xref: /openbmc/linux/kernel/irq/manage.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 #ifdef CONFIG_GENERIC_PENDING_IRQ
172 static inline bool irq_can_move_pcntxt(struct irq_data *data)
173 {
174 	return irqd_can_move_in_process_context(data);
175 }
176 static inline bool irq_move_pending(struct irq_data *data)
177 {
178 	return irqd_is_setaffinity_pending(data);
179 }
180 static inline void
181 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
182 {
183 	cpumask_copy(desc->pending_mask, mask);
184 }
185 static inline void
186 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
187 {
188 	cpumask_copy(mask, desc->pending_mask);
189 }
190 #else
191 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
192 static inline bool irq_move_pending(struct irq_data *data) { return false; }
193 static inline void
194 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
195 static inline void
196 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
197 #endif
198 
199 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
200 			bool force)
201 {
202 	struct irq_desc *desc = irq_data_to_desc(data);
203 	struct irq_chip *chip = irq_data_get_irq_chip(data);
204 	int ret;
205 
206 	ret = chip->irq_set_affinity(data, mask, force);
207 	switch (ret) {
208 	case IRQ_SET_MASK_OK:
209 	case IRQ_SET_MASK_OK_DONE:
210 		cpumask_copy(desc->irq_common_data.affinity, mask);
211 	case IRQ_SET_MASK_OK_NOCOPY:
212 		irq_set_thread_affinity(desc);
213 		ret = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
220 			    bool force)
221 {
222 	struct irq_chip *chip = irq_data_get_irq_chip(data);
223 	struct irq_desc *desc = irq_data_to_desc(data);
224 	int ret = 0;
225 
226 	if (!chip || !chip->irq_set_affinity)
227 		return -EINVAL;
228 
229 	if (irq_can_move_pcntxt(data)) {
230 		ret = irq_do_set_affinity(data, mask, force);
231 	} else {
232 		irqd_set_move_pending(data);
233 		irq_copy_pending(desc, mask);
234 	}
235 
236 	if (desc->affinity_notify) {
237 		kref_get(&desc->affinity_notify->kref);
238 		schedule_work(&desc->affinity_notify->work);
239 	}
240 	irqd_set(data, IRQD_AFFINITY_SET);
241 
242 	return ret;
243 }
244 
245 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
246 {
247 	struct irq_desc *desc = irq_to_desc(irq);
248 	unsigned long flags;
249 	int ret;
250 
251 	if (!desc)
252 		return -EINVAL;
253 
254 	raw_spin_lock_irqsave(&desc->lock, flags);
255 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
256 	raw_spin_unlock_irqrestore(&desc->lock, flags);
257 	return ret;
258 }
259 
260 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
261 {
262 	unsigned long flags;
263 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
264 
265 	if (!desc)
266 		return -EINVAL;
267 	desc->affinity_hint = m;
268 	irq_put_desc_unlock(desc, flags);
269 	/* set the initial affinity to prevent every interrupt being on CPU0 */
270 	if (m)
271 		__irq_set_affinity(irq, m, false);
272 	return 0;
273 }
274 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
275 
276 static void irq_affinity_notify(struct work_struct *work)
277 {
278 	struct irq_affinity_notify *notify =
279 		container_of(work, struct irq_affinity_notify, work);
280 	struct irq_desc *desc = irq_to_desc(notify->irq);
281 	cpumask_var_t cpumask;
282 	unsigned long flags;
283 
284 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
285 		goto out;
286 
287 	raw_spin_lock_irqsave(&desc->lock, flags);
288 	if (irq_move_pending(&desc->irq_data))
289 		irq_get_pending(cpumask, desc);
290 	else
291 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
292 	raw_spin_unlock_irqrestore(&desc->lock, flags);
293 
294 	notify->notify(notify, cpumask);
295 
296 	free_cpumask_var(cpumask);
297 out:
298 	kref_put(&notify->kref, notify->release);
299 }
300 
301 /**
302  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
303  *	@irq:		Interrupt for which to enable/disable notification
304  *	@notify:	Context for notification, or %NULL to disable
305  *			notification.  Function pointers must be initialised;
306  *			the other fields will be initialised by this function.
307  *
308  *	Must be called in process context.  Notification may only be enabled
309  *	after the IRQ is allocated and must be disabled before the IRQ is
310  *	freed using free_irq().
311  */
312 int
313 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
314 {
315 	struct irq_desc *desc = irq_to_desc(irq);
316 	struct irq_affinity_notify *old_notify;
317 	unsigned long flags;
318 
319 	/* The release function is promised process context */
320 	might_sleep();
321 
322 	if (!desc)
323 		return -EINVAL;
324 
325 	/* Complete initialisation of *notify */
326 	if (notify) {
327 		notify->irq = irq;
328 		kref_init(&notify->kref);
329 		INIT_WORK(&notify->work, irq_affinity_notify);
330 	}
331 
332 	raw_spin_lock_irqsave(&desc->lock, flags);
333 	old_notify = desc->affinity_notify;
334 	desc->affinity_notify = notify;
335 	raw_spin_unlock_irqrestore(&desc->lock, flags);
336 
337 	if (old_notify)
338 		kref_put(&old_notify->kref, old_notify->release);
339 
340 	return 0;
341 }
342 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
343 
344 #ifndef CONFIG_AUTO_IRQ_AFFINITY
345 /*
346  * Generic version of the affinity autoselector.
347  */
348 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
349 {
350 	struct cpumask *set = irq_default_affinity;
351 	int node = irq_desc_get_node(desc);
352 
353 	/* Excludes PER_CPU and NO_BALANCE interrupts */
354 	if (!__irq_can_set_affinity(desc))
355 		return 0;
356 
357 	/*
358 	 * Preserve the managed affinity setting and a userspace affinity
359 	 * setup, but make sure that one of the targets is online.
360 	 */
361 	if (irqd_affinity_is_managed(&desc->irq_data) ||
362 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
363 		if (cpumask_intersects(desc->irq_common_data.affinity,
364 				       cpu_online_mask))
365 			set = desc->irq_common_data.affinity;
366 		else
367 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
368 	}
369 
370 	cpumask_and(mask, cpu_online_mask, set);
371 	if (node != NUMA_NO_NODE) {
372 		const struct cpumask *nodemask = cpumask_of_node(node);
373 
374 		/* make sure at least one of the cpus in nodemask is online */
375 		if (cpumask_intersects(mask, nodemask))
376 			cpumask_and(mask, mask, nodemask);
377 	}
378 	irq_do_set_affinity(&desc->irq_data, mask, false);
379 	return 0;
380 }
381 #else
382 /* Wrapper for ALPHA specific affinity selector magic */
383 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
384 {
385 	return irq_select_affinity(irq_desc_get_irq(d));
386 }
387 #endif
388 
389 /*
390  * Called when affinity is set via /proc/irq
391  */
392 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
393 {
394 	struct irq_desc *desc = irq_to_desc(irq);
395 	unsigned long flags;
396 	int ret;
397 
398 	raw_spin_lock_irqsave(&desc->lock, flags);
399 	ret = setup_affinity(desc, mask);
400 	raw_spin_unlock_irqrestore(&desc->lock, flags);
401 	return ret;
402 }
403 
404 #else
405 static inline int
406 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
407 {
408 	return 0;
409 }
410 #endif
411 
412 /**
413  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
414  *	@irq: interrupt number to set affinity
415  *	@vcpu_info: vCPU specific data
416  *
417  *	This function uses the vCPU specific data to set the vCPU
418  *	affinity for an irq. The vCPU specific data is passed from
419  *	outside, such as KVM. One example code path is as below:
420  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
421  */
422 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
423 {
424 	unsigned long flags;
425 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
426 	struct irq_data *data;
427 	struct irq_chip *chip;
428 	int ret = -ENOSYS;
429 
430 	if (!desc)
431 		return -EINVAL;
432 
433 	data = irq_desc_get_irq_data(desc);
434 	chip = irq_data_get_irq_chip(data);
435 	if (chip && chip->irq_set_vcpu_affinity)
436 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
437 	irq_put_desc_unlock(desc, flags);
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
442 
443 void __disable_irq(struct irq_desc *desc)
444 {
445 	if (!desc->depth++)
446 		irq_disable(desc);
447 }
448 
449 static int __disable_irq_nosync(unsigned int irq)
450 {
451 	unsigned long flags;
452 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
453 
454 	if (!desc)
455 		return -EINVAL;
456 	__disable_irq(desc);
457 	irq_put_desc_busunlock(desc, flags);
458 	return 0;
459 }
460 
461 /**
462  *	disable_irq_nosync - disable an irq without waiting
463  *	@irq: Interrupt to disable
464  *
465  *	Disable the selected interrupt line.  Disables and Enables are
466  *	nested.
