpu_devid(desc))
2120 		return -EINVAL;
2121 
2122 	if (flags && flags != IRQF_TIMER)
2123 		return -EINVAL;
2124 
2125 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2126 	if (!action)
2127 		return -ENOMEM;
2128 
2129 	action->handler = handler;
2130 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2131 	action->name = devname;
2132 	action->percpu_dev_id = dev_id;
2133 
2134 	retval = irq_chip_pm_get(&desc->irq_data);
2135 	if (retval < 0) {
2136 		kfree(action);
2137 		return retval;
2138 	}
2139 
2140 	retval = __setup_irq(irq, desc, action);
2141 
2142 	if (retval) {
2143 		irq_chip_pm_put(&desc->irq_data);
2144 		kfree(action);
2145 	}
2146 
2147 	return retval;
2148 }
2149 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2150 
2151 /**
2152  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2153  *	@irq: Interrupt line that is forwarded to a VM
2154  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2155  *	@state: a pointer to a boolean where the state is to be storeed
2156  *
2157  *	This call snapshots the internal irqchip state of an
2158  *	interrupt, returning into @state the bit corresponding to
2159  *	stage @which
2160  *
2161  *	This function should be called with preemption disabled if the
2162  *	interrupt controller has per-cpu registers.
2163  */
2164 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2165 			  bool *state)
2166 {
2167 	struct irq_desc *desc;
2168 	struct irq_data *data;
2169 	struct irq_chip *chip;
2170 	unsigned long flags;
2171 	int err = -EINVAL;
2172 
2173 	desc = irq_get_desc_buslock(irq, &flags, 0);
2174 	if (!desc)
2175 		return err;
2176 
2177 	data = irq_desc_get_irq_data(desc);
2178 
2179 	do {
2180 		chip = irq_data_get_irq_chip(data);
2181 		if (chip->irq_get_irqchip_state)
2182 			break;
2183 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2184 		data = data->parent_data;
2185 #else
2186 		data = NULL;
2187 #endif
2188 	} while (data);
2189 
2190 	if (data)
2191 		err = chip->irq_get_irqchip_state(data, which, state);
2192 
2193 	irq_put_desc_busunlock(desc, flags);
2194 	return err;
2195 }
2196 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2197 
2198 /**
2199  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2200  *	@irq: Interrupt line that is forwarded to a VM
2201  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2202  *	@val: Value corresponding to @which
2203  *
2204  *	This call sets the internal irqchip state of an interrupt,
2205  *	depending on the value of @which.
2206  *
2207  *	This function should be called with preemption disabled if the
2208  *	interrupt controller has per-cpu registers.
2209  */
2210 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2211 			  bool val)
2212 {
2213 	struct irq_desc *desc;
2214 	struct irq_data *data;
2215 	struct irq_chip *chip;
2216 	unsigned long flags;
2217 	int err = -EINVAL;
2218 
2219 	desc = irq_get_desc_buslock(irq, &flags, 0);
2220 	if (!desc)
2221 		return err;
2222 
2223 	data = irq_desc_get_irq_data(desc);
2224 
2225 	do {
2226 		chip = irq_data_get_irq_chip(data);
2227 		if (chip->irq_set_irqchip_state)
2228 			break;
2229 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2230 		data = data->parent_data;
2231 #else
2232 		data = NULL;
2233 #endif
2234 	} while (data);
2235 
2236 	if (data)
2237 		err = chip->irq_set_irqchip_state(data, which, val);
2238 
2239 	irq_put_desc_busunlock(desc, flags);
2240 	return err;
2241 }
2242 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2243