467  *	Unlike disable_irq(), this function does not ensure existing
468  *	instances of the IRQ handler have completed before returning.
469  *
470  *	This function may be called from IRQ context.
471  */
472 void disable_irq_nosync(unsigned int irq)
473 {
474 	__disable_irq_nosync(irq);
475 }
476 EXPORT_SYMBOL(disable_irq_nosync);
477 
478 /**
479  *	disable_irq - disable an irq and wait for completion
480  *	@irq: Interrupt to disable
481  *
482  *	Disable the selected interrupt line.  Enables and Disables are
483  *	nested.
484  *	This function waits for any pending IRQ handlers for this interrupt
485  *	to complete before returning. If you use this function while
486  *	holding a resource the IRQ handler may need you will deadlock.
487  *
488  *	This function may be called - with care - from IRQ context.
489  */
490 void disable_irq(unsigned int irq)
491 {
492 	if (!__disable_irq_nosync(irq))
493 		synchronize_irq(irq);
494 }
495 EXPORT_SYMBOL(disable_irq);
496 
497 /**
498  *	disable_hardirq - disables an irq and waits for hardirq completion
499  *	@irq: Interrupt to disable
500  *
501  *	Disable the selected interrupt line.  Enables and Disables are
502  *	nested.
503  *	This function waits for any pending hard IRQ handlers for this
504  *	interrupt to complete before returning. If you use this function while
505  *	holding a resource the hard IRQ handler may need you will deadlock.
506  *
507  *	When used to optimistically disable an interrupt from atomic context
508  *	the return value must be checked.
509  *
510  *	Returns: false if a threaded handler is active.
511  *
512  *	This function may be called - with care - from IRQ context.
513  */
514 bool disable_hardirq(unsigned int irq)
515 {
516 	if (!__disable_irq_nosync(irq))
517 		return synchronize_hardirq(irq);
518 
519 	return false;
520 }
521 EXPORT_SYMBOL_GPL(disable_hardirq);
522 
523 void __enable_irq(struct irq_desc *desc)
524 {
525 	switch (desc->depth) {
526 	case 0:
527  err_out:
528 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
529 		     irq_desc_get_irq(desc));
530 		break;
531 	case 1: {
532 		if (desc->istate & IRQS_SUSPENDED)
533 			goto err_out;
534 		/* Prevent probing on this irq: */
535 		irq_settings_set_noprobe(desc);
536 		irq_enable(desc);
537 		check_irq_resend(desc);
538 		/* fall-through */
539 	}
540 	default:
541 		desc->depth--;
542 	}
543 }
544 
545 /**
546  *	enable_irq - enable handling of an irq
547  *	@irq: Interrupt to enable
548  *
549  *	Undoes the effect of one call to disable_irq().  If this
550  *	matches the last disable, processing of interrupts on this
551  *	IRQ line is re-enabled.
552  *
553  *	This function may be called from IRQ context only when
554  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
555  */
556 void enable_irq(unsigned int irq)
557 {
558 	unsigned long flags;
559 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
560 
561 	if (!desc)
562 		return;
563 	if (WARN(!desc->irq_data.chip,
564 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
565 		goto out;
566 
567 	__enable_irq(desc);
568 out:
569 	irq_put_desc_busunlock(desc, flags);
570 }
571 EXPORT_SYMBOL(enable_irq);
572 
573 static int set_irq_wake_real(unsigned int irq, unsigned int on)
574 {
575 	struct irq_desc *desc = irq_to_desc(irq);
576 	int ret = -ENXIO;
577 
578 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
579 		return 0;
580 
581 	if (desc->irq_data.chip->irq_set_wake)
582 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
583 
584 	return ret;
585 }
586 
587 /**
588  *	irq_set_irq_wake - control irq power management wakeup
589  *	@irq:	interrupt to control
590  *	@on:	enable/disable power management wakeup
591  *
592  *	Enable/disable power management wakeup mode, which is
593  *	disabled by default.  Enables and disables must match,
594  *	just as they match for non-wakeup mode support.
595  *
596  *	Wakeup mode lets this IRQ wake the system from sleep
597  *	states like "suspend to RAM".
598  */
599 int irq_set_irq_wake(unsigned int irq, unsigned int on)
600 {
601 	unsigned long flags;
602 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
603 	int ret = 0;
604 
605 	if (!desc)
606 		return -EINVAL;
607 
608 	/* wakeup-capable irqs can be shared between drivers that
609 	 * don't need to have the same sleep mode behaviors.
610 	 */
611 	if (on) {
612 		if (desc->wake_depth++ == 0) {
613 			ret = set_irq_wake_real(irq, on);
614 			if (ret)
615 				desc->wake_depth = 0;
616 			else
617 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
618 		}
619 	} else {
620 		if (desc->wake_depth == 0) {
621 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
622 		} else if (--desc->wake_depth == 0) {
623 			ret = set_irq_wake_real(irq, on);
624 			if (ret)
625 				desc->wake_depth = 1;
626 			else
627 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
628 		}
629 	}
630 	irq_put_desc_busunlock(desc, flags);
631 	return ret;
632 }
633 EXPORT_SYMBOL(irq_set_irq_wake);
634 
635 /*
636  * Internal function that tells the architecture code whether a
637  * particular irq has been exclusively allocated or is available
638  * for driver use.
639  */
640 int can_request_irq(unsigned int irq, unsigned long irqflags)
641 {
642 	unsigned long flags;
643 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
644 	int canrequest = 0;
645 
646 	if (!desc)
647 		return 0;
648 
649 	if (irq_settings_can_request(desc)) {
650 		if (!desc->action ||
651 		    irqflags & desc->action->flags & IRQF_SHARED)
652 			canrequest = 1;
653 	}
654 	irq_put_desc_unlock(desc, flags);
655 	return canrequest;
656 }
657 
658 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
659 {
660 	struct irq_chip *chip = desc->irq_data.chip;
661 	int ret, unmask = 0;
662 
663 	if (!chip || !chip->irq_set_type) {
664 		/*
665 		 * IRQF_TRIGGER_* but the PIC does not support multiple
666 		 * flow-types?
667 		 */
668 		pr_debug("No set_type function for IRQ %d (%s)\n",
669 			 irq_desc_get_irq(desc),
670 			 chip ? (chip->name ? : "unknown") : "unknown");
671 		return 0;
672 	}
673 
674 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
675 		if (!irqd_irq_masked(&desc->irq_data))
676 			mask_irq(desc);
677 		if (!irqd_irq_disabled(&desc->irq_data))
678 			unmask = 1;
679 	}
680 
681 	/* Mask all flags except trigger mode */
682 	flags &= IRQ_TYPE_SENSE_MASK;
683 	ret = chip->irq_set_type(&desc->irq_data, flags);
684 
685 	switch (ret) {
686 	case IRQ_SET_MASK_OK:
687 	case IRQ_SET_MASK_OK_DONE:
688 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
689 		irqd_set(&desc->irq_data, flags);
690 
691 	case IRQ_SET_MASK_OK_NOCOPY:
692 		flags = irqd_get_trigger_type(&desc->irq_data);
693 		irq_settings_set_trigger_mask(desc, flags);
694 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
695 		irq_settings_clr_level(desc);
696 		if (flags & IRQ_TYPE_LEVEL_MASK) {
697 			irq_settings_set_level(desc);
698 			irqd_set(&desc->irq_data, IRQD_LEVEL);
699 		}
700 
701 		ret = 0;
702 		break;
703 	default:
704 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
705 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
706 	}
707 	if (unmask)
708 		unmask_irq(desc);
709 	return ret;
710 }
711 
712 #ifdef CONFIG_HARDIRQS_SW_RESEND
713 int irq_set_parent(int irq, int parent_irq)
714 {
715 	unsigned long flags;
716 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
717 
718 	if (!desc)
719 		return -EINVAL;
720 
721 	desc->parent_irq = parent_irq;
722 
723 	irq_put_desc_unlock(desc, flags);
724 	return 0;
725 }
726 EXPORT_SYMBOL_GPL(irq_set_parent);
727 #endif
728 
729 /*
730  * Default primary interrupt handler for threaded interrupts. Is
731  * assigned as primary handler when request_threaded_irq is called
732  * with handler == NULL. Useful for oneshot interrupts.
733  */
734 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
735 {
736 	return IRQ_WAKE_THREAD;
737 }
738 
739 /*
740  * Primary handler for nested threaded interrupts. Should never be
741  * called.
742  */
743 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
744 {
745 	WARN(1, "Primary handler called for nested irq %d\n", irq);
746 	return IRQ_NONE;
747 }
748 
749 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
750 {
751 	WARN(1, "Secondary action handler called for irq %d\n", irq);
752 	return IRQ_NONE;
753 }
754 
755 static int irq_wait_for_interrupt(struct irqaction *action)
756 {
757 	set_current_state(TASK_INTERRUPTIBLE);
758 
759 	while (!kthread_should_stop()) {
760 
761 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
762 				       &action->thread_flags)) {
763 			__set_current_state(TASK_RUNNING);
764 			return 0;
765 		}
766 		schedule();
767 		set_current_state(TASK_INTERRUPTIBLE);
768 	}
769 	__set_current_state(TASK_RUNNING);
770 	return -1;
771 }
772 
773 /*
774  * Oneshot interrupts keep the irq line masked until the threaded
775  * handler finished. unmask if the interrupt has not been disabled and
776  * is marked MASKED.
777  */
778 static void irq_finalize_oneshot(struct irq_desc *desc,
779 				 struct irqaction *action)
780 {
781 	if (!(desc->istate & IRQS_ONESHOT) ||
782 	    action->handler == irq_forced_secondary_handler)
783 		return;
784 again:
785 	chip_bus_lock(desc);
786 	raw_spin_lock_irq(&desc->lock);
787 
788 	/*
789 	 * Implausible though it may be we need to protect us against
790 	 * the following scenario:
791 	 *
792 	 * The thread is faster done than the hard interrupt handler
793 	 * on the other CPU. If we unmask the irq line then the
794 	 * interrupt can come in again and masks the line, leaves due
795 	 * to IRQS_INPROGRESS and the irq line is masked forever.
796 	 *
797 	 * This also serializes the state of shared oneshot handlers
798 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
799 	 * irq_wake_thread(). See the comment there which explains the
800 	 * serialization.
801 	 */
802 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
803 		raw_spin_unlock_irq(&desc->lock);
804 		chip_bus_sync_unlock(desc);
805 		cpu_relax();
806 		goto again;
807 	}
808 
809 	/*
810 	 * Now check again, whether the thread should run. Otherwise
811 	 * we would clear the threads_oneshot bit of this thread which
812 	 * was just set.
813 	 */
814 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
815 		goto out_unlock;
816 
817 	desc->threads_oneshot &= ~action->thread_mask;
818 
819 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
820 	    irqd_irq_masked(&desc->irq_data))
821 		unmask_threaded_irq(desc);
822 
823 out_unlock:
824 	raw_spin_unlock_irq(&desc->lock);
825 	chip_bus_sync_unlock(desc);
826 }
827 
828 #ifdef CONFIG_SMP
829 /*
830  * Check whether we need to change the affinity of the interrupt thread.
831  */
832 static void
833 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
834 {
835 	cpumask_var_t mask;
836 	bool valid = true;
837 
838 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
839 		return;
840 
841 	/*
842 	 * In case we are out of memory we set IRQTF_AFFINITY again and
843 	 * try again next time
844 	 */
845 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
846 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
847 		return;
848 	}
849 
850 	raw_spin_lock_irq(&desc->lock);
851 	/*
852 	 * This code is triggered unconditionally. Check the affinity
853 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
854 	 */
855 	if (cpumask_available(desc->irq_common_data.affinity))
856 		cpumask_copy(mask, desc->irq_common_data.affinity);
857 	else
858 		valid = false;
859 	raw_spin_unlock_irq(&desc->lock);
860 
861 	if (valid)
862 		set_cpus_allowed_ptr(current, mask);
863 	free_cpumask_var(mask);
864 }
865 #else
866 static inline void
867 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
868 #endif
869 
870 /*
871  * Interrupts which are not explicitely requested as threaded
872  * interrupts rely on the implicit bh/preempt disable of the hard irq
873  * context. So we need to disable bh here to avoid deadlocks and other
874  * side effects.
875  */
876 static irqreturn_t
877 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
878 {
879 	irqreturn_t ret;
880 
881 	local_bh_disable();
882 	ret = action->thread_fn(action->irq, action->dev_id);
883 	irq_finalize_oneshot(desc, action);
884 	local_bh_enable();
885 	return ret;
886 }
887 
888 /*
889  * Interrupts explicitly requested as threaded interrupts want to be
890  * preemtible - many of them need to sleep and wait for slow busses to
891  * complete.
892  */
893 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
894 		struct irqaction *action)
895 {
896 	irqreturn_t ret;
897 
898 	ret = action->thread_fn(action->irq, action->dev_id);
899 	irq_finalize_oneshot(desc, action);
900 	return ret;
901 }
902 
903 static void wake_threads_waitq(struct irq_desc *desc)
904 {
905 	if (atomic_dec_and_test(&desc->threads_active))
906 		wake_up(&desc->wait_for_threads);
907 }
908 
909 static void irq_thread_dtor(struct callback_head *unused)
910 {
911 	struct task_struct *tsk = current;
912 	struct irq_desc *desc;
913 	struct irqaction *action;
914 
915 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
916 		return;
917 
918 	action = kthread_data(tsk);
919 
920 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
921 	       tsk->comm, tsk->pid, action->irq);
922 
923 
924 	desc = irq_to_desc(action->irq);
925 	/*
926 	 * If IRQTF_RUNTHREAD is set, we need to decrement
927 	 * desc->threads_active and wake possible waiters.
928 	 */
929 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
930 		wake_threads_waitq(desc);
931 
932 	/* Prevent a stale desc->threads_oneshot */
933 	irq_finalize_oneshot(desc, action);
934 }
935 
936 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
937 {
938 	struct irqaction *secondary = action->secondary;
939 
940 	if (WARN_ON_ONCE(!secondary))
941 		return;
942 
943 	raw_spin_lock_irq(&desc->lock);
944 	__irq_wake_thread(desc, secondary);
945 	raw_spin_unlock_irq(&desc->lock);
946 }
947 
948 /*
949  * Interrupt handler thread
950  */
951 static int irq_thread(void *data)
952 {
953 	struct callback_head on_exit_work;
954 	struct irqaction *action = data;
955 	struct irq_desc *desc = irq_to_desc(action->irq);
956 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
957 			struct irqaction *action);
958 
959 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
960 					&action->thread_flags))
961 		handler_fn = irq_forced_thread_fn;
962 	else
963 		handler_fn = irq_thread_fn;
964 
965 	init_task_work(&on_exit_work, irq_thread_dtor);
966 	task_work_add(current, &on_exit_work, false);
967 
968 	irq_thread_check_affinity(desc, action);
969 
970 	while (!irq_wait_for_interrupt(action)) {
971 		irqreturn_t action_ret;
972 
973 		irq_thread_check_affinity(desc, action);
974 
975 		action_ret = handler_fn(desc, action);
976 		if (action_ret == IRQ_HANDLED)
977 			atomic_inc(&desc->threads_handled);
978 		if (action_ret == IRQ_WAKE_THREAD)
979 			irq_wake_secondary(desc, action);
980 
981 		wake_threads_waitq(desc);
982 	}
983 
984 	/*
985 	 * This is the regular exit path. __free_irq() is stopping the
986 	 * thread via kthread_stop() after calling
987 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
988 	 * oneshot mask bit can be set. We cannot verify that as we
989 	 * cannot touch the oneshot mask at this point anymore as
990 	 * __setup_irq() might have given out currents thread_mask
991 	 * again.
992 	 */
993 	task_work_cancel(current, irq_thread_dtor);
994 	return 0;
995 }
996 
997 /**
998  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
999  *	@irq:		Interrupt line
1000  *	@dev_id:	Device identity for which the thread should be woken
1001  *
1002  */
1003 void irq_wake_thread(unsigned int irq, void *dev_id)
1004 {
1005 	struct irq_desc *desc = irq_to_desc(irq);
1006 	struct irqaction *action;
1007 	unsigned long flags;
1008 
1009 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1010 		return;
1011 
1012 	raw_spin_lock_irqsave(&desc->lock, flags);
1013 	for_each_action_of_desc(desc, action) {
1014 		if (action->dev_id == dev_id) {
1015 			if (action->thread)
1016 				__irq_wake_thread(desc, action);
1017 			break;
1018 		}
1019 	}
1020 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1021 }
1022 EXPORT_SYMBOL_GPL(irq_wake_thread);
1023 
1024 static int irq_setup_forced_threading(struct irqaction *new)
1025 {
1026 	if (!force_irqthreads)
1027 		return 0;
1028 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1029 		return 0;
1030 
1031 	new->flags |= IRQF_ONESHOT;
1032 
1033 	/*
1034 	 * Handle the case where we have a real primary handler and a
1035 	 * thread handler. We force thread them as well by creating a
1036 	 * secondary action.
1037 	 */
1038 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1039 		/* Allocate the secondary action */
1040 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1041 		if (!new->secondary)
1042 			return -ENOMEM;
1043 		new->secondary->handler = irq_forced_secondary_handler;
1044 		new->secondary->thread_fn = new->thread_fn;
1045 		new->secondary->dev_id = new->dev_id;
1046 		new->secondary->irq = new->irq;
1047 		new->secondary->name = new->name;
1048 	}
1049 	/* Deal with the primary handler */
1050 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1051 	new->thread_fn = new->handler;
1052 	new->handler = irq_default_primary_handler;
1053 	return 0;
1054 }
1055 
1056 static int irq_request_resources(struct irq_desc *desc)
1057 {
1058 	struct irq_data *d = &desc->irq_data;
1059 	struct irq_chip *c = d->chip;
1060 
1061 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1062 }
1063 
1064 static void irq_release_resources(struct irq_desc *desc)
1065 {
1066 	struct irq_data *d = &desc->irq_data;
1067 	struct irq_chip *c = d->chip;
1068 
1069 	if (c->irq_release_resources)
1070 		c->irq_release_resources(d);
1071 }
1072 
1073 static int
1074 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1075 {
1076 	struct task_struct *t;
1077 	struct sched_param param = {
1078 		.sched_priority = MAX_USER_RT_PRIO/2,
1079 	};
1080 
1081 	if (!secondary) {
1082 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1083 				   new->name);
1084 	} else {
1085 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1086 				   new->name);
1087 		param.sched_priority -= 1;
1088 	}
1089 
1090 	if (IS_ERR(t))
1091 		return PTR_ERR(t);
1092 
1093 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1094 
1095 	/*
1096 	 * We keep the reference to the task struct even if
1097 	 * the thread dies to avoid that the interrupt code
1098 	 * references an already freed task_struct.
1099 	 */
1100 	get_task_struct(t);
1101 	new->thread = t;
1102 	/*
1103 	 * Tell the thread to set its affinity. This is
1104 	 * important for shared interrupt handlers as we do
1105 	 * not invoke setup_affinity() for the secondary
1106 	 * handlers as everything is already set up. Even for
1107 	 * interrupts marked with IRQF_NO_BALANCE this is
1108 	 * correct as we want the thread to move to the cpu(s)
1109 	 * on which the requesting code placed the interrupt.
1110 	 */
1111 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Internal function to register an irqaction - typically used to
1117  * allocate special interrupts that are part of the architecture.
1118  */
1119 static int
1120 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1121 {
1122 	struct irqaction *old, **old_ptr;
1123 	unsigned long flags, thread_mask = 0;
1124 	int ret, nested, shared = 0;
1125 	cpumask_var_t mask;
1126 
1127 	if (!desc)
1128 		return -EINVAL;
1129 
1130 	if (desc->irq_data.chip == &no_irq_chip)
1131 		return -ENOSYS;
1132 	if (!try_module_get(desc->owner))
1133 		return -ENODEV;
1134 
1135 	new->irq = irq;
1136 
1137 	/*
1138 	 * If the trigger type is not specified by the caller,
1139 	 * then use the default for this interrupt.
1140 	 */
1141 	if (!(new->flags & IRQF_TRIGGER_MASK))
1142 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1143 
1144 	/*
1145 	 * Check whether the interrupt nests into another interrupt
1146 	 * thread.
1147 	 */
1148 	nested = irq_settings_is_nested_thread(desc);
1149 	if (nested) {
1150 		if (!new->thread_fn) {
1151 			ret = -EINVAL;
1152 			goto out_mput;
1153 		}
1154 		/*
1155 		 * Replace the primary handler which was provided from
1156 		 * the driver for non nested interrupt handling by the
1157 		 * dummy function which warns when called.
1158 		 */
1159 		new->handler = irq_nested_primary_handler;
1160 	} else {
1161 		if (irq_settings_can_thread(desc)) {
1162 			ret = irq_setup_forced_threading(new);
1163 			if (ret)
1164 				goto out_mput;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Create a handler thread when a thread function is supplied
1170 	 * and the interrupt does not nest into another interrupt
1171 	 * thread.
1172 	 */
1173 	if (new->thread_fn && !nested) {
1174 		ret = setup_irq_thread(new, irq, false);
1175 		if (ret)
1176 			goto out_mput;
1177 		if (new->secondary) {
1178 			ret = setup_irq_thread(new->secondary, irq, true);
1179 			if (ret)
1180 				goto out_thread;
1181 		}
1182 	}
1183 
1184 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1185 		ret = -ENOMEM;
1186 		goto out_thread;
1187 	}
1188 
1189 	/*
1190 	 * Drivers are often written to work w/o knowledge about the
1191 	 * underlying irq chip implementation, so a request for a
1192 	 * threaded irq without a primary hard irq context handler
1193 	 * requires the ONESHOT flag to be set. Some irq chips like
1194 	 * MSI based interrupts are per se one shot safe. Check the
1195 	 * chip flags, so we can avoid the unmask dance at the end of
1196 	 * the threaded handler for those.
1197 	 */
1198 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1199 		new->flags &= ~IRQF_ONESHOT;
1200 
1201 	/*
1202 	 * The following block of code has to be executed atomically
1203 	 */
1204 	raw_spin_lock_irqsave(&desc->lock, flags);
1205 	old_ptr = &desc->action;
1206 	old = *old_ptr;
1207 	if (old) {
1208 		/*
1209 		 * Can't share interrupts unless both agree to and are
1210 		 * the same type (level, edge, polarity). So both flag
1211 		 * fields must have IRQF_SHARED set and the bits which
1212 		 * set the trigger type must match. Also all must
1213 		 * agree on ONESHOT.
1214 		 */
1215 		unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1216 
1217 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1218 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1219 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1220 			goto mismatch;
1221 
1222 		/* All handlers must agree on per-cpuness */
1223 		if ((old->flags & IRQF_PERCPU) !=
1224 		    (new->flags & IRQF_PERCPU))
1225 			goto mismatch;
1226 
1227 		/* add new interrupt at end of irq queue */
1228 		do {
1229 			/*
1230 			 * Or all existing action->thread_mask bits,
1231 			 * so we can find the next zero bit for this
1232 			 * new action.
1233 			 */
1234 			thread_mask |= old->thread_mask;
1235 			old_ptr = &old->next;
1236 			old = *old_ptr;
1237 		} while (old);
1238 		shared = 1;
1239 	}
1240 
1241 	/*
1242 	 * Setup the thread mask for this irqaction for ONESHOT. For
1243 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1244 	 * conditional in irq_wake_thread().
1245 	 */
1246 	if (new->flags & IRQF_ONESHOT) {
1247 		/*
1248 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1249 		 * but who knows.
1250 		 */
1251 		if (thread_mask == ~0UL) {
1252 			ret = -EBUSY;
1253 			goto out_mask;
1254 		}
1255 		/*
1256 		 * The thread_mask for the action is or'ed to
1257 		 * desc->thread_active to indicate that the
1258 		 * IRQF_ONESHOT thread handler has been woken, but not
1259 		 * yet finished. The bit is cleared when a thread
1260 		 * completes. When all threads of a shared interrupt
1261 		 * line have completed desc->threads_active becomes
1262 		 * zero and the interrupt line is unmasked. See
1263 		 * handle.c:irq_wake_thread() for further information.
1264 		 *
1265 		 * If no thread is woken by primary (hard irq context)
1266 		 * interrupt handlers, then desc->threads_active is
1267 		 * also checked for zero to unmask the irq line in the
1268 		 * affected hard irq flow handlers
1269 		 * (handle_[fasteoi|level]_irq).
1270 		 *
1271 		 * The new action gets the first zero bit of
1272 		 * thread_mask assigned. See the loop above which or's
1273 		 * all existing action->thread_mask bits.
1274 		 */
1275 		new->thread_mask = 1 << ffz(thread_mask);
1276 
1277 	} else if (new->handler == irq_default_primary_handler &&
1278 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1279 		/*
1280 		 * The interrupt was requested with handler = NULL, so
1281 		 * we use the default primary handler for it. But it
1282 		 * does not have the oneshot flag set. In combination
1283 		 * with level interrupts this is deadly, because the
1284 		 * default primary handler just wakes the thread, then
1285 		 * the irq lines is reenabled, but the device still
1286 		 * has the level irq asserted. Rinse and repeat....
1287 		 *
1288 		 * While this works for edge type interrupts, we play
1289 		 * it safe and reject unconditionally because we can't
1290 		 * say for sure which type this interrupt really
1291 		 * has. The type flags are unreliable as the
1292 		 * underlying chip implementation can override them.
1293 		 */
1294 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1295 		       irq);
1296 		ret = -EINVAL;
1297 		goto out_mask;
1298 	}
1299 
1300 	if (!shared) {
1301 		ret = irq_request_resources(desc);
1302 		if (ret) {
1303 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1304 			       new->name, irq, desc->irq_data.chip->name);
1305 			goto out_mask;
1306 		}
1307 
1308 		init_waitqueue_head(&desc->wait_for_threads);
1309 
1310 		/* Setup the type (level, edge polarity) if configured: */
1311 		if (new->flags & IRQF_TRIGGER_MASK) {
1312 			ret = __irq_set_trigger(desc,
1313 						new->flags & IRQF_TRIGGER_MASK);
1314 
1315 			if (ret)
1316 				goto out_mask;
1317 		}
1318 
1319 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1320 				  IRQS_ONESHOT | IRQS_WAITING);
1321 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1322 
1323 		if (new->flags & IRQF_PERCPU) {
1324 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1325 			irq_settings_set_per_cpu(desc);
1326 		}
1327 
1328 		if (new->flags & IRQF_ONESHOT)
1329 			desc->istate |= IRQS_ONESHOT;
1330 
1331 		if (irq_settings_can_autoenable(desc))
1332 			irq_startup(desc, true);
1333 		else
1334 			/* Undo nested disables: */
1335 			desc->depth = 1;
1336 
1337 		/* Exclude IRQ from balancing if requested */
1338 		if (new->flags & IRQF_NOBALANCING) {
1339 			irq_settings_set_no_balancing(desc);
1340 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1341 		}
1342 
1343 		/* Set default affinity mask once everything is setup */
1344 		setup_affinity(desc, mask);
1345 
1346 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1347 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1348 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1349 
1350 		if (nmsk != omsk)
1351 			/* hope the handler works with current  trigger mode */
1352 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1353 				irq, omsk, nmsk);
1354 	}
1355 
1356 	*old_ptr = new;
1357 
1358 	irq_pm_install_action(desc, new);
1359 
1360 	/* Reset broken irq detection when installing new handler */
1361 	desc->irq_count = 0;
1362 	desc->irqs_unhandled = 0;
1363 
1364 	/*
1365 	 * Check whether we disabled the irq via the spurious handler
1366 	 * before. Reenable it and give it another chance.
1367 	 */
1368 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1369 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1370 		__enable_irq(desc);
1371 	}
1372 
1373 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1374 
1375 	/*
1376 	 * Strictly no need to wake it up, but hung_task complains
1377 	 * when no hard interrupt wakes the thread up.
1378 	 */
1379 	if (new->thread)
1380 		wake_up_process(new->thread);
1381 	if (new->secondary)
1382 		wake_up_process(new->secondary->thread);
1383 
1384 	register_irq_proc(irq, desc);
1385 	new->dir = NULL;
1386 	register_handler_proc(irq, new);
1387 	free_cpumask_var(mask);
1388 
1389 	return 0;
1390 
1391 mismatch:
1392 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1393 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1394 		       irq, new->flags, new->name, old->flags, old->name);
1395 #ifdef CONFIG_DEBUG_SHIRQ
1396 		dump_stack();
1397 #endif
1398 	}
1399 	ret = -EBUSY;
1400 
1401 out_mask:
1402 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1403 	free_cpumask_var(mask);
1404 
1405 out_thread:
1406 	if (new->thread) {
1407 		struct task_struct *t = new->thread;
1408 
1409 		new->thread = NULL;
1410 		kthread_stop(t);
1411 		put_task_struct(t);
1412 	}
1413 	if (new->secondary && new->secondary->thread) {
1414 		struct task_struct *t = new->secondary->thread;
1415 
1416 		new->secondary->thread = NULL;
1417 		kthread_stop(t);
1418 		put_task_struct(t);
1419 	}
1420 out_mput:
1421 	module_put(desc->owner);
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	setup_irq - setup an interrupt
1427  *	@irq: Interrupt line to setup
1428  *	@act: irqaction for the interrupt
1429  *
1430  * Used to statically setup interrupts in the early boot process.
1431  */
1432 int setup_irq(unsigned int irq, struct irqaction *act)
1433 {
1434 	int retval;
1435 	struct irq_desc *desc = irq_to_desc(irq);
1436 
1437 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1438 		return -EINVAL;
1439 
1440 	retval = irq_chip_pm_get(&desc->irq_data);
1441 	if (retval < 0)
1442 		return retval;
1443 
1444 	chip_bus_lock(desc);
1445 	retval = __setup_irq(irq, desc, act);
1446 	chip_bus_sync_unlock(desc);
1447 
1448 	if (retval)
1449 		irq_chip_pm_put(&desc->irq_data);
1450 
1451 	return retval;
1452 }
1453 EXPORT_SYMBOL_GPL(setup_irq);
1454 
1455 /*
1456  * Internal function to unregister an irqaction - used to free
1457  * regular and special interrupts that are part of the architecture.
1458  */
1459 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1460 {
1461 	struct irq_desc *desc = irq_to_desc(irq);
1462 	struct irqaction *action, **action_ptr;
1463 	unsigned long flags;
1464 
1465 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1466 
1467 	if (!desc)
1468 		return NULL;
1469 
1470 	chip_bus_lock(desc);
1471 	raw_spin_lock_irqsave(&desc->lock, flags);
1472 
1473 	/*
1474 	 * There can be multiple actions per IRQ descriptor, find the right
1475 	 * one based on the dev_id:
1476 	 */
1477 	action_ptr = &desc->action;
1478 	for (;;) {
1479 		action = *action_ptr;
1480 
1481 		if (!action) {
1482 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1483 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1484 			chip_bus_sync_unlock(desc);
1485 			return NULL;
1486 		}
1487 
1488 		if (action->dev_id == dev_id)
1489 			break;
1490 		action_ptr = &action->next;
1491 	}
1492 
1493 	/* Found it - now remove it from the list of entries: */
1494 	*action_ptr = action->next;
1495 
1496 	irq_pm_remove_action(desc, action);
1497 
1498 	/* If this was the last handler, shut down the IRQ line: */
1499 	if (!desc->action) {
1500 		irq_settings_clr_disable_unlazy(desc);
1501 		irq_shutdown(desc);
1502 		irq_release_resources(desc);
1503 	}
1504 
1505 #ifdef CONFIG_SMP
1506 	/* make sure affinity_hint is cleaned up */
1507 	if (WARN_ON_ONCE(desc->affinity_hint))
1508 		desc->affinity_hint = NULL;
1509 #endif
1510 
1511 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1512 	chip_bus_sync_unlock(desc);
1513 
1514 	unregister_handler_proc(irq, action);
1515 
1516 	/* Make sure it's not being used on another CPU: */
1517 	synchronize_irq(irq);
1518 
1519 #ifdef CONFIG_DEBUG_SHIRQ
1520 	/*
1521 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1522 	 * event to happen even now it's being freed, so let's make sure that
1523 	 * is so by doing an extra call to the handler ....
1524 	 *
1525 	 * ( We do this after actually deregistering it, to make sure that a
1526 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1527 	 */
1528 	if (action->flags & IRQF_SHARED) {
1529 		local_irq_save(flags);
1530 		action->handler(irq, dev_id);
1531 		local_irq_restore(flags);
1532 	}
1533 #endif
1534 
1535 	if (action->thread) {
1536 		kthread_stop(action->thread);
1537 		put_task_struct(action->thread);
1538 		if (action->secondary && action->secondary->thread) {
1539 			kthread_stop(action->secondary->thread);
1540 			put_task_struct(action->secondary->thread);
1541 		}
1542 	}
1543 
1544 	irq_chip_pm_put(&desc->irq_data);
1545 	module_put(desc->owner);
1546 	kfree(action->secondary);
1547 	return action;
1548 }
1549 
1550 /**
1551  *	remove_irq - free an interrupt
1552  *	@irq: Interrupt line to free
1553  *	@act: irqaction for the interrupt
1554  *
1555  * Used to remove interrupts statically setup by the early boot process.
1556  */
1557 void remove_irq(unsigned int irq, struct irqaction *act)
1558 {
1559 	struct irq_desc *desc = irq_to_desc(irq);
1560 
1561 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1562 		__free_irq(irq, act->dev_id);
1563 }
1564 EXPORT_SYMBOL_GPL(remove_irq);
1565 
1566 /**
1567  *	free_irq - free an interrupt allocated with request_irq
1568  *	@irq: Interrupt line to free
1569  *	@dev_id: Device identity to free
1570  *
1571  *	Remove an interrupt handler. The handler is removed and if the
1572  *	interrupt line is no longer in use by any driver it is disabled.
1573  *	On a shared IRQ the caller must ensure the interrupt is disabled
1574  *	on the card it drives before calling this function. The function
1575  *	does not return until any executing interrupts for this IRQ
1576  *	have completed.
1577  *
1578  *	This function must not be called from interrupt context.
1579  *
1580  *	Returns the devname argument passed to request_irq.
1581  */
1582 const void *free_irq(unsigned int irq, void *dev_id)
1583 {
1584 	struct irq_desc *desc = irq_to_desc(irq);
1585 	struct irqaction *action;
1586 	const char *devname;
1587 
1588 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1589 		return NULL;
1590 
1591 #ifdef CONFIG_SMP
1592 	if (WARN_ON(desc->affinity_notify))
1593 		desc->affinity_notify = NULL;
1594 #endif
1595 
1596 	action = __free_irq(irq, dev_id);
1597 	devname = action->name;
1598 	kfree(action);
1599 	return devname;
1600 }
1601 EXPORT_SYMBOL(free_irq);
1602 
1603 /**
1604  *	request_threaded_irq - allocate an interrupt line
1605  *	@irq: Interrupt line to allocate
1606  *	@handler: Function to be called when the IRQ occurs.
1607  *		  Primary handler for threaded interrupts
1608  *		  If NULL and thread_fn != NULL the default
1609  *		  primary handler is installed
1610  *	@thread_fn: Function called from the irq handler thread
1611  *		    If NULL, no irq thread is created
1612  *	@irqflags: Interrupt type flags
1613  *	@devname: An ascii name for the claiming device
1614  *	@dev_id: A cookie passed back to the handler function
1615  *
1616  *	This call allocates interrupt resources and enables the
1617  *	interrupt line and IRQ handling. From the point this
1618  *	call is made your handler function may be invoked. Since
1619  *	your handler function must clear any interrupt the board
1620  *	raises, you must take care both to initialise your hardware
1621  *	and to set up the interrupt handler in the right order.
1622  *
1623  *	If you want to set up a threaded irq handler for your device
1624  *	then you need to supply @handler and @thread_fn. @handler is
1625  *	still called in hard interrupt context and has to check
1626  *	whether the interrupt originates from the device. If yes it
1627  *	needs to disable the interrupt on the device and return
1628  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1629  *	@thread_fn. This split handler design is necessary to support
1630  *	shared interrupts.
1631  *
1632  *	Dev_id must be globally unique. Normally the address of the
1633  *	device data structure is used as the cookie. Since the handler
1634  *	receives this value it makes sense to use it.
1635  *
1636  *	If your interrupt is shared you must pass a non NULL dev_id
1637  *	as this is required when freeing the interrupt.
1638  *
1639  *	Flags:
1640  *
1641  *	IRQF_SHARED		Interrupt is shared
1642  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1643  *
1644  */
1645 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1646 			 irq_handler_t thread_fn, unsigned long irqflags,
1647 			 const char *devname, void *dev_id)
1648 {
1649 	struct irqaction *action;
1650 	struct irq_desc *desc;
1651 	int retval;
1652 
1653 	if (irq == IRQ_NOTCONNECTED)
1654 		return -ENOTCONN;
1655 
1656 	/*
1657 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1658 	 * otherwise we'll have trouble later trying to figure out
1659 	 * which interrupt is which (messes up the interrupt freeing
1660 	 * logic etc).
1661 	 *
1662 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1663 	 * it cannot be set along with IRQF_NO_SUSPEND.
1664 	 */
1665 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1666 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1667 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1668 		return -EINVAL;
1669 
1670 	desc = irq_to_desc(irq);
1671 	if (!desc)
1672 		return -EINVAL;
1673 
1674 	if (!irq_settings_can_request(desc) ||
1675 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1676 		return -EINVAL;
1677 
1678 	if (!handler) {
1679 		if (!thread_fn)
1680 			return -EINVAL;
1681 		handler = irq_default_primary_handler;
1682 	}
1683 
1684 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1685 	if (!action)
1686 		return -ENOMEM;
1687 
1688 	action->handler = handler;
1689 	action->thread_fn = thread_fn;
1690 	action->flags = irqflags;
1691 	action->name = devname;
1692 	action->dev_id = dev_id;
1693 
1694 	retval = irq_chip_pm_get(&desc->irq_data);
1695 	if (retval < 0) {
1696 		kfree(action);
1697 		return retval;
1698 	}
1699 
1700 	chip_bus_lock(desc);
1701 	retval = __setup_irq(irq, desc, action);
1702 	chip_bus_sync_unlock(desc);
1703 
1704 	if (retval) {
1705 		irq_chip_pm_put(&desc->irq_data);
1706 		kfree(action->secondary);
1707 		kfree(action);
1708 	}
1709 
1710 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1711 	if (!retval && (irqflags & IRQF_SHARED)) {
1712 		/*
1713 		 * It's a shared IRQ -- the driver ought to be prepared for it
1714 		 * to happen immediately, so let's make sure....
1715 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1716 		 * run in parallel with our fake.
1717 		 */
1718 		unsigned long flags;
1719 
1720 		disable_irq(irq);
1721 		local_irq_save(flags);
1722 
1723 		handler(irq, dev_id);
1724 
1725 		local_irq_restore(flags);
1726 		enable_irq(irq);
1727 	}
1728 #endif
1729 	return retval;
1730 }
1731 EXPORT_SYMBOL(request_threaded_irq);
1732 
1733 /**
1734  *	request_any_context_irq - allocate an interrupt line
1735  *	@irq: Interrupt line to allocate
1736  *	@handler: Function to be called when the IRQ occurs.
1737  *		  Threaded handler for threaded interrupts.
1738  *	@flags: Interrupt type flags
1739  *	@name: An ascii name for the claiming device
1740  *	@dev_id: A cookie passed back to the handler function
1741  *
1742  *	This call allocates interrupt resources and enables the
1743  *	interrupt line and IRQ handling. It selects either a
1744  *	hardirq or threaded handling method depending on the
1745  *	context.
1746  *
1747  *	On failure, it returns a negative value. On success,
1748  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1749  */
1750 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1751 			    unsigned long flags, const char *name, void *dev_id)
1752 {
1753 	struct irq_desc *desc;
1754 	int ret;
1755 
1756 	if (irq == IRQ_NOTCONNECTED)
1757 		return -ENOTCONN;
1758 
1759 	desc = irq_to_desc(irq);
1760 	if (!desc)
1761 		return -EINVAL;
1762 
1763 	if (irq_settings_is_nested_thread(desc)) {
1764 		ret = request_threaded_irq(irq, NULL, handler,
1765 					   flags, name, dev_id);
1766 		return !ret ? IRQC_IS_NESTED : ret;
1767 	}
1768 
1769 	ret = request_irq(irq, handler, flags, name, dev_id);
1770 	return !ret ? IRQC_IS_HARDIRQ : ret;
1771 }
1772 EXPORT_SYMBOL_GPL(request_any_context_irq);
1773 
1774 void enable_percpu_irq(unsigned int irq, unsigned int type)
1775 {
1776 	unsigned int cpu = smp_processor_id();
1777 	unsigned long flags;
1778 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1779 
1780 	if (!desc)
1781 		return;
1782 
1783 	/*
1784 	 * If the trigger type is not specified by the caller, then
1785 	 * use the default for this interrupt.
1786 	 */
1787 	type &= IRQ_TYPE_SENSE_MASK;
1788 	if (type == IRQ_TYPE_NONE)
1789 		type = irqd_get_trigger_type(&desc->irq_data);
1790 
1791 	if (type != IRQ_TYPE_NONE) {
1792 		int ret;
1793 
1794 		ret = __irq_set_trigger(desc, type);
1795 
1796 		if (ret) {
1797 			WARN(1, "failed to set type for IRQ%d\n", irq);
1798 			goto out;
1799 		}
1800 	}
1801 
1802 	irq_percpu_enable(desc, cpu);
1803 out:
1804 	irq_put_desc_unlock(desc, flags);
1805 }
1806 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1807 
1808 /**
1809  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1810  * @irq:	Linux irq number to check for
1811  *
1812  * Must be called from a non migratable context. Returns the enable
1813  * state of a per cpu interrupt on the current cpu.
1814  */
1815 bool irq_percpu_is_enabled(unsigned int irq)
1816 {
1817 	unsigned int cpu = smp_processor_id();
1818 	struct irq_desc *desc;
1819 	unsigned long flags;
1820 	bool is_enabled;
1821 
1822 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1823 	if (!desc)
1824 		return false;
1825 
1826 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1827 	irq_put_desc_unlock(desc, flags);
1828 
1829 	return is_enabled;
1830 }
1831 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1832 
1833 void disable_percpu_irq(unsigned int irq)
1834 {
1835 	unsigned int cpu = smp_processor_id();
1836 	unsigned long flags;
1837 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1838 
1839 	if (!desc)
1840 		return;
1841 
1842 	irq_percpu_disable(desc, cpu);
1843 	irq_put_desc_unlock(desc, flags);
1844 }
1845 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1846 
1847 /*
1848  * Internal function to unregister a percpu irqaction.
1849  */
1850 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1851 {
1852 	struct irq_desc *desc = irq_to_desc(irq);
1853 	struct irqaction *action;
1854 	unsigned long flags;
1855 
1856 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1857 
1858 	if (!desc)
1859 		return NULL;
1860 
1861 	raw_spin_lock_irqsave(&desc->lock, flags);
1862 
1863 	action = desc->action;
1864 	if (!action || action->percpu_dev_id != dev_id) {
1865 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1866 		goto bad;
1867 	}
1868 
1869 	if (!cpumask_empty(desc->percpu_enabled)) {
1870 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1871 		     irq, cpumask_first(desc->percpu_enabled));
1872 		goto bad;
1873 	}
1874 
1875 	/* Found it - now remove it from the list of entries: */
1876 	desc->action = NULL;
1877 
1878 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1879 
1880 	unregister_handler_proc(irq, action);
1881 
1882 	irq_chip_pm_put(&desc->irq_data);
1883 	module_put(desc->owner);
1884 	return action;
1885 
1886 bad:
1887 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1888 	return NULL;
1889 }
1890 
1891 /**
1892  *	remove_percpu_irq - free a per-cpu interrupt
1893  *	@irq: Interrupt line to free
1894  *	@act: irqaction for the interrupt
1895  *
1896  * Used to remove interrupts statically setup by the early boot process.
1897  */
1898 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1899 {
1900 	struct irq_desc *desc = irq_to_desc(irq);
1901 
1902 	if (desc && irq_settings_is_per_cpu_devid(desc))
1903 	    __free_percpu_irq(irq, act->percpu_dev_id);
1904 }
1905 
1906 /**
1907  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1908  *	@irq: Interrupt line to free
1909  *	@dev_id: Device identity to free
1910  *
1911  *	Remove a percpu interrupt handler. The handler is removed, but
1912  *	the interrupt line is not disabled. This must be done on each
1913  *	CPU before calling this function. The function does not return
1914  *	until any executing interrupts for this IRQ have completed.
1915  *
1916  *	This function must not be called from interrupt context.
1917  */
1918 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1919 {
1920 	struct irq_desc *desc = irq_to_desc(irq);
1921 
1922 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1923 		return;
1924 
1925 	chip_bus_lock(desc);
1926 	kfree(__free_percpu_irq(irq, dev_id));
1927 	chip_bus_sync_unlock(desc);
1928 }
1929 EXPORT_SYMBOL_GPL(free_percpu_irq);
1930 
1931 /**
1932  *	setup_percpu_irq - setup a per-cpu interrupt
1933  *	@irq: Interrupt line to setup
1934  *	@act: irqaction for the interrupt
1935  *
1936  * Used to statically setup per-cpu interrupts in the early boot process.
1937  */
1938 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1939 {
1940 	struct irq_desc *desc = irq_to_desc(irq);
1941 	int retval;
1942 
1943 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1944 		return -EINVAL;
1945 
1946 	retval = irq_chip_pm_get(&desc->irq_data);
1947 	if (retval < 0)
1948 		return retval;
1949 
1950 	chip_bus_lock(desc);
1951 	retval = __setup_irq(irq, desc, act);
1952 	chip_bus_sync_unlock(desc);
1953 
1954 	if (retval)
1955 		irq_chip_pm_put(&desc->irq_data);
1956 
1957 	return retval;
1958 }
1959 
1960 /**
1961  *	request_percpu_irq - allocate a percpu interrupt line
1962  *	@irq: Interrupt line to allocate
1963  *	@handler: Function to be called when the IRQ occurs.
1964  *	@devname: An ascii name for the claiming device
1965  *	@dev_id: A percpu cookie passed back to the handler function
1966  *
1967  *	This call allocates interrupt resources and enables the
1968  *	interrupt on the local CPU. If the interrupt is supposed to be
1969  *	enabled on other CPUs, it has to be done on each CPU using
1970  *	enable_percpu_irq().
1971  *
1972  *	Dev_id must be globally unique. It is a per-cpu variable, and
1973  *	the handler gets called with the interrupted CPU's instance of
1974  *	that variable.
1975  */
1976 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1977 		       const char *devname, void __percpu *dev_id)
1978 {
1979 	struct irqaction *action;
1980 	struct irq_desc *desc;
1981 	int retval;
1982 
1983 	if (!dev_id)
1984 		return -EINVAL;
1985 
1986 	desc = irq_to_desc(irq);
1987 	if (!desc || !irq_settings_can_request(desc) ||
1988 	    !irq_settings_is_per_cpu_devid(desc))
1989 		return -EINVAL;
1990 
1991 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1992 	if (!action)
1993 		return -ENOMEM;
1994 
1995 	action->handler = handler;
1996 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1997 	action->name = devname;
1998 	action->percpu_dev_id = dev_id;
1999 
2000 	retval = irq_chip_pm_get(&desc->irq_data);
2001 	if (retval < 0) {
2002 		kfree(action);
2003 		return retval;
2004 	}
2005 
2006 	chip_bus_lock(desc);
2007 	retval = __setup_irq(irq, desc, action);
2008 	chip_bus_sync_unlock(desc);
2009 
2010 	if (retval) {
2011 		irq_chip_pm_put(&desc->irq_data);
2012 		kfree(action);
2013 	}
2014 
2015 	return retval;
2016 }
2017 EXPORT_SYMBOL_GPL(request_percpu_irq);
2018 
2019 /**
2020  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2021  *	@irq: Interrupt line that is forwarded to a VM
2022  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2023  *	@state: a pointer to a boolean where the state is to be storeed
2024  *
2025  *	This call snapshots the internal irqchip state of an
2026  *	interrupt, returning into @state the bit corresponding to
2027  *	stage @which
2028  *
2029  *	This function should be called with preemption disabled if the
2030  *	interrupt controller has per-cpu registers.
2031  */
2032 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2033 			  bool *state)
2034 {
2035 	struct irq_desc *desc;
2036 	struct irq_data *data;
2037 	struct irq_chip *chip;
2038 	unsigned long flags;
2039 	int err = -EINVAL;
2040 
2041 	desc = irq_get_desc_buslock(irq, &flags, 0);
2042 	if (!desc)
2043 		return err;
2044 
2045 	data = irq_desc_get_irq_data(desc);
2046 
2047 	do {
2048 		chip = irq_data_get_irq_chip(data);
2049 		if (chip->irq_get_irqchip_state)
2050 			break;
2051 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2052 		data = data->parent_data;
2053 #else
2054 		data = NULL;
2055 #endif
2056 	} while (data);
2057 
2058 	if (data)
2059 		err = chip->irq_get_irqchip_state(data, which, state);
2060 
2061 	irq_put_desc_busunlock(desc, flags);
2062 	return err;
2063 }
2064 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2065 
2066 /**
2067  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2068  *	@irq: Interrupt line that is forwarded to a VM
2069  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2070  *	@val: Value corresponding to @which
2071  *
2072  *	This call sets the internal irqchip state of an interrupt,
2073  *	depending on the value of @which.
2074  *
2075  *	This function should be called with preemption disabled if the
2076  *	interrupt controller has per-cpu registers.
2077  */
2078 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2079 			  bool val)
2080 {
2081 	struct irq_desc *desc;
2082 	struct irq_data *data;
2083 	struct irq_chip *chip;
2084 	unsigned long flags;
2085 	int err = -EINVAL;
2086 
2087 	desc = irq_get_desc_buslock(irq, &flags, 0);
2088 	if (!desc)
2089 		return err;
2090 
2091 	data = irq_desc_get_irq_data(desc);
2092 
2093 	do {
2094 		chip = irq_data_get_irq_chip(data);
2095 		if (chip->irq_set_irqchip_state)
2096 			break;
2097 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2098 		data = data->parent_data;
2099 #else
2100 		data = NULL;
2101 #endif
2102 	} while (data);
2103 
2104 	if (data)
2105 		err = chip->irq_set_irqchip_state(data, which, val);
2106 
2107 	irq_put_desc_busunlock(desc, flags);
2108 	return err;
2109 }
2110 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2